SlideShare a Scribd company logo
FACIES ANALYSIS AND
SEDIMENTARY HISTORY OF
SOME PALEO-MESOZOIC
ROCK UNITS, WADI ARABA,
EASTERN DESERT, EGYPT.
An Essay Submitted to
The Geology Department,
Faculty of Science,
Port-Said University
By
Esraa Alaa El-Din El-Masry
Ibraheem Mohammed El-Batoot
(4th
Geology Level)
In partial fulfillments for
B.Sc. Degree in Geology
(Geology of Petroleum and Natural Gas)
(2016)
i
ACKNOWLEDGEMENTS
First of all, we would like to thank ALLAH -The Lord- for care and
guidance all the way during life and study.
We would like to express our great gratitude to The Geology Department,
Faculty of Science, Port Said University, for giving us the chance for
graduation and the ability to study and research.
We would like to thank the Suez University for their hospitality during our
field work in Wadi Araba area.
We would like to thank Chemistry Department and Marine Science
Department, Faculty of Science, Port Said University for helping us with their
tools during our laboratory work.
We wish to express our deep appreciation and gratitude to Prof. Farouk
M. El-Fawal for his supervision of our work, helpful discussions, and overall
guidance
Our special thanks for assistance of Mr. Amer Ismail for helping us and
providing us with everything we ever needed during the completion of this
work.
Many thanks to Mr Mohamed Shehata for his advice during this work.
Our deep thanks to our colleagues and friends for helping us during this
work, Menna Ayman, Mohamed Mostfa, Alya Reda, Mahmoud El-Said,
Mahmoud Khalaf, Yasmeen Abo Warda, Ethar Galal, Mohamed El-Zanaty
and Mohamed El-Atma.
Our deep gratitude and appreciation to our families for their support and
encouragement in all times.
We express deepest gratitude to Ms. Salwa Elbarbary for her support and
encouragement throughout this toil.
Esraa A. El-masry
Ibraheem M. El-Batoot
II
DEDICATION
Every work needs self-efforts as well as guidance of elders especially those
who were very close to our heart.
Our humble effort we dedicate to
our loving
Parents
Whose affection, love, encouragement, caring and prays of day and night
make us able to achieve such work,
Our friend
Salwa El-Barbary
For her support and encouragement all over the way
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
iii
CONTENTS
Subject Page
ACKNOWLEDGEMENTS ….……………............................................................................... i
DEDICATION ………………….…………………………………………….…….….....…..…..…...….. ii
CONTENTS.…………………….…………………………………………….…….….....…..…..…...….… iii
LIST OF FIGURES ……………...……………………………………..……………..………...….… Viii
LIST OF TABLES …………………………………………………………………...…….…….…..... Xiii
LIST OF PLATES ………………………………………………………………………….…….….... Xiii
CHAPTER-ONE
INTRODUCTION
1.1. PRELUDE ………………………………………………………….……………..……………………... 1
1.2. STUDY AREA ……………………….………………………..……………….…………………….. 1
1.3. ACCESSIBILITY...…………………………………………………………….………………….. 2
1.4. AIM OF THE WORK ……………………………………..…………….……………………. 3
1.5. PERVIOUS WORK ………………….……………………………………………..…………... 3
1.5.1. Stratigraphy………………….………………………………………………………………. 3
1.5.2. Structure ………………….………………………………………………………………..…... 6
1.5.3. Tectonics ………………….………………………………………………………………..…… 8
1.5.4. Geomorphology ….………….……………………………………………………………. 10
1.5.5. Paleogeography ….………….……………………………………….………………..….. 11
1.5.6. Economic Potentiality ….………….………………………….………………….…. 12
CHAPTER-TWO
METHODS AND TECHNIQUES
2.1. FIELD STUDIES ……………………….…………………………………………….…………… 13
2.2. LABORATORY ANALYSES ………………….…………………….………………… 15
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
iv
2.2.1. Binocular examination ….…………………………………………………………. 15
2.2.2. Disaggregation of the samples ………………………………..…………….... 15
2.2.3. Determination of the Bulk Textural Composition
of the Sediments .............................................................................................................. 15
2.2.3.1. Determination of Carbonate–Sand–Mud%
content …………………………………………………………………..…… 15
2.2.3.2. Grain size analysis ………………………….………….…………….. 17
2.2.3.3. Petrography and Microlithofacies Examination . 17
CHAPTER-THREE
LITHOSTRATIGRAPHY
GENERAL CONSIDERATIONS ……...……………………………….…………………... 20
3.1. THE PALEOZOIC ROCKS……...………..……………………….…………………….. 23
3.1.1 Rod El-Hamal Formation (Carboniferous)…………………… 23
3.1.1.1. Nomenclature ……………………………….……………………………. 23
3.1.1.2. Contacts ……………………………………………….……………………… 23
3.1.1.3. Thickness and Lithology ………………………………………… 23
3.1.1.4. Faunal Content and Age Assignment …………………... 26
3.1.1.5. Regional Extension and Equivalent Rock Units . 26
3.2. THE PERMO-TRIASSIC ROCKS……...………..………….…………………….. 27
3.2.1. The Qiseib Formation (Permo-Triassic)…………………………. 27
3.2.2.1. Nomenclature …………………………………………………………….. 27
3.2.2.2. Contacts …………………………………………………………………..... 27
3.2.2.3. Thickness and Lithology ………………………………………… 27
3.2.2.4. Faunal Content and Age Assignment …………………... 29
3.2.2.5. Regional Extension and Equivalent Rock Units . 31
3.3. THE EARLY CRETACEOUS ROCKS……………….…….………….……… 32
3.3.1. The Malha Formation (Early Cretaceous)……………………….. 32
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
v
3.3.1.1. Nomenclature ............................................................................................... 32
3.3.1.2. Contacts ……………………………………………………….……………..… 32
3.3.1.3. Thickness and Lithology ………………………….……………... 33
3.3.1.4. Faunal Content and Age Assignment ………………….. 35
3.3.1.5. Regional Extension and Equivalent Rock Units . 36
3.4. THE UPPER CRETACEOUS ROCKS……………….…….………….………. 37
3.4.1. Galala Formation (Cenomanian) ……………………...……………… 37
3.4.1.1. Nomenclature …………………………………………………………….. 37
3.4.1.2. Contacts ……………………………………………………............................. 37
3.4.1.3. Thickness and Lithology ………………………………………… 37
3.4.1.4. Faunal Content and Age Assignment …………………... 39
3.4.1.5. Regional Extension and Equivalent Rock Units . 40
CHAPTER-FOUR
LITHOLOGICAL CHARACTERISTICS AND
SEDIMENT COMPOSITION
4.1. ROD EL-HAMAL FORMATION ………………………………..………………… 43
4.1.1. The general bulk textural composition ………..……...……….… 43
4.1.1.1. The Carbonate-Sand-Mud % composition ……….… 44
4.1.1.2. The Gravel-sand-mud % composition ……….……….. 45
4.1.2. Grain size analysis …………………………………..…………………………….. 46
4.1.2.1. The graphic representation of the grain size data 46
4.1.2.2. The grain size parameters ………………….…………………… 47
4.2. THE QISEIB FORMATION ……………………………………………………………. 49
4.2.1. The general bulk textural composition ………….…...……….… 49
4.2.1.1. The Carbonate-Sand-Mud % composition ………… 49
4.2.1.2. The Gravel-sand-mud % composition ………………… 50
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
vi
4.2.2. Grain size analysis ……………………………….…………………………….…... 51
4.2.2.1. The graphic representation of the grain size data 51
4.2.2.2. The grain size parameters …………………………………… 52
4.3. THE MALHA FORMATION …………………………………………….……………. 54
4.3.1. The general bulk textural composition …………...……….…….. 54
4.3.1.1. The Carbonate-Sand-Mud % composition ………... 54
4.3.1.2. The Gravel-sand-mud % composition ………………... 55
4.3.2. Grain size analysis ………………………………………………………………… 56
4.3.2.1. The graphic representation of the grain size data 56
4.3.2.2. The grain size parameters ………………….…………………… 57
4.4. THE GALALA FORMATION ……………………..…………………………………. 59
4.4.1. The general bulk textural composition …………...……….……. 59
4.4.1.1. The Carbonate-Sand-Mud % composition ………... 59
4.4.1.2. The Gravel-sand-mud % composition ………………... 60
4.4.2. Grain size analysis ………………………………………………………………… 60
4.4.2.1. The graphic representation of the grain size data 61
4.4.2.2. The grain size parameters ………………………………………. 62
CHAPTER-FIVE
SEDIMENTARY FACIES ANALYSIS
5.1. ROD EL-HAMAL FORMATION …………….………...………….…………….. 63
5.1.1. Crudely-bedded, Monomineralic Conglomerate ………… 63
5.1.2. Cross-stratified gravelly sandstone …………………………………. 65
5.1.3. Fine-laminated gray to black silt-shale .………….…………..….. 69
5.2. THE QISEIB FORMATION ……………………………………………………………. 71
5.2.1. Basal Conglomerates ……………………………….………………………….... 72
5.2.2. Trough cross-stratified sandstones ……………………………........... 72
5.2.3. Vari-coloured, mottled silt-shale …………………………….….…….. .75
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
vii
5.3. THE MALHA FORMATION ………………………………………………................ 78
5.3.1. The Lower Gravelly Sandstones Member ……………………... 78
5.3.1.1. Clast supported conglomerate association ………… 78
5.3.1.2. Large-scale, trough cross-stratified gravelly
sandstone …………………………………………………………………… 81
5.3.1.3. Large scale, planar tabular cross-stratified
gravelly sandstone ………………………..………………………… 86
5.3.1.4. Horizontally laminated sandy mudstone …………….... 89
5.3.2. The Upper Sandstone/Mudstone Intercalation
Member…………………………………………………………………………………….. 91
5.3.2.1. Large-scale, epsilon and trough cross-stratified
sandstone ………………………………………………………………… 93
5.3.2.2. Rooted and burrowed sandy-mudstone ……………….. 97
5.4. GALALA FORMATION ………………………………………………..……………...…… 101
5.4.1. The Non-Clastic Microfacies Associations …………………..... 102
5.4.1.1. Dolomitized Dismicrite …………………………………….......... 102
5.4.1.2. Ostracodal Biomicrite ……………………………………….......... 106
5.4.1.3. Foraminiferal Biomicrite ……………………………………....... 107
5.4.2. Clastic microfacies associations ……..…………………………..…...... 109
5.4.2.1. Dolomitic quartz arenite……...……...…………………..….......... 109
5.4.2.2. Gypsiferous feldspathic quartz arenite ………………… 111
CHAPTER-SIX
DEPOSITIONAL EVOLUTION THE EXAMINED
PALEO / MESOZOIC SUCCESSION
6.1. PRE - CARBONIFEROUS PHASE ……………………………………….……… 113
6.2. CARBONIFEROUS PHASE ………………………………………………..…..…....… 113
6.3. PERMO-TRIASSIC PHASE ……………………………………………….…………… 112
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
viii
6.4. JURASSIC-EARLY CRETACEOUS PHASE ………………………....... 115
6.5. LATE CRETACEOUS (CENOMANIAN) PHASE ……………..…… 116
CHAPTER-SEVEN
SUMMARY AND CONCLUSIONS............... 117
REFERENCES …………………………………………….….………………………………..…... 123
LIST OF FIGURES
Figure Page
1.1 Satellite image of Wadi Araba including the study area……………….……….. 2
1.2 Sketch showing the geological situation in the Wadi Araba area ………..…… 7
1.3 The tectonic features in northeast Egypt showing the distribution
of the Syrian Arc System……………………………………………………….. 8
1.4 The drainage system and elevation of Wadi Araba and the bounding Galala
plateau……………………………………………………………………..…… 10
3.1 Variation in the rock units of the different Paleozoic outcrops in Egypt ………. 20
3.2 Correlation between the Cretaceous rock units in Egypt ……………………..… 21
3.3 Geological map of the study area …………………………………..…….…….. 22
3.4 A Fault-Contact between Rod El-Hamal Fm. and Qiseib Fm ………………….. 24
3.5 lithologic Succession of Rod El-Hamal Formation ………….............................. 25
3.6 Sandstones and reddish-brown and brown shales of Rod El-Hamal formation ... 26
3.7 Different types of cross-bedding of Rod El-Hamal Formation ………………… 27
3.8 Contact between Qiseib Fm and Malha Fm ………………….............................. 29
3.9 The undulating irregular contact between The Qiseib Formation
and The Malha Formation …………………………………...............................… 29
3.10 lithologic Succession of Qiseib Formation …….……………………………..… 31
3.11 Cross-bedded sandstones and the non-fossiliferous reddish
brown, thinly-fissile shales of Qiseib Formation ………..…………………..… 32
3.12 The sharp planar tabular contact between the Malha Formation
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
ix
and the Galala Formation …………………………….……............................… 34
3.13 lithologic Succession of Malha Formation ……………………………………... 36
3.14 lithologic Succession of Galala Formation …………….…………………..…… 41
4.1 Carbonate-Sand-Mud% composition of Rod El-Hamal Formation
plotted on Füchtbaur & Muller (1970) triangular diagram …………………..… 44
4.2 Gravel-Sand-Mud% composition of Rod El-Hamal Formation
plotted on Folk (1954) triangular diagram ……….……….....…………………. 45
4.3 The cumulative grain size distribution curves of Rod El-Hamal Formation ….... 47
4.4 Carbonate-Sand-Mud% composition of Qiseib Formation plotted
on Füchtbaur & Muller (1970) triangular diagram.……………………………. 50
4.5 Gravel-Sand-Mud% composition of Qiseib Formation plotted on
Folk (1954) triangular diagram ………………………………………………… 51
4.6 The cumulative grain size distribution curves of Qiseib Formation ..................... 52
4.7 Carbonate-Sand-Mud% composition of Malha Formation plotted
on Füchtbaur & Muller (1970) triangular diagram. …………………………….. 54
4.8 Gravel-Sand-Mud% composition of Malha Formation plotted on
Folk (1954) triangular diagram …………………………………………....….... 55
4.9 The cumulative grain size distribution curves of Malha Formation …………..... 56
4.10 Carbonate-Sand-Mud% composition of Galala Formation plotted on Füchtbaur &
Muller (1970) triangular diagram ………………………………………….....… 59
4.11 Gravel-Sand-Mud% composition of Galala Formation plotted on
Folk (1954) triangular diagram.…………………………………………..…… 60
4.12 The cumulative grain size distribution curves of Galala Formation ……………. 61
5.1 The Crudely-bedded, Monomineralic Conglomerate Lithofacies C.N.25X .…… 65
5.2 Low-angle planar tabular cross stratifications, Rod El-Hamal Formation …..… 67
5.3 Horizontal lamination, Rod El-Hamal Formation ……………...……..…..…. .. 68
5.4 The cross-stratified sandstone Lithofacies C.N.100X ...………...……….… …. 68
5.5 Print of Lepidodendron in the grey-shale of lithofacies 5.1.3. .....……………... 69
5.6 Size lamination in the grey-shale of lithofacies 5.1.3. (C.N. 100X) ..………..…. 70
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
x
5.7 The large scale trough cross-stratification in the trough cross stratified
sandstone lithofacies ………………………………………………………...… 73
5.8 The grain-supported quartz arenite of the trough cross stratified
sandstone lithofacies (C.N. 25X)......………………..……….............................. 74
5.9 The vari-coloured, mottled mud-shale lithofacies of QiseibFormation ………… 76
5.10 The vari-coloured, mottled mud-shale lithofacies of Qiseib Formation ………... 76
5.11 The vari-coloured, mottled mud-shale lithofacies of Qiseib Formation
(C.N. 100X) .......................................................................................................... 77
5.12 Detailed sedimentologic succession of the Lower Member, Malha
Formation, Wadi Araba ……………………………………..…………………. 79
5.13 The laterally continuous mult-iscoured surfaces at the base of the fining-upward
sequences: Lower gravelly sandstone Member, Malha Formation……………... 80
5.14 The clast-supported conglomerate association: Lower sandstone
Member, Malha Formation ………………………............................................... 81
5.15 sub-rounded to rounded and badly sorted quartz gravels, bounded
with medium grained quartz sands(C.N. 25X) ...................................................... 82
5.16 The gravelly sandstones of the large scale trough cross-stratified sandstone,
Lower gravelly sandstone Member, Malha Formation …………………………. 83
5.17 The Large scale trough cross-stratifications with common centered
internal foresets: Lower gravelly sandstone Member, Malha Formation ………… 83
5.18 The paleocurrent rose diagram of the large scale trough cross
stratified gravelly sandstone, Lower Member, Malha Formation ………………… 84
5.19 The different grain contacts in the large scale trough cross stratified gravelly
sandstone association, Lower gravelly sandstone Member, Malha Formation .... 85
5.20 Large scale, planar tabular cross-stratified gravelly sandstone
association: Lower gravelly sandstone member, Malha Formation …………… 86
5.21 The paleocurrent rose diagram for the large scale planar-tabular cross- stratified
gravelly sandstone, lower gravelly sandstone Member, Malha Formation …….. 87
5.22 The monocrystalline quartz grains of the large scale planar tabular
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
xi
cross-stratified gravelly sandstone, lower Member, Malha Formation ………… 88
5.23 The horizontally laminated sandy mudstone lithofacies, lower Member,
Malha Formation ………………………………….……………………………. 89
5.24 The detrital quartz grains scattered with a considerable amount of fine argillaceous
matrix of the horizontally laminated sandy mudstone association, lower Member,
Malha Formation ………………………………………………........................... 90
5.25 The vari-coloured, upper Member, Malha Formation unconformably underlain the
Cenomanian Galala Formation …………………………………………………. 91
5.26 Detailed sedimentologic succession of the Upper Member, Malha
Formation, Wadi Araba ………………………………………………………… 92
5.27 The large scale trough cross-stratification with internal foresets truncating the lower
bounding surface, Large-scale, epsilon and trough cross-stratified sandstone, Malha
Formation …………………………………………………………….…………. 94
5.28 Large scale epsilon cross-stratified sandstone, Large-scale, epsilon and trough cross-
stratified sandstone, upper Member, Malha Formation ………..…….……….… 94
5.29 The paleocurrent rose diagram for the large scale epsilon and trough cross stratified
sandstone association, upper Member, Malha Formation ……………………… 95
5.30 The large scale epsilon and trough cross stratified sandstone association, upper
Member, Malha Formation (Note: the rock matrix is masked by
ferruginous stains ……………………………………………………………..… 96
5.31 The vari-coloured beds of the rooted and burrowed mudstone
association, upper Member, Malha Formation ………………………….……… 97
5.32 Strong color mottling the rooted and burrowed mudstone
association, upper Member, Malha Formation …………………………….…… 98
5.33 Dark mottling of coloured patches in the rooted and burrowed
mudstone association, upper Member, Malha Formation ……………………… 98
5.34 The Plasma separation and curved craze plane in s-matrix of the
Rooted and burrowed sandy-mudstone, upper Member, Malha Formation ….. 100
5.35 Cutans (Clay Skin) of the Rooted and burrowed sandy-mudstone,
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
xii
upper Member, Malha Formation ……………………………………………..... 101
5.36 The different microfacies encountered in the Cenomanian Galala Formation … 103
5.37 Homogeneous micrite with fine dolomite rhombs and ferruginous
clouds, Dolomitized Dismicrite, Galala Formation ……………………..…..…. 105
5.38 Ostracodal shells and fragments scattered in the original micritic matrix, Ostracodal
Biomicrite, Galala Formation ………………………………………………..…. 107
5.39 Foraminiferal tests and chambers scattered in the general micritic matrix,
Foraminiferal Biomicite, Galala Formation …………………………………….. 108
5.40 Quartz grains cemented by well-developed dolomite rhombs, Dolomitic quartz
arenite, Galala Formation ………….…………………………………………… 110
5.41 Medium to very fine grained quartz and some feldspars grains cemented by
argillaceous materials, gypsiferous feldspathic quartz arenite,
Galala Formation …………….…………………………………………………. 112
CONTENTS
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
xiii
LIST OF TABLES
Table Page
4.1 Results obtained from bulk composition of Rod El-Hamal Formation ………... 43
4.2 Data obtained from grain size analysis & description of Rod El-Hamal
Formation………………………………………………………………………... 48
4.3 Results obtained from bulk composition of Qiseib Formation ………………… 49
4.4 Data obtained from grain size analysis & description of Qiseib Formation …... 53
4.5 Results obtained from bulk composition of Malha Formation ...………………. 54
4.6 Data obtained from grain size analysis & description of Malha ………………... 57
4.7 Results obtained from bulk composition of Galala Formation ……...……..…… 58
4.8 Data obtained from grain size analysis & description of Galala Formation …... 62
5.1 The different microfacies associations encountered in the Galala
Formation in the study area …………………………………….…...………… 58
LIST OF PLATES
Plate Page
2.1 Different stages of field work …………….………………………………..…… 14
2.2 Different stages of laboratory work …………………………………..………… 19
CHAPTER ONE
INTRODUCTION
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
1
CHAPTER ONE
INTRODUCTION
1.1. PRELUDE:
The Paleo-Mesozoic sediments are well exposed in the Wadi Araba area
which is located in the northern part of the Eastern Desert of Egypt. Some
important works on the carboniferous - Cenomanian succession in Wadi Araba
area has already been published (e.g. Fourtau, 1900 & 1904; Hume 1911; Abdallah
& Adindani 1963; Awad & Abdallah, 1966 and Hewaidy et al. 2003). Most of
these works were essentially concerned with the paleontological considerations and
the stratigraphic relationships. However, little has been paid to the modern
sedimentological aspects. These aspects will be considered herein to emphasize
Paleo-Mesozoic rock units along the easternmost parts of Wadi Araba.
1.2. THE STUDY AREA:
Wadi Araba is situated at the far north eastern reaches of the Egyptian
Eastern Desert, along the western coast of Gulf of Suez. The study area lies at the
northeastern corner of the northern bank of Wadi Araba (Fig. 1.1). It extends
between the Lat.: 29° 22' 37"' & 29°29'15'"N and Long.: 32° 32' 42"' & 32° 14' E,
Fig. (1.1).
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
2
Fig. 1.1 Satellite image of Wadi Araba including the study area.
1.3. ACCESSIBILITY:
The study area lies between Ain-Sokhna and Zaafrana areas. The area is
easily to be arrived by vehicles along the international asphaltic road run parallel to
the coast of the Gulf of Suez (Ain Sokhna –Zaafrana road), Suez governorate.
Inside Wadi Araba itself, the outcrops are distributed along the floor, and on both
banks of the wadi. These outcrops are in form of low hills and moderate-high cliffs
that can be easily walked and traversed.
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
3
1.4. AIM OF THE WORK:
The aim of the work is to examine a part of the Paleozoic-Mesozoic
sedimentary succession to the north-eastern part of Wadi Araba, along the southern
slopes of the Northern Galala Plateau. The detailed lithological characteristics will
be discussed both in the field outcrops and in the laboratory. The different
sedimentary facies forming the sedimentary succession and their mutual
relationships are to be emphasized. The depositional interpretations will be given
to arrive the evolution of these sediments. The tectono-sedimentary status of the
given succession will be discussed in terms of the sequence stratigraphic
principles.
1.5. PERVIOUS WORK:
The study area has been treated geologically long ago. Different geo-topics
have been discussed since the early time of 20th
Century. The following is a brief
of the concerned works:
1.5.1. Stratigraphy:
Carboniferous:
The Carboniferous rocks along Wadi Araba were first discovered by
Schwerin - Furth (1883) at the mouth of Wadi Abu Silla. Walther (1890)
described the rocks in detail, especially those found opposite the exit Wadi
Rod El–Hamal. The author (ibid) came to the conclusion that the marls and
limestone beds of Wadi Araba having the age of “Sub-carbon" or Lower
'Carboniferous. Said (1962) supported the Lower Carboniferous (Visean) age
to Wadi Araba outcrops. Abdallah and Adindani (1963) stated that the
carboniferous rocks in Wadi Araba are represented by Rod El-Hamal
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
4
Formation. It is best exposed in the area at the junction of Wadi Araba and
Wadi Rod El-Hamal, comprising of 5 units of different lithological
compositions. The whole succession is overlain by thick red shales. The
authors (ibid) further added that on the basis of the corals and pelecypods
present in the top parts of the Rod El-Hamal, it can be stated to be of Upper
Carboniferous age. Moreover, Abdallah and Adindani (1963) considered the
member 5, at the top of the Rod El-Hamal Formation as to be of
Pennsylvanian age, thus the lower members may belong to the Mississippian.
Adindani and Shakhov (1970) stated that in South Sinai, along Ayun Musa
wells drilled for coal exploration, the clastics including the coal seams are
regarded to be Carboniferous in age depending on pollen spores analysis.
Kora (1995) stated that Early to Late Carboniferous in Wadi Araba is
represented by Rod El-Hamal Formation.
Permo-Triassic:
Abdallah and Adindani (1963) identified and described a Permo-Triassic
succession, on the basis of the badly preserved fossils, named by them to as
Qiseib Formation along Wadi Qiseib in the Northern Galala Plateau-western
side of the Gulf of Suez. They added that the Qiseib Formation
unconformably underlies the Lower Cretaceous Malha Formation (Abdallah
and Adindani op. cit.). Horowitz 1970 stated that the lower clastic red beds of
the Qiseib Formation include many thin coal seams with rich palynomorphs
suggesting an Early to Middle Triassic age. Druckman (1974) In Abu Hamth
well-I, pointed-out that the Qiseib Formation is 376 m thick; the upper 36 m
are made of limestones rich in Middle Triassic marine fossils. El Barkouky
(1986) confirms a Triassic age for the Qiseib Formation in Sinai. Lejal-Nicol
(1987) identified a Lower Permian flora from Wadi Araba. Kora (1992)
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
5
confirmed this Lower Permian age of the Qiseib Formation due to the
occurrence of the bivalves Notomya cuneata (Sowerby) and Megadesmus
nobilissiinus (De Koninck). Issawi et al. (1999) further supported that the
Qiseib Formation is of Permo–Triassic age, forming a transition unit between
the Paleozoic and the Mesozoic.
Early Cretaceous:
Abdallah and Adindani (1963) mapped the west side of the Gulf of Suez
where they first recorded a rich Lower Cretaceous fauna in a unit below the
Cenomanian beds, which they first named as the Malha Formation. Fawzi
and Naim (1964) studied a 174 m Lower Cretaceous section in Gebel
Shabrawet and gave an Albian age to the upper part of the Malha Formation
section. Bartov and Steinitz (1977) at Arif El Naga, North Sinai, found that
the Malha Formation consists of grey, white and variegated sandstones,
cross-bedded and quartzitic in parts with silt interbeds and limonitic shale
beds mainly in the lower part. Mazhar et al. (1979) The clastic beds of the
Malha Formation unconformably overlie red shales of possibly Triassic or
Permo - Triassic age and unconformably underlie the Cenomanian Galala
Formation. Al Ahwani (1982) published that the Lower Cretaceous
sediments are subdivided into four main rock units; two clastic units and two
upper carbonate units, the lower two units are made of sandstones topped by
dolomite and dolomitic limestones. El-Fawal (1988) stated that the Malha
Formation along El-Tih Scarp, South Sinai is generally has Early Cretaceous
age on the basis of it geometrical basis and the enclosing plant remains. The
author further added that this formation is composed of two members; a
lower gravelly sandstone member evolved within active braided channels,
and an upper member of thick intercalation of sandstone and silt- & clay-
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
6
shale paleosol evolved with a wide meandering river belt. Jenkins (1990)
stated that the Malha Formation unconformably overlies Jurassic beds.
Kerdany and Cherif (1990) pointed out that the lower sandstone beds
formerly called as Nubia Sandstone might be Barrernian in age. Aboul Ela et
al. (1991) stated that the Lower Cretaceous section at Gebel Shabrawet is
correlated here with the Malha Formation and is believed to be of Albian to
Varconian age, though the lower beds of this formation might belong to the
Aptian or even to the Berriasian - Barremian.
Upper Cretaceous (Cenomanian):
Carozzi (1951) early stated that the Galala Plateau was interpreted as a cycle
of decreasing depth of the sea. Hume (1962) noted that it is remarkable that
neither Turonian nor Cenomanian formations are exposed anywhere along
the northern slopes of the Southern Galala range. Abdallah and Adindani
(1963) were the first who applied the name Galala Formation at the Galala
massif, along the western coast of the Gulf of Suez. Al Ahwani (1982)
believes that the Galala Formation in G. Shabrawet area was deposited in a
decreasing water depth on an inner shelf environment.
1.5.2. Structure:
Said (1962) subdivided the continental platform area of Egypt into two
tectonic domains: a northern ‘Unstable Shelf’ and southern ‘Stable Shelf’ with
unstable hinge zone in between. The stable shelf is included the south of Egypt
and is mainly covered by incomplete continental successions belonging to the
Palaozoic and Mesozoic rocks with simple structural features (Said, 1990).
Abdallah et al. (1973) stated that there are minor anticlines and synclines are
recognized in Wadi Araba particularly in the Paleozoic rocks of the Rod El-
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
7
Hamal locality, East Wadi Araba. According to Bandel & Kuss (1987) several
structural units (blocks) can be differentiated in Wadi Araba, Fig (1.2).
Fig. 1.2 Sketch showing the geological situation in the Wadi Araba area (modified after Kuss, 1989).
Said (1990) pointed out that there was rapid lateral variation in the lithofacies of
the different stratigraphic units during the Cretaceous, one of the most interesting
features of the north Eastern Desert, could be due to syn-sedimentary structural
control. Abdel-Aal & Lelek (1994) stated that the Galala plateaus represent a major
branch of the Syrian Arc in the Eastern Desert. It is characterized by Late
Cretaceous uplift in the north, and subsidence farther to the south. Folding &/or
uplift of the Syrian Arc began in post-Cenomanian times.
Stampfli et al. (1995) stated that the complex uplifts and domal anticlines of the
Syrian Arc Fold Belt were formed during the closure of the Neotethys. Kuss et al.
(2000) stated that the North eastern Egypt is situated at the northern edge of the
African- Arabian Craton. It was affected during the Late Cretaceous to early
Tertiary times by east- northeast-oriented dextral wrench-faulting. This resulted in
transpressive movements and the inversion of the Late Triassic – Liassic half-
grabens that cut east-northeastward across the northern rim of the African-Arabian
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
8
Plate. Kuss et al. (2000) stated that the folding &/or uplift of the Syrian Arc began
in post-Cenomanian times, reached its acme during the Late Cretaceous, Fig. (1.3).
Fig. 1.3 The tectonic features in northeast Egypt showing the distribution
of the Syrian Arc System (modified after Kuss et al., 2000).
1.5.3. Tectonics:
The Galala mountain complex represents an isolated late Cretaceous
(Maastrichtian) to Eocene carbonate platform at the southern margin of the
Tethys, which is referred to as the unstable shelf of northern Egypt (Youssef
2003). The evolution of the carbonate platform is connected closely to the
tectonic activity of the ENE–WSW striking Wadi Araba Fault, which forms
part of the Syrian Arc-Fold-Belt (e.g. Krenkel 1925; Moustafa and Khalil
1995; Hussein and Abd-Allah 2001). During the Early Eocene, a major phase
of tectonic activity occurred along the Syrian Arc-Fold-Belt (Shahar 1994).
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
9
Regional uplift and subsidence triggered the formation of ENE–WSW striking
basins, submarine swells and subaerially exposed plateaus on the unstable
shelf (Said 1990; Schütz 1994). According to regional tectono-sedimentary
constraints, three major depositional units can be distinguished; (i) the
Northern Galala/Wadi Araba High (NGWA), (ii) a transitional slope zone, and
(iii) the Southern Galala Sub-basin (SGS). The NGWA represents shallow-
marine to probably subaerially exposed inner platform environments. Due to
the syn-sedimentary monoclinal uplift, an erosional phase started since the
Late Cretaceous, thus major inner-ramp deposits were eroded or intensively
altered (Moustafa and Khalil 1995). The Rocks of the northern platform
interior are intensively affected by tectonic displacement, which is a result of
the Miocene opening of the Gulf of Suez. The connection between the NGWA
and the SGS is represented by a transitional slope zone (mid ramp to outer
ramp).
The Galala Mountains are tectonically and depositionally linked to the
monoclinal structure of Gebel Somar on west-central Sinai (Moustafa and
Khalil 1995). Both structures were separated during the rifting of the Gulf of
Suez in the Late Oligocene and Miocene. Formation and evolution of
carbonate platform systems are strongly controlled by eustatic sea-level
changes and the activity of adjacent tectonic provinces (Bosellini 1989; Everts
1991).
Based on the Paleocene record of the Galala platform, (Scheibner et al. 2003)
assume a platform evolution that is affected more by local tectonic
displacements than by eustatically controlled sea-level changes. Thus, the
tectonic activity along the Wadi Araba Fault system triggered the initial
growth of the Galala platform as a coupled effect of sea-level drop and local
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
10
tectonic uplift. The geometry and architecture of platform and slope have
undergone repeated changes since the Cretaceous due to the varying tectono-
sedimentary constraints on the unstable Egyptian shelf (Meshref 1990; Schütz
1994; Youssef 2003).
1.5.4 Geomorphology:
These structural features control the geomorphology of the study area, where
Wadi Araba is bounded in the north by the Northern Galala Plateau, in the
south by the Southern Galala Plateau and in the east by the Gulf of Suez.Wadi
Araba has NE – SW direction, following the direction of a regional Syrian Arc
anticline structure. Wadi Araba is relatively low compared with the great
heights of the surrounding plateaus (Fig. 1.4). It reaches 30 km width from
north to south and extends westward to the central Eocene limestone plateau
of the Eastern Desert. It is traversed by a large number of drainage lines.
Some of these drainage lines are shedding from the two Galala (NW – SE and
SE – NW), forming tributaries of the main WSW – ENE drainage line of
Wadi Araba.Most of these drainage lines are filled with Plio – Pleistocene
deposits (gravel or loose sands) that were transported from the limestone cliffs
by the tributary branches.
1.5.5. Paleogeography:
Said (1990) stated that the first major marine transgression in the Cretaceous
occurred during the Aptian in response to a world-wide rise in sea-level. Kuss
& Bachmann (1996) added that the Albian sea encroached further south due to
the rising of sea-level, resulting in conformable Aptian-Albian successions in
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
11
northern Sinai, while in the south, the Albian sequences unconformably onlap
Aptian and pre-Aptian siliciclastics. Furthermore, during the Cenomanian, the
Fig. 1.4: The drainage system and elevation of Wadi Araba and the bounding Galala plateaus
(modified after Conoco, 1987).
ongoing rise of the sea-level corresponds to a Tethyan-wide high stand (Philip
et al., 1993). Kuss & Malchus (1989) further added that the Late Cenomanian
shelf facies of the Eastern Desert and northern Sinai is characterized by a rich
assemblage of benthic foraminifera and ammonites of the genera Neolobites
and Vascoceras. During the Turonian, Bauer et al. (2003) pointed out that in
the Eastern Desert, shallow-marine, siliciclastic and terrestrial conditions
prevailed during the relative sea-level lowstand across the Turonian –
Coniacian boundary. Kuss & Bachmann (1996) reported a wide calcareous
succession of an open marine chalk and chalky limestone sediments of
Chapter One Introduction
‫ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ـــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
12
Campanian–Maastrichtian transgressive phase. The authors (ibid) stated that
these sediments are widely distributed over the southern Egypt and Sinai. Said
(1990) further added that by the end of the Cretaceous, during the
Maastrichtian, the transgression reached further to the south and covered wide
areas mostly with thick chalk-marl units, shale, and subordinate silts of deeper
shelf origin.
CHAPTER TWO
METHODS & TECHNIQUES
Chapter Two Methods & Techniques
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
13
CHAPTER TWO
METHODS & TECHNIQUES
The methods of study adopted herein are categorized in two broad
classes; field studies and laboratory studies.
2.1. FIELD STUDIES:
The field studies done in this study involved 4-days field trip to
traverse the Paleozoic – Mesozoic sedimentary succession, Wadi Araba,
situated at the far north eastern reaches of the Egyptian Eastern Desert, along
the western coast of Gulf of Suez. The study area lies at the eastern corner of
the northern bank of Wadi Araba. The field studies were accomplished
according to the following scheme, Plate (2.1):
A) Choice of a generalized area well-representing the complete Paleo-
Mesozoic sedimentary succession under examination along the southern
cliffs of Northern Galala Plateau, bordering the northern bank of Wadi.
B) Choice of the best sedimentary profile, within the selected area, having
the complete succession of the forming rock formations to be studied.
C) For each rock unit, the detailed lithological characteristics are identified
and described. The thickness variations are reported. The bed contacts
and bed geometries are recognized and recorded. The characteristic
primary sedimentary structures are identified, described and
photographed.
Chapter Two Methods & Techniques
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
14
D) A number of representative spot samples were collected from each rock
unit in the examined sedimentary succession for further laboratory
analyses.
Plate (2.1): Different rock units surveyed in the field (A, B, & C: Sandstone of Rod El-Hamal
Fm, D: shale of Qiseib Fm, E: & F; Qiseib/Malha contact, G: The Malha Fm, and H:
Malha/Galala contact.).
Chapter Two Methods & Techniques
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
15
2.2. LABORATORY ANALYSES:
The samples collected were subjected to the following methods of study:
2.2.1. Binocular examination:
Provisionally, all samples were separately examined under the
binocular microscope before carrying out any analysis in order to
determine their color, lithology, texture, mineralization and fossil
content, (Plate: 2.2-A).
2.2.2. Disaggregation of the samples:
The collected samples were first disaggregated to their original
components. In this concern, the argillaceous bonded samples were
disaggregated by soaking in water for a few hours. The carbonate
cemented samples were disaggregated using Hydrochloric Acid (HCl)
and applying little press on the sample (Plate: 2.2-B).
2.2.3. Determination of the Bulk Textural Composition of the Sediments:
The overall detailed textural composition of the components forming
the examined rock units is carried-out to arrive the accurate
percentage composition, and to arrive the accurate nomenclature of
the examined sediments. The bulk textural composition is done
according to the following scheme:
2.2.3.1. Determination of Carbonate – Sand –Mud% content:
A) Determination of carbonate % content:
The representative 30 gm (W1) of each sample is weighed (Plate:
2.2- C), put in a 250 ml beaker with10% Hydrochloric Acid
(Plate: 2.2-D). Extra acid is added till the effervescence is
completely ceased. The excessive liquids are suck-out using a tri-
junction connection (Plate: 2.2-E), Then sample is then left
Chapter Two Methods & Techniques
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
16
overnight, and then washed (Plate: 2.2-F), then the residue is dried
in an electric oven (Plate: 2.2-G). The dry sample is weighed
using electronic balance (W2), and the weight difference (W1-
W2) will be for the carbonate weight proportion, where the
carbonate % can be calculated.
B) Removal of Organic Matter:
The remaining weight (W2) of the sample is put in a 250 ml
beaker with 30%H2O2. The sample is then left overnight, and
then the excessive liquids are suck-out using a tri-junction
connection, then the residue is dried in an electric oven. This step
achieves the removal of organic constituents to facilitate the
dispersion of clay minerals. The weight of the collected sample
will then be (W3).
C) Determination of sand % content:
In order to separate the sand fraction from a given sample, and
then evaluate its percentage content, a process of wet sieving is
applied. In this process, this sample collected (W3) from the
above step (B) is poured into a sieve having 0.063 mm openings.
A gentle sieving is then applied using hand-fingers under a quiet
continuous stream of tap water then (Plate: 2.2-E). This process
is accomplished while the mud fraction passing through the sieve
is collected in a wide 1000 ml beaker. The process continues
until the sand fraction becomes very clean of any mud. The
collected sand fraction in the sieve is the poured into a Petri-dish,
Chapter Two Methods & Techniques
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
17
dried in an electric oven, the weighed (W4) and its content% is
calculated.
D) Determination of the mud% content:
The mud suspension collected in the wide 1000 ml beaker in the
above step (C) is left an overnight to allow free settling of the
mud deposits. The clean water is then filtered-out and removed
where the collected mud fraction is dried in an electric oven,
weighed (W5) and the mud content% is calculated.
2.2.3.2. Sand Grain Size Analysis:
The collected sand fraction (W4) separated in the step (C), is
fractionated by dry sieving using a standard set of sieves of the
openings 2.0, 1.0, 0.50, 0.25, 0.125 and 0.063 mm (Plate: 2.2-H). An
electric shaker is used for a continuous twenty minutes shaking (Plate:
2.2-H & I). The different sand-size fractions obtained in each sieve
were weighed and their weight percentages were calculated.
The data was graphically represented as cumulative percentage
distribution curves using probability papers, then the grain size
parameters of Folk and Ward (1957); MzФ, б1Ф, SK1 and KG for each
sample were calculated and their mutual characteristics were
discussed.
2.2.3.3. Petrography and Microlithofacies Examination:
A number of (14) thin section was prepared for the available hard or
moderately hard samples representing the rock units forming the
examined succession in the area. Detailed petrographic description of
the thin section was made for both sand and carbonate using the
Chapter Two Methods & Techniques
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
18
Standard Polarizing Microscope. Definitions and interpretations of the
depositional environment for sandstone rocks are discussed according
to the schemes given by Folk (1980), whereas the carbonate rocks
were discussed according to the schemes of Dunham (1962), Embry
and Klovan (1971). The data obtained are interpreted according to the
depositional schemes of Wilson (1975) and Flugel.
Chapter Two Methods & Techniques
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــــــــــــــــــــ‬
19
Plate (2.2): Different stages of laboratory work.
CHAPTER THREE
LITHOSTRATIGRAPHY
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
20
CHAPTER – THREE
LITHOSTRATIGRAPHY
GENERAL CONSIDERATIONS:
In Egypt, the Paleo-Mesozoic sediments generally display some
pronounced facies changes as reported for different successions in different
provinces in Egypt (Issawi et al, 1999), (Fig. 3.1). On the other hand, the
Cretaceous sedimentary exposures of Egypt have been subdivided into several
facies (Said, 1962 & 1990; Issawi et al., 1999), each of which has characteristic
rock units (Fig. 3.2) that differs in part from the adjacent facies zone, although
some rock units may occur in two or more areas.
Fig. (3.1): Variation in the rock units of the different Paleozoic outcrops in Egypt.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
21
Fig. (3.2): Correlation between the Cretaceous rock units in Egypt (Issawi et al, 1999).
In the northern parts of the Eastern Desert (where the study area), the Cretaceous
sediments are very common in the area north of latitude 27o
25′ N and extends
northward to 30o
19′ N (Issawi et al., 1999). In this stretch, about 300 km long, the
Cretaceous rocks crop out at Southern Galala, Northern Galala, Gebel Ataqa, and
Gebel Shabraweet, from south to north, respectively.
The detailed field study made herein in the study area along the southern
scarp of part of northern Galala Plateau in Wadi Araba area indicates that the
Paleo-Mesozoic sediments (Fig. 3.3) vary from one to another expressing different
depositional settings and sedimentary history. This succession has been dealt by
many authors in different parts of Egypt. The Paleozoic-Cretaceous sediments in
the study area are represented from the base by the Carboniferous, Rod El-Hamal
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
22
Formation, the Permo-Triassic Qiseib Formation, Early Cretaceous Malha
Formation, and The Cenomanian Galala Formation.
Fig. (3.3): Geological map of the study area (modified after CONOCO, 1987).
A brief description of the Paleo-Mesozoic units exposed in the north Eastern
Desert is given below:
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
23
3.1. THE PALEOZOIC ROCKS:
3.1. 1. Rod El-Hamal Formation (Carboniferous):
3.1.1.1 Nomenclature:
Rod El-Hamal Formation was first identified by (Abdallah & Adindani 1963)
of the Carboniferous age at its type locality in the scarp of the northern Galala
Plateau, Wadi Araba area, west side of Gulf of Suez at the junction of Wadi
Araba and Wadi Rod El- Hamal, where it is best exposed. Abdallah and
Adindani (1963) named and described this formation from Wadi Qiseib in the
Northern Galala Plateau-west side of the Gulf of Suez.
3.1.1.2. Contacts:
In the study area, Rod El-Hamal Formation has unexposed lower contact;
however, the formation displays an unconformable upper contact with the
shales of Qiseib Formation, sometimes dissected by steep normal faults (Fig.
3.4). The contacts are distinguished in the field upon lithological basis.
3.1.1.3. Thickness and Lithology:
Hamal. In this spot-area, the formation consists of sandstones siltstone and
shale exhibiting red, reddish-brown and brown shades (Fig. 3.5). The
sandstones are fine to medium grained, with occasional gravel clasts at the
lower parts. They display different types of cross-beddings and laminations
with numerous bioturbations and concretions (Fig. 3.5). The siltstone and
shales are fine laminated and extensively burrowed. The recorded thickness in
the study area is about 45 m (Fig. 3.6).
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
24
Fig. (3.4): A Fault-Contact between Rod El-Hamal Fm. and Qiseib Fm.
Fig. 3.5: Sandstones and reddish-brown and brown shales of Rod El-Hamal formation.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
25
Fig. (3.6): Lithologic Succession of Rod El-Hamal Formation.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
26
3.1.1.4. Faunal Content and Age Assignment:
Abdallah & Adindani (1963) have reported that the Rod El-Hamal Formation
is characterized by the following fossil assemblages:
Crinoid columnals, Fenestella carinata, Fenesterlina d'Orbigny, Caninea
torquia., Caninea sp., Syringopora sp, Clisiophullum sp., Dialasma nexile.,
Dialasma Plica., Dialasma ocoidelo., Linoproductus Cora., Productus
(Linoproductus) lineatus., Productus (Ruthenia) purdoni., Dietyoclostus
semireticulatus., Buxton semireticulatus., Buxtonia scmicirularis., Orthotetis
crenistria., Derbyia sp., Derbyia regularis., Lima sp)., Allerisma terminal.,
Schizodus sp., Pleuriphoris subcostatus., Bellerophon. (Tropidocyclus)
punjabicus., Macrocheilina sphaerodoma., Naticopsis speetata., Ortho ceras
sp., Rhodocrinus sp., Trilobite (phillipsia sp?). Aulopra sp., Curinoid corals.,
Lophophyillidum sp., Cyathxonia., Composite sp., Dialasma sp., Productus
sp., Orthis sp., Paralledodon sp, Schizodus sp., Aviculocten sp., Bellerophton
sp., Macrocheillina sp.
Based upon the above mentioned faunal assemblage Abdallah and Adindani
(1963) stated that the Rod El Hamal Formation is stratigraphically a bit lower
than the Abu Darag Formation, hence, it is logic to assume that the Rod El
Hamal Formation is Early to Late Carboniferous. (Mississippian to
Pennsylvanian).
3.1.1.5. The Regional Extension and Equivalent Rock Units:
The fossiliferous marine succession of Carboniferous was treated under
three laterally equivalent formal rock units; namely from N to S: Aheimer
Formation, Abu Darag Formation and Rod El Hamal Formation (Abdallah
and Adindani, 1963). The Hashash and Magharet El-Malah formations are
equivalent to the Rod El-Hamal Formation (Said, 1971).
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
27
3.2. THE PERMO-TRIASSIC ROCKS:
3.2.1. The Qiseib Formation (Permo-Triassic):
3.2.1.1. Nomenclature:
Abdallah and Adindani (1963) named and described this formation from Wadi
Qiseib in the Northern Galala Plateau-west side of the Gulf of Suez.
3.2.1.2. Contacts:
In the study area, the Qiseib Formation unconformably overlies the
Carboniferous Rod El-Hamal Formation. The contact is irregular surface, and
sometimes display fault contact (Fig. 3.4). On the other hand, the upper
contact with the overlying Early Cretaceous Malha Formation is an
unconformable contact (Fig. 3.7), and the contact is generally irregular &/or
undulating (Fig. 3.8). This contact is Lithologically confirmed by the passage
from relatively small-scale bed geometry, and almost pure deep brown-
colored sandstone and shale facies of Qiseib Formation into relatively thick,
strongly lensoidal white and off-white highly gravelly sandstone of the present
formation. At its type section, the formation overlies the Aheimer Formation
(Upper Pennsylvanian - Lower Permian, and unconformably underlies the
Lower Cretaceous Malha Formation (Abdallah and Adindani, 1963).
3.2.1.3. Thickness and Lithology:
In the study area, the Qiseib Formation is ~ 40 m thick. It is made of red shale
and medium to coarse - grained cross-bedded sandstones (Fig. 3.9). The
sandstones are cross-bedded and non-fossiliferous including sandy
conglomeratic bands at the lower levels. shales are non-fossiliferous reddish
brown, and thinly-fissile (Fig. 3.10).
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
28
Fig. (3.7): Contact between Qiseib Fm and Malha Fm.
Fig. (3.8): The undulating irregular contact between The Qiseib Formation and
The Malha Formation.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
29
In the subsurface, the Qiseib Formation is recorded in many wells where it is
referred to as the "Red Shale Series" or the "Upper Ataka Formation" in many
oil companies' reports (Issawi et al., 1999). In Abu Hamth-I well, the Qiseib
Formation is 376 m thick; the upper 36 m are made of limestones rich in
Middle Triassic marine fossils (Druckman 1974). The lower clastic red beds
include many thin coal seams with rich palynomorphs suggesting an· Early to
Middle Triassic age (Horowitz 1970).
3.2.1.4. Faunal Content and Age Assignment:
The age of this unit is rather problematic; Abdallah and Adindani (1963)
assigned, on the basis of the badly preserved fossils in the middle parts of the
formation, to the Permo-Triassic. On the other hand, Lejal-Nicol (1987)
identified a Lower Permian flora from Wadi Araba. Kora (1992) based
assigned a Lower Permian age of the Qiseib Formation on the occurrence of
the bivalves Notomya cuneata (Sowerby) and Megadesmus nobilissiinus (De
Koninck). El Barkouky (1986) confirms a Triassic age for the Qiseib
Formation in Sinai. Issawi et al, (1981) identified Ammodiscus cf. priscus
Rauser, Paratlkhivella sp., Bathysiphon sp., Ammovertella sp., Tolvpammina
sp, and Hyperammina sp. These species have Carboniferous affinities but they
could also be found in the Permian and the Triassic. The recent studies on the
stratigraphy of this formation (El Barkooky 1986) prove its Triassic age as it
overlies Triassic basaltic sill. In Ayun Musa, wells drilled for coal exploration,
the clastics including the coal scams are regarded Carboniferous in age
depending on pollen spores analysis (Adindani and Shakhov 1970). These
authors extrapolate the Carboniferous age to cover coeval sediments east in
Abu Hamth and Nekhl wells and west in Ataqa well and at Wadi Araba
outcrops.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
30
Fig. (3.9): Lithologic Succession of Qiseib Formation.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
31
Fig. (3.10): Cross-bedded sandstones and the non-fossiliferous reddish brown, thinly-fissile
shales of Qiseib Formation.
Along the Red Sea coast, deposition during the Early Permian was dominated
by red, continental, ferruginous sandstones, siltstones and shales with Cordites
megaflora and microflora (Schürmann et al., 1963) of the Qiseib Formation.
Generally, the Permo-Triassic age and Late Permian age by Kora & Mansour
(1992), Triassic age by Druckman et al. (1970) are considered.
3.2.1.5. Regional Extension and Equivalent Rock Units:
This unit has a wide geographic distribution in the Gulf of Suez region. It is
also exposed in the cliffs of Gabal El-Tih between Wadi El-Hommar and
Gabal El-Ragaba, and in Wadi Budra in Sinai. The equivalent units are the
Budra Formation in Sinai of Druckman et al. (1970); Nubia "A" lower part in
the Gulf of Suez wells.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
32
3.3. THE EARLY CRETACEOUS ROCKS:
3.3. 1. The Malha Formation (Early Cretaceous):
3.3.1.1. Nomenclature:
The name “Malha Formation” was first introduced by Abdallah and Adindani
(1963). They mapped the west side of the Gulf of Suez where they recorded a
rich Lower Cretaceous fauna in a unit below the Cenomanian beds. Barron
(1907), Blanckenhom (1921) and Sadek (1926) they named it “Nubian
Sandstone”.
3.3.1.2. Contacts:
In the study area, the Malha Formation unconformably overlies the red sands
and chocolate-brown shales of the Qiseib Formation, and the contact is
generally irregular &/or undulating (See 3.2.2). This contact is lithologically
confirmed by the passage from relatively small-scale bed geometry, and
almost pure deep brown-coloured sandstone and shale facies of Qiseib
Formation into relatively thick, strongly lensoidal white and off-white highly
gravelly sandstone of the present formation.
On the other hand, the formation unconformably underlies the Cenomanian
Galala Formation (Fig.3.11), and the contact is sharp planar, and displays low-
angle tabular geometry. Furthermore, the upper contact with the Cenomanian
Galala formation is lithologically supported by the passage from the slightly
gravelly sandstone intercalated with vary coloured paleosol beds of the Malha
Formation into the egg-yellow and greenish yellow sandstones and claystone
of the Earliest Cenomanian age supported by the presence of the characteristic
Cenomanian pelecypods.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
33
Fig. (3.11): The sharp planar tabular contact between the Malha Formation and the Galala Formation.
3.3.1.3. Thickness and Lithology:
In the study area, the formation is lithologically is composed of 50 m thick of
frequently common cross-bedded sandstones intercalated with shales that
become more common at the upper parts (Fig. 3.12).
In the field area, the formation can be easily subdivided into two major
subdivisions; a Lower Member and an Upper Member. The Lower Member,
~ 20 m thick, consists of conglomerates and highly gravelly sandstones of
white and off-white colours bonded with kaolinitic matrix, and exhibiting
trough cross bedded. These highly gravelly sandstones grade upward into
slightly gravelly sandstone with minor presence of thin mudstone interbeds.
The Upper Member (~30 m thick), on the other hand, consists of relatively
less-thick sandstones beds that are almost free of gravels and display different
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
34
kinds of trough and tabular cross-bedding. Moreover, the Upper Member
comprises frequent vary-coloured thick mud- and silt-shale beds with plant
and wood remains.
Fig. (3.12): Lithologic Succession of Malha Formation.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
35
In this concern, El-Fawal (1988) reported similar lithologic subdivisions
within the Malha Formation sedimentary successions along El-Tih scarp,
South Sinai. In the type area of the Malha Formation, Abdallah and El-
Adendani (1963) and Darwish (1992) recorded 32 m thick dolomite and
dolomitic limestones interbed within the above mentioned clastic members.
These authors mentioned that the top of this unit is a fore-reef talus derived
from skeletal fragments of the reef forming the rudistid bed. The topmost part
of this unit yields Orbitolina concava and O. aff. discoidea.
3.3.1.4. Faunal Content and Age Assignment:
In the type section area, Abdallah and El-Adendani (1963), mentioned that
Hume (1962) had recorded that the Malha Formation is commonly
characterizes by the following fossil assemblages:
a- Barremian age:
Lytoceras, Costidiscus, Phylloceras,Democeras and Crioceras.
b- Aptian age:
Douvilleiceras neyendorti (Sinsow), Puzosia matheroni d'Ordb., P.
angladei Sayn and Terebratulasella Sowerby.
c- Albian age:
Nucula aff. lineata Sow., Corbula striatula Sow., Diastoma ornatum
Douville, Trigonia harperi sp. nov. aff., Quadrata Sow.
d- Varconian age (a stage between the Albian and the Cenomanian):
Enallastr delgador Choffat, Diplopodia hermonensis Deloriol, Meretrix
obrutus Conrad,Turritella vibrayi d'Orbigny, Pedinopsis desori Couteau
Moreover, Barthoux (1922) and Aboul Ela et al. (1998) identified 25 species of
pollen and spores. Al Ahwani (1982) identified the Albian fossils: Nonion sp,
Orbitolina concava and O. aff. discoidea; Columellina fusiformis Douville,
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
36
Vermicularia (Pseudomesalia) deserti Douville, Arca orientalis Douville,
Meretrix brongniartina Leymerie and Glauconia deserti Douville.
Based upon the above faunal content the age of the Malha Formation is thus
considered as Lower Cretaceous. This age was adopted by several workers
such as Abdallah et al. (1963), Said (1971), Gvirtzman & Weissbrod (1984),
Barakat et al, (1986), El-Fawal (1988), Kora et al. (1994), and Alsharhan &
Salah (1995, 1997). It was assigned a Jurassic-Lower Cretaceous age by
Weissbrod (1969) based on its stratigraphic position.
3.3.1.5. Regional Extension and Equivalent Rock Units:
The Malha Formation has wide areal distribution in Egypt in the Gulf of Suez
region, Sinai Peninsula, Eastern and Western desert. It is recorded in different
areas by several authors; El Tih scarp (Said, 1962), Weissbrod (1969), Barakat
et al, (1986), El-Fawal (1988) The Formation is well exposed at Gebel el Tih
and extends from Wadi Hamr in the west to Gebel Dhalal-Gebel El-Gunna
strech in the east, In the Gebel El Minshera area, Northern Sinai, (El-Beialy et
al., 2010). Two units can be recognized in the Malha Formation in Central
Sinai, which are equivalent to the Amir and Hatira formations (Weissbrod,
1969, Bartov et al., 1980), The reference section of the Amir Formation is in
Gebel Raqaba, Sinai (Weissbrod, 1969). It is exposed in SW Sinai in the
cliffs of Gebel el Tih, Gebel Sarbut el Gamal, and Gebel Musaba Salama, and
at Wadi Ba’ba, Wadi Budra, and Wadi Sidri.
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
37
3.4. THE UPPER CRETACEOUS
3.4.1. The Galala Formation (Cenomanian):
3.4.1.1. Nomenclature:
This name was introduced by Abdallah and Adindani (1963) on the western
coast of the Gulf of Suez to describe a 130 - 170 m thick section of vari-
coloured, shales, marls and marly limestone.
3.4.1.2. Contacts:
The Galala Formation unconformably overlies the Early Cretaceous Malha
Formation (See 3.3.2.). On the other hand, the Galala Formation is
unconformably underlies the Turonian Wata Formation. The contacts are
distinguished in the field upon lithological and faunal basis. Lithologically,
the lower contact is obviously marked by the passage from (4.0-6.0 m) thick
vary coloured (pink, violet, bluish red) sandy claystones, siltstones and
lensoidal highly gravelly sandstones beds of Malha Formation to the relatively
thin (1.0-2.0m), laterally extensive sheet-like shale and claystones displaying
general egg-yellow colored-hues. Moreover, the passage from the non-
fossiliferous Early Cretaceous Malha Formation to the Cenomanian Galala
Formation is faunally characterized by the appearance of Ilymatogyra
africana and Ceratostreon flabellatum generally assigning Cenomanian age.
3.4.1.3. Thickness and Lithology:
In the study area, the Galala Formation is represented by ~60 m thick of
intercalation of shales, sandstones, limestones, dolostones, and marly
limestones with the characteristic Cenomanian fauna (Fig. 3.13).
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
38
The basal parts, just overlying the lower contact, the shales of the Galala
Formation are rich in glauconite acquiring the shale an egg-yellow colours
(Fig.3.13).
Fig. (3.13): Lithologic Succession of Galala Formation (after Shehata 2014).
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
39
At the slopes of Gebel Gunna, Hume (1962) described 87 m limestone section
overlying 14 m thick sandstone and marl beds. At the northern part of Esh El
Mellaha-Gebel Tarbul stretch, the Galala unconformably overlies the Lower
Paleozoic Naqus Formation. It measures 27 .5 m sandstones (Mellaha
Sandstone Member), carbonate and marls (Middle Member) including the
usual Cenomanian oysters and a lower shale unit at base, which was
informally named Abu Had Member. At Gebel El Urf area, the Galala is 70 to
100 m dark brown to grey sandstone with clay interbeds and fossiliferous
carbonate bands including the common oysters of the Cenomauian; Ostrea
flabellata, O. africana and O.· olisiponensis. The carbonate bands increase in
thickness northward, whereas the clastics decrease in the same direction.
Further south at Wadi Qena, the Galala is made up of 20 to 30 m dark brown
to grey sandstone with clay and thin fossiliferous carbonate bands. Al Ahwani
(1982) believes that the Galala sequence is compact limestone, marl, marly
limestone, pseudoolitic and sparry limestone. It was interpreted as a cycle of
decreasing depth of the sea (Carozzi 1951).
The thickness of this Formation varies greatly from one place to another and
reaches up to 170 m in the Gulf of Suez area and 200 m in Sinai. The fauna
collected from the Galala Formation assigns the formation to the Cenomanian
(Issawi et al., 1999).
3.4.1.4. Faunal Content and Age Assignment:
The Galala Formation is commonly characterized by typical Cenomanian
fossils; the following fossil assemblages have been reported (Shehata, 2014):
Chapter Three Lithostratigraphy
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬
40
Microfossils: Thomasenella aegyptia (Omara), Thomasenella punica
(Schlumberger), Thomasenella fragmentaria (Omara),
Cribrostomoides sinaica (Omara), Cribrostomoides paralens
(Omara), Nezzazata simplex (Omara), Ismailia neumannae (El
Dakkak), Sinainella aegyptica (El Dakkak).
Ostracods: Veeniacythereis jezzineensis (Bischoff), Veeniacythereis
maghrebensis (Bassoullet and Damotte), Cytherella aegyptiensis
(Colin and El Dakkak), Cytherella gigantosulcata (Rosenfeld),
Bairdia Cenomanica (Babinot), Bairdia pseudosetentrionalis
(Mertens), Paracypris autocaudata (Rosenfeld).
Macrofossils: Ilymatogyra africana (Fawzi), Ilymatogyra aegyptiaca (Fawzi),
Ceratostreon flabellatum (Goldfuss), Ceratostreon conicata
(Fawzi), Ceratostreon involuta (Seguenza), Exogyra (Costagyrai)
olisiponensis (Sharpe) and Petrodonta deffisi (Thomas & Peron).
Based upon the faunal assemblage, the Galala Formation is assigned
Cenomanian age.
3.4.1.5. Regional Extension and Equivalent Rock Units:
The Galala Formation has many equivalent rock-units in the surrounding
areas. In the western side of the Gulf of Suez it is referred to as Galala
Formation (Abdallah & El Adindani, 1963). The central Sinai Cenomanian
section was named Raha Formation by Ghorab (1961), whereas the northern
section was termed Halal Formation by Said (1971). The Cenomanian
sections were given many names in different parts of Egypt; e.g., Bahariya
Formation in Bahariya Oasis and Kharga or Maghrabi Formation in Dakhla -
Kharga Oases.
CHAPTER FOUR
LITHOLOGICAL
CHARACTERISTICS AND
SEDIMENT COMPOSITION
Chapter Four Lithological Characteristics and Sediment Composition
‫ــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــ‬
43
CHAPTER FOUR
LITHOLOGICAL CHARACTERISTICS AND
SEDIMENT COMPOSITION
The sedimentary succession under consideration was subjected to different
laboratory analyses to arrive the actual sediment-composition of each examined
rock unit: -
4.1. ROD EL-HAMAL FORMATION
4.1.1. The general bulk textural composition:
The sediments of the Rod El-Hamal, Qiseib, Malha and Galala
formations were analyzed for their bulk textural composition of the carbonate-
sand-mud% composition and gravel-sand-mud% composition. In this concern,
the collected samples were visually examined to prepare them for these
analyses.
The results obtained for the given bulk compositions are given in Table (4.1),
and are plotted on the triangular diagrams of Füchtbaur and Müller (1970) and
Folf (1980) to arrive the accurate composition of the examined sediments.
Table 4.1 -Results obtained from bulk composition.
Sample Carbonate % Gravel % Sand % Mud %
Rh1 4.2 -- 64.15 31.65
Rh2 .96 -- 92.08 6.96
Rh3 2.06 -- 4.1 93.84
Chapter Four Lithological Characteristics and Sediment Composition
‫ــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــ‬
44
The general investigation of these data indicated the following characteristics of
the encountered sedimentary units: -
4.1.1.1 The Carbonate-Sand-Mud % composition:
The samples representing the Rod El-Hamal Formation were analyzed for
their carbonate-sand-mud % composition. The results obtained of this analysis
are represented as triangular diagram (Fig 4.1). The sediments display wide
distribution ranging between pure sands to entirely mudstone, indicating
variable sources and less effective sorting depositional regime. Moreover, the
sediments are almost free of any calcareous contents. this assumes the far
position of any detrital carbonates together with the deposition under
temperate climatic conditions.
Fig. (4.1): Carbonate-Sand-Mud% composition of Rod El-Hamal Formation plotted on
Füchtbaur & Muller (1970) triangular diagram.
Chapter Four Lithological Characteristics and Sediment Composition
‫ــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــ‬
45
4.1.1.2 The Gravel-sand-mud % composition:
The clastic sedimentary particles are commonly classified according to their
grain size into gravel, sand and silt. The terms may be further modified by
terms specifying the precise sizes such as, very coarse, coarse, medium and
very fine. Gravel is subdivided, in ascending size into: granules (2-4 mm),
pebbles (4-64 mm), cobbles (64-256 mm), and boulders (256 mm).
Three samples representing the Rod El-Hamal Formation were analyzed for
their gravel-sand-mud % composition. The results obtained of this analysis are
represented as triangular diagram (Fig 4.2). The composition indicates a wide
mixture of grain particles assuming variable hydrodynamic depositional
regime. However, the sediments are almost gravel-free suggesting far
situation of high lands and less effective depositing currents.
Fig. (4.2): Gravel-Sand-Mud% composition of Rod El-Hamal Formation plotted on Folk (1980) triangular diagram. G: Gravel,
mG: Sandy gravel. msG: Muddy sandy gravel, mG: Muddy gravel, gS: Gravelly sand, gmS: Gravelly muddy sand,
gM: Gravelly mud, (s)S: Slightly gravelly sand, (s)mS: Slightly gravelly muddy sand, (s)sM: Slightly gravelly sandy
mud (s)M: slightly gravelly mud, S: Sand, mS: Muddy Sand, sM: Sandy Mud, M: Mud.
Chapter Four Lithological Characteristics and Sediment Composition
‫ــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــ‬
‫ــــــــــ‬‫ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ‬‫ــــ‬‫ــــــــــــــــــــــــــــــــــــــــــــ‬
46
4.1.2 Grain Size analysis:
The grain size analysis was done in this study to emphasize the detailed grain
size characteristics of sand-rich formations. The grain size analysis was
carried out for the sand rich samples, using the dry mechanical analysis
technique as described by Folk (1968 & 1980) and Carver (1971), (See
Chapter –Two).
4.1.2.1. The graphic representation of the grain size data:
The results of the mechanical analysis of the sand-rich samples were plotted
as percentage cumulative distribution curves using logarithmic scale as
described by Folk (1980) to determine their grain size distribution and
Calculate the grain size parameters Folk & Ward (1957). As for Rod El-
Hamal Formation, it is generally poor in sandstones. The cumulative curves
representing the grain size distribution of the sand samples are given in (Fig.
4.3). They show wide dispersed distribution indicating variable depositional
regime. Generally, the curves display relatively steep slope indicating
moderately to moderately well sorting (Folk, 1980). The suspension and the
traction populations are generally of better sorting, whereas the saltation
populations are generally segmented indicating the variation in depositional
current velocity (Visher, 1966).
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units
Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units

More Related Content

What's hot

Plane Table Surveying PPt
Plane Table Surveying PPtPlane Table Surveying PPt
Plane Table Surveying PPt
mohit kumar panchal
 
Theodolite surveying
Theodolite surveying Theodolite surveying
Theodolite surveying
neharajpl
 
Scraper ripper-grader-dozer
Scraper ripper-grader-dozerScraper ripper-grader-dozer
Scraper ripper-grader-dozerSATYANARAYANA I
 
Designing a shaft system
Designing a shaft systemDesigning a shaft system
Designing a shaft system
Safdar Ali
 
Surveying Complete Notes of Unit 1.pptx
Surveying Complete Notes of Unit 1.pptxSurveying Complete Notes of Unit 1.pptx
Surveying Complete Notes of Unit 1.pptx
Denish Jangid
 
Presentation on mining plan (1).pptx
Presentation on mining plan (1).pptxPresentation on mining plan (1).pptx
Presentation on mining plan (1).pptx
pk singh
 
Gyrotheodolite
GyrotheodoliteGyrotheodolite
Gyrotheodolite
Safdar Ali
 
traversing of survey
traversing of surveytraversing of survey
traversing of survey
Self-employed
 
Topography and its representation
Topography and its representationTopography and its representation
Topography and its representation
Amit K. Mishra
 
Lecture2
Lecture2Lecture2
Lecture2jbusse
 
2.7 HIGHWAY TRANSPORTATION : TRAFFIC ENGINEERING (TRE) 3150611 GTU
2.7 HIGHWAY TRANSPORTATION : TRAFFIC ENGINEERING (TRE) 3150611 GTU2.7 HIGHWAY TRANSPORTATION : TRAFFIC ENGINEERING (TRE) 3150611 GTU
2.7 HIGHWAY TRANSPORTATION : TRAFFIC ENGINEERING (TRE) 3150611 GTU
VATSAL PATEL
 
Tacheometric surveying
Tacheometric surveying Tacheometric surveying
Tacheometric surveying
Krish Bhavsar
 
Theodolite angle measurement
Theodolite angle measurementTheodolite angle measurement
Theodolite angle measurement
Mujeeb Muji
 
Field Astronomy
Field AstronomyField Astronomy
Field Astronomy
Mujeeb Muji
 
Traversing
TraversingTraversing
Traversing
Arissa Loh
 
5 rock properties
5 rock properties5 rock properties
5 rock properties
Raghav Gadgil
 
Contours And Its Uses
Contours And Its UsesContours And Its Uses
Contours And Its Uses
Subodh Adhikari
 
5. TRAFFIC GEOMETRICS (TE) 2170613 GTU
5. TRAFFIC GEOMETRICS (TE) 2170613 GTU5. TRAFFIC GEOMETRICS (TE) 2170613 GTU
5. TRAFFIC GEOMETRICS (TE) 2170613 GTU
VATSAL PATEL
 
S2 7 edm & total stations
S2 7 edm & total stationsS2 7 edm & total stations
S2 7 edm & total stations
Est
 

What's hot (20)

Plane Table Surveying PPt
Plane Table Surveying PPtPlane Table Surveying PPt
Plane Table Surveying PPt
 
Theodolite surveying
Theodolite surveying Theodolite surveying
Theodolite surveying
 
Scraper ripper-grader-dozer
Scraper ripper-grader-dozerScraper ripper-grader-dozer
Scraper ripper-grader-dozer
 
Designing a shaft system
Designing a shaft systemDesigning a shaft system
Designing a shaft system
 
Surveying Complete Notes of Unit 1.pptx
Surveying Complete Notes of Unit 1.pptxSurveying Complete Notes of Unit 1.pptx
Surveying Complete Notes of Unit 1.pptx
 
Presentation on mining plan (1).pptx
Presentation on mining plan (1).pptxPresentation on mining plan (1).pptx
Presentation on mining plan (1).pptx
 
Gyrotheodolite
GyrotheodoliteGyrotheodolite
Gyrotheodolite
 
traversing of survey
traversing of surveytraversing of survey
traversing of survey
 
Topography and its representation
Topography and its representationTopography and its representation
Topography and its representation
 
Lecture2
Lecture2Lecture2
Lecture2
 
2.7 HIGHWAY TRANSPORTATION : TRAFFIC ENGINEERING (TRE) 3150611 GTU
2.7 HIGHWAY TRANSPORTATION : TRAFFIC ENGINEERING (TRE) 3150611 GTU2.7 HIGHWAY TRANSPORTATION : TRAFFIC ENGINEERING (TRE) 3150611 GTU
2.7 HIGHWAY TRANSPORTATION : TRAFFIC ENGINEERING (TRE) 3150611 GTU
 
Tacheometric surveying
Tacheometric surveying Tacheometric surveying
Tacheometric surveying
 
Theodolite angle measurement
Theodolite angle measurementTheodolite angle measurement
Theodolite angle measurement
 
Field Astronomy
Field AstronomyField Astronomy
Field Astronomy
 
Shale
ShaleShale
Shale
 
Traversing
TraversingTraversing
Traversing
 
5 rock properties
5 rock properties5 rock properties
5 rock properties
 
Contours And Its Uses
Contours And Its UsesContours And Its Uses
Contours And Its Uses
 
5. TRAFFIC GEOMETRICS (TE) 2170613 GTU
5. TRAFFIC GEOMETRICS (TE) 2170613 GTU5. TRAFFIC GEOMETRICS (TE) 2170613 GTU
5. TRAFFIC GEOMETRICS (TE) 2170613 GTU
 
S2 7 edm & total stations
S2 7 edm & total stationsS2 7 edm & total stations
S2 7 edm & total stations
 

Similar to Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units

Arctic inter
Arctic interArctic inter
Arctic inter
Dmitrii Pantiukhin
 
Advanced photogeology lecture notes kadir dirik
Advanced photogeology lecture notes  kadir dirikAdvanced photogeology lecture notes  kadir dirik
Advanced photogeology lecture notes kadir dirik
Miguel Gonzalez
 
Complete Research[FULL VERSION]
Complete Research[FULL VERSION]Complete Research[FULL VERSION]
Complete Research[FULL VERSION]Adam Mbedzi
 
The English language
The English languageThe English language
The English language
translatorale
 
FZ4003 - Masters Dissertation - Synthesis of 4-(4-Alkylphenyl) and 4-(4-Alkyl...
FZ4003 - Masters Dissertation - Synthesis of 4-(4-Alkylphenyl) and 4-(4-Alkyl...FZ4003 - Masters Dissertation - Synthesis of 4-(4-Alkylphenyl) and 4-(4-Alkyl...
FZ4003 - Masters Dissertation - Synthesis of 4-(4-Alkylphenyl) and 4-(4-Alkyl...Theodore Hester
 
Undergraduate Mapping Dissertation
Undergraduate Mapping Dissertation Undergraduate Mapping Dissertation
Undergraduate Mapping Dissertation
JackConnor11
 
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdfGEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
University of Barishal
 
Decla cert etc etc
Decla cert etc etcDecla cert etc etc
Decla cert etc etcMel bliss
 
Internship Report
Internship Report Internship Report
Internship Report
zeeshan Ahmad
 
Sayings of Jesus on the Cross Musical Settings of Jesus Seven Last Words on t...
Sayings of Jesus on the Cross Musical Settings of Jesus Seven Last Words on t...Sayings of Jesus on the Cross Musical Settings of Jesus Seven Last Words on t...
Sayings of Jesus on the Cross Musical Settings of Jesus Seven Last Words on t...
Sister Lara
 
Jatropha and Sustainable Livelihood of Small-scale Farmers
Jatropha and Sustainable Livelihood of Small-scale FarmersJatropha and Sustainable Livelihood of Small-scale Farmers
Jatropha and Sustainable Livelihood of Small-scale Farmers
ZK8
 
GESAMP_2015 Report 90_electronic FINAL
GESAMP_2015 Report 90_electronic FINALGESAMP_2015 Report 90_electronic FINAL
GESAMP_2015 Report 90_electronic FINALAngela Köhler
 
CLASS V EVS WORKSHEETS
CLASS V EVS WORKSHEETSCLASS V EVS WORKSHEETS
CLASS V EVS WORKSHEETS
Rc Os
 
AVO attribute analysis for the identification of gas bearing sands
AVO attribute analysis for the identification of gas bearing sandsAVO attribute analysis for the identification of gas bearing sands
AVO attribute analysis for the identification of gas bearing sands
Rashi Sharma
 
Archaeology And Rock Art
Archaeology And Rock ArtArchaeology And Rock Art
Archaeology And Rock Art
Scott Faria
 
Ph.D Thesis - Improvement of Conventional Leather Making Processes
Ph.D Thesis - Improvement of Conventional Leather Making ProcessesPh.D Thesis - Improvement of Conventional Leather Making Processes
Ph.D Thesis - Improvement of Conventional Leather Making ProcessesEduard Hernàndez I PMP®
 

Similar to Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units (20)

Arctic inter
Arctic interArctic inter
Arctic inter
 
Advanced photogeology lecture notes kadir dirik
Advanced photogeology lecture notes  kadir dirikAdvanced photogeology lecture notes  kadir dirik
Advanced photogeology lecture notes kadir dirik
 
Sundararajan, Mayur 12-13-12(word2003)
Sundararajan, Mayur 12-13-12(word2003)Sundararajan, Mayur 12-13-12(word2003)
Sundararajan, Mayur 12-13-12(word2003)
 
Complete Research[FULL VERSION]
Complete Research[FULL VERSION]Complete Research[FULL VERSION]
Complete Research[FULL VERSION]
 
The English language
The English languageThe English language
The English language
 
FZ4003 - Masters Dissertation - Synthesis of 4-(4-Alkylphenyl) and 4-(4-Alkyl...
FZ4003 - Masters Dissertation - Synthesis of 4-(4-Alkylphenyl) and 4-(4-Alkyl...FZ4003 - Masters Dissertation - Synthesis of 4-(4-Alkylphenyl) and 4-(4-Alkyl...
FZ4003 - Masters Dissertation - Synthesis of 4-(4-Alkylphenyl) and 4-(4-Alkyl...
 
Undergraduate Mapping Dissertation
Undergraduate Mapping Dissertation Undergraduate Mapping Dissertation
Undergraduate Mapping Dissertation
 
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdfGEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
 
Decla cert etc etc
Decla cert etc etcDecla cert etc etc
Decla cert etc etc
 
Internship Report
Internship Report Internship Report
Internship Report
 
Sayings of Jesus on the Cross Musical Settings of Jesus Seven Last Words on t...
Sayings of Jesus on the Cross Musical Settings of Jesus Seven Last Words on t...Sayings of Jesus on the Cross Musical Settings of Jesus Seven Last Words on t...
Sayings of Jesus on the Cross Musical Settings of Jesus Seven Last Words on t...
 
Jatropha and Sustainable Livelihood of Small-scale Farmers
Jatropha and Sustainable Livelihood of Small-scale FarmersJatropha and Sustainable Livelihood of Small-scale Farmers
Jatropha and Sustainable Livelihood of Small-scale Farmers
 
GESAMP_2015 Report 90_electronic FINAL
GESAMP_2015 Report 90_electronic FINALGESAMP_2015 Report 90_electronic FINAL
GESAMP_2015 Report 90_electronic FINAL
 
CLASS V EVS WORKSHEETS
CLASS V EVS WORKSHEETSCLASS V EVS WORKSHEETS
CLASS V EVS WORKSHEETS
 
AVO attribute analysis for the identification of gas bearing sands
AVO attribute analysis for the identification of gas bearing sandsAVO attribute analysis for the identification of gas bearing sands
AVO attribute analysis for the identification of gas bearing sands
 
MuellerThesis
MuellerThesisMuellerThesis
MuellerThesis
 
Archaeology And Rock Art
Archaeology And Rock ArtArchaeology And Rock Art
Archaeology And Rock Art
 
Face handbook
Face handbookFace handbook
Face handbook
 
thesis
thesisthesis
thesis
 
Ph.D Thesis - Improvement of Conventional Leather Making Processes
Ph.D Thesis - Improvement of Conventional Leather Making ProcessesPh.D Thesis - Improvement of Conventional Leather Making Processes
Ph.D Thesis - Improvement of Conventional Leather Making Processes
 

Recently uploaded

In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
kejapriya1
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
David Osipyan
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
zeex60
 
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdfMudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
frank0071
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
fafyfskhan251kmf
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
tonzsalvador2222
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
sanjana502982
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
University of Rennes, INSA Rennes, Inria/IRISA, CNRS
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
alishadewangan1
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
yqqaatn0
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
NoelManyise1
 

Recently uploaded (20)

In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
bordetella pertussis.................................ppt
bordetella pertussis.................................pptbordetella pertussis.................................ppt
bordetella pertussis.................................ppt
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
3D Hybrid PIC simulation of the plasma expansion (ISSS-14)
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
Introduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptxIntroduction to Mean Field Theory(MFT).pptx
Introduction to Mean Field Theory(MFT).pptx
 
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdfMudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
Mudde & Rovira Kaltwasser. - Populism - a very short introduction [2017].pdf
 
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdfDMARDs Pharmacolgy Pharm D 5th Semester.pdf
DMARDs Pharmacolgy Pharm D 5th Semester.pdf
 
Chapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisisChapter 12 - climate change and the energy crisis
Chapter 12 - climate change and the energy crisis
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Toxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and ArsenicToxic effects of heavy metals : Lead and Arsenic
Toxic effects of heavy metals : Lead and Arsenic
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
Deep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless ReproducibilityDeep Software Variability and Frictionless Reproducibility
Deep Software Variability and Frictionless Reproducibility
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
nodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptxnodule formation by alisha dewangan.pptx
nodule formation by alisha dewangan.pptx
 
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
原版制作(carleton毕业证书)卡尔顿大学毕业证硕士文凭原版一模一样
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiologyBLOOD AND BLOOD COMPONENT- introduction to blood physiology
BLOOD AND BLOOD COMPONENT- introduction to blood physiology
 

Wadi Araba ,Facies analysis and Sedimentary History of some Paleo-Mesozoic rock units