This document summarizes the finite difference method for numerically solving heat transfer problems. The method involves establishing a nodal network to discretize the domain, deriving finite difference approximations of the governing heat equation at each node, developing a system of simultaneous algebraic equations relating all nodal temperatures, and solving the system of equations using numerical techniques like matrix inversion or iterative methods. Examples are provided to illustrate the finite difference approximations, formation of the algebraic system, and solution via the Jacobi and Gauss-Seidel iteration methods.