SlideShare a Scribd company logo
Q 9.1. Two tank heating process shown in fig. consist of two identical, well
stirred tank in series. A flow of heat can enter tank2. At t = 0 , the flow rate of heat to
tank2 suddenly increased according to a step function to 1000 Btu/min. and the temp of
inlet Ti drops from 60oF to 52oF according to a step function. These changes in heat flow
and inlet temp occurs simultaneously.
       (a)            Develop a block diagram that relates the outlet temp of tank2 to inlet
                      temp of tank1 and flow rate to tank2.
       (b)            Obtain an expression for T2’(s)
       (c)            Determine T2(2) and T2(∞)
       (d)            Sketch the response T2’(t) Vs t.


       Initially Ti = T1 = T2 = 60oF and q=0
       W = 250 lb/min
       Hold up volume of each tank = 5 ft3
       Density of the fluid = 50 lb/ft3
       Heat Capacity = 1 Btu/lb (oF)




                                                         q

                 w                          T1                       w


                 Ti                                                  T2




       Solution:
(a) For tank 1
Input – output = accumulation
                                       dT1
WC(Ti – To) - WC(T1 – To) = ρ C V          -------------------------- (1)
                                        dt
At steady state
WC(Tis – To) - WC(T1s – To) = 0 ------------------------------------(2)


(1) – (2) gives
                                        dT '1
WC(Ti – Tis) - WC(T1 – T1s) = ρ C V
                                         dt

      ’     ’   dT '1
WTi - WT1 = ρ V
                 dt
Taking Laplace transform


WTi(s) = WT1(s) + ρ V s T1(s)


T1 ( s )   1
         =     , where τ = ρ V / W.
Ti ( s ) 1 +τs


From tank 2


                                            dT2
q + WC(T1 – To) - WC(T2 – To) = ρ C V           -------------------------- (3)
                                             dt
At steady state
qs + WC(T1s – To) - WC(T2s – To) = 0 ------------------------------------(4)


(3) – (4) gives
                                                dT ' 2
Q ‘ + WC(T1 – T1s) - WC(T2 – T2s) = ρ C V
                                                 dt

  ‘         ’        ’  dT ' 2
Q + WCT1 - WCT2 = ρ C V
                         dt
Taking Laplace transform
Q (s) + WC(T1(s) - T2(s)) = ρ C V s T2(s)


               1 Q( s)             
T2 ( s ) =           WC + T1 ( s )  , where τ = ρ V / W.
             1 + τs                




(b)      τ = 50*5/250 = 1 min
         WC = 250*1 = 250
         Ti(s) = -8/s and Q(s) = 1000/s
Now by using above two equations we relate T2 and Ti as below and after taking laplace
transform we will get T2(t)
              1 Q( s)           1
 T2 ( s ) =             +          Ti ( s )
            1 + τs 250 (1 + τs ) 2
               4         8
 T2 ( s ) =         −
            (1 + s ) (1 + s ) 2
             1     1  1             1         1        
              s (1 + s )  − 8 s − s + 1 −
 T2 ( s ) = 4 −                                        
                                                          
                                          (1 + s ) 2   
 T2 (t ) = (4 + 8t )e −t − 4



(c)      T2’(2) = -1.29
         T2(2) = T2’(2) + T2s = 60 – 1.29 = 58.71 oF
         T2’(∞) = -4
         T2(∞) = T2’(∞) + T2s = 60 – 4 = 56 oF
0.85

 T2’(t)


   0
                       0.5
                                t




   -4




Q – 9.2. The two tank heating process shown in fig. consist of two identical , well stirred
tanks in series. At steady state Ta = Tb = 60 oF. At t = 0 , temp of each stream changes
according to a step function
          Ta’(t) = 10 u(t)          Tb’(t) = 20 u(t)
          (a) Develop a block diagram that relates T 2’ , the deviation in the temp of tank2,
to Ta’ and Tb’.
          (b) Obtain an expression for T2’(s)
          (c) Determine T2(2)


          W1 = W2 = 250 lb/min
          V1 = V2 = 10 ft3
          ρ1 = ρ2 = 50 lb/ft3
          C = 1 Btu/lb (oF)
Tb
              W1                           T1      W2          W3=W1+W2


              Ta                           W1                  T2




Solution:
(a)     For tank1


T1 ( s )    1
         =         , where τ1= ρ V / W1.
Ta ( s ) 1 + τ 1 s


        For tank2
                                                           dT2
W1C(T1 – To) +W2C(Tb – To) – (W1+W2)C(T2 – To)= ρ C V          ------ (1)
                                                            dt
At steady state
W1C(T1s – To) +W2C(Tbs – To) – (W1+W2)C(T2s – To)= 0 -----------------(2)


(1) – (2)
                               dT ' 2
W1T1’ + W2Tb’- W3T2’ = ρ V
                                dt
Taking L.T
W1T1(s) + W2Tb(s)- W3T2(s) = ρVs T2(s)
T2 ( s ) =        [
               1 W1
             1 + τs
                      T (S ) + W 2
                    W3 1
                                            ]
                                     T ( S ) where τ= ρ V / W3.
                                   W3 b




(b)      τ1 = 50*10/250 = 2 min
         τ = 50*5/250 = 1 min
         W1/W3 = 1/2 = W2/W3
         Ta(s) = 10/s and Tb(s) = 0/s
Now by using above two equations we relate T 1 and Ta as below and after taking laplace
transform we will get T2(t)
1 T (s) 1 T (s)
 T2 ( s ) = 2           − 2
                  1             b

             (1 + s )      (1 + s )
                1 Ta ( s )        1 Tb ( s )
 T2 ( s ) =       2            − 2
            (1 + s )(1 + 2 s ) (1 + s )
                     5               10
 T2 ( s ) =                     −
            s (1 + s )(1 + 2 s ) s (1 + s )
                  15 + 20 s
 T2 ( s ) =
              s (1 + s )(1 + 2 s )
             15  5        20 
 T2 ( s ) =  −
             s s + 1 − (1 + 2 s ) 
                                   
                                  
                                 −t
 T2 (t ) = 15 − 5e −t − 10e           2




(c)      T2’(2) = 10.64 oF
         T2(2) = T2’(2) + T2s = 60 + 10.64 = 70.64 oF




Q – 9.3. Heat transfer equipment shown in fig. consist of tow tanks, one nested inside the
other. Heat is transferred by convection through the wall of inner tank.
      1. Hold up volume of each tank is 1 ft3
      2. The cross sectional area for heat transfer is 1 ft2
      3. The over all heat transfer coefficient for the flow of heat between the tanks is 10
         Btu/(hr)(ft2)(oF)
      4. Heat capacity of fluid in each tank is 2 Btu/(lb)(oF)
      5. Density of each fluid is 50 lb/ft3
Initially the temp of feed stream to the outer tank and the contents of the outer tank are
equal to 100 oF. Contents of inner tank are initially at 100 oF. the flow of heat to the inner
tank (Q) changed according to a step change from 0 to 500 Btu/hr.
               (a) Obtain an expression for the laplace transform of the temperature of inner
                    tank T(s).
               (b) Invert T(s) and obtain T for t= 0,5,10, ∞
10 lb/hr
                                         Q




                                         T1
                   T2




Solution:
       (a)        For outer tank
                                                       dT2
WC(Ti – To) + hA (T1 – T2)- WC(T2 – To) = ρ C V2           -------------------------- (1)
                                                        dt
At steady state
WC(Tis – To) + hA (T1s – T2s)- WC(T2s – To) = 0 ------------------------------------ (2)


(1) – (2) gives


                                              dT2 '
WCTi’ + hA (T1’ – T2’)- WCT2’ = ρ C V2
                                               dt
Substituting numerical values
                                         dT2 '
10 Ti’ + 10 ( T1’ – T2’) – 10 T2’ = 50
                                          dt
Taking L.T.
Ti(s) + T1(s) – 2T2(s) = 5 s T2(s)
Now Ti(s) = 0, since there is no change in temp of feed stream to outer tank. Which gives
T2 ( s )   1
         =
T1 ( s ) 2 + 5s
For inner tank
                                     dT1
Q - hA (T1 – T2) = ρ C V1                --------------------- (3)
                                      dt
Qs - hA (T1s – T2s) = 0 ------------------------------- (4)
(3) – (4) gives
                                           dT1 '
Q’ - hA (T1’– T2’ ) = ρ C V1
                                            dt
Taking L.T and putting numerical values
Q(s) – 10 T1(s) + 10 T2(s) = 50 s T1(s)
Q(s) = 500/s and           T2(s) = T1(s) / (2+ 5s)
500               10T1 ( s )
    −10T1 ( s ) +            = 50 sT1 ( s )
 s                 2 + 5s
50                   1       
   = T1 ( s ) 5s −        + 1
 s                 2 + 5s    
                 50(2 + 5s )
T1 ( s ) =
             s (25s 2 + 15s + 1)



                      2(2 + 5s )
T1 ( s ) =
              (            )(
             s s + 3.82 s + 26.18
                       50         50
                                                     )
             100      94.71          5.29
T1 ( s ) =       −             −
              s     (
                   s + 3.82
                            50
                                      ) (
                                 s + 26.18
                                           50
                                                                 )
   '                            − 3.82 t                   − 26.18t
T1 (t) = 100 - 94.71 e                     50
                                                - 5.29 e              50


and
                            − 3.82t                        − 26.18t
T1 (t) = 200 - 94.71 e                 50
                                                - 5.29 e              50


For t=0,5,10 and ∞
T(0) = 100 oF
T(5) = 134.975 oF
T(10) = 155.856 oF
T(∞) = 200 oF
Tut09

More Related Content

What's hot

PDS MCQs.pdf
PDS MCQs.pdfPDS MCQs.pdf
PDS MCQs.pdf
Er. Rahul Jarariya
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
Gerard B. Hawkins
 
Introduction to Chemical Engineering
Introduction to Chemical EngineeringIntroduction to Chemical Engineering
Introduction to Chemical Engineering
SAFFI Ud Din Ahmad
 
Ch 6- fugacidad mezcla
Ch 6- fugacidad mezclaCh 6- fugacidad mezcla
Ch 6- fugacidad mezcla
Giovanni Hoyos
 
Material Balance of Adipic Acid Plant
Material Balance of Adipic Acid PlantMaterial Balance of Adipic Acid Plant
Material Balance of Adipic Acid Plant
IshaneeSharma
 
Reformer Catalyst Report
Reformer Catalyst ReportReformer Catalyst Report
Reformer Catalyst Report
Dharmaraj Daddikar
 
Methanol Synthesis - Theory and Operation
Methanol Synthesis - Theory and OperationMethanol Synthesis - Theory and Operation
Methanol Synthesis - Theory and Operation
Gerard B. Hawkins
 
gas absorption
gas absorptiongas absorption
gas absorption
Abhijit Panchmatiya
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A
4ChEAB08
 
4A Group 8 - Problem Set #2
4A Group 8 - Problem Set #24A Group 8 - Problem Set #2
4A Group 8 - Problem Set #2
4ChEAB08
 
Chemical reaction engineering
Chemical reaction engineeringChemical reaction engineering
Chemical reaction engineering
Pankaj Khandelwal
 
MB3 Multiple Phase Mass Balances
MB3 Multiple Phase Mass BalancesMB3 Multiple Phase Mass Balances
MB3 Multiple Phase Mass Balances
Chemical Engineering Guy
 
Material & Energy Balance for Distillation
Material & Energy Balance for DistillationMaterial & Energy Balance for Distillation
Material & Energy Balance for Distillation
Pankaj Khandelwal
 
column packing in mass transfer
column packing in mass transfercolumn packing in mass transfer
column packing in mass transfer
dnyaneshwar bande
 
Design of Methanol Water Distillation Column
Design of Methanol Water Distillation Column  Design of Methanol Water Distillation Column
Design of Methanol Water Distillation Column
Rita EL Khoury
 
Shell Momentum Balances in heat transfer
Shell Momentum Balances in heat transferShell Momentum Balances in heat transfer
Shell Momentum Balances in heat transfer
Usman Shah
 
Packed bed flooding
Packed bed floodingPacked bed flooding
Packed bed flooding
Venkatesh Sivarchana
 
Lab cstr in series
Lab cstr in seriesLab cstr in series
Lab cstr in series
Azlan Skool
 
L20 heat and power integration
L20 heat and power integrationL20 heat and power integration
L20 heat and power integration
2k17che26
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
Chirag Savasadiya
 

What's hot (20)

PDS MCQs.pdf
PDS MCQs.pdfPDS MCQs.pdf
PDS MCQs.pdf
 
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
DESIGN OF VENT GAS COLLECTION AND DESTRUCTION SYSTEMS
 
Introduction to Chemical Engineering
Introduction to Chemical EngineeringIntroduction to Chemical Engineering
Introduction to Chemical Engineering
 
Ch 6- fugacidad mezcla
Ch 6- fugacidad mezclaCh 6- fugacidad mezcla
Ch 6- fugacidad mezcla
 
Material Balance of Adipic Acid Plant
Material Balance of Adipic Acid PlantMaterial Balance of Adipic Acid Plant
Material Balance of Adipic Acid Plant
 
Reformer Catalyst Report
Reformer Catalyst ReportReformer Catalyst Report
Reformer Catalyst Report
 
Methanol Synthesis - Theory and Operation
Methanol Synthesis - Theory and OperationMethanol Synthesis - Theory and Operation
Methanol Synthesis - Theory and Operation
 
gas absorption
gas absorptiongas absorption
gas absorption
 
Group 7 4ChE A
Group 7 4ChE AGroup 7 4ChE A
Group 7 4ChE A
 
4A Group 8 - Problem Set #2
4A Group 8 - Problem Set #24A Group 8 - Problem Set #2
4A Group 8 - Problem Set #2
 
Chemical reaction engineering
Chemical reaction engineeringChemical reaction engineering
Chemical reaction engineering
 
MB3 Multiple Phase Mass Balances
MB3 Multiple Phase Mass BalancesMB3 Multiple Phase Mass Balances
MB3 Multiple Phase Mass Balances
 
Material & Energy Balance for Distillation
Material & Energy Balance for DistillationMaterial & Energy Balance for Distillation
Material & Energy Balance for Distillation
 
column packing in mass transfer
column packing in mass transfercolumn packing in mass transfer
column packing in mass transfer
 
Design of Methanol Water Distillation Column
Design of Methanol Water Distillation Column  Design of Methanol Water Distillation Column
Design of Methanol Water Distillation Column
 
Shell Momentum Balances in heat transfer
Shell Momentum Balances in heat transferShell Momentum Balances in heat transfer
Shell Momentum Balances in heat transfer
 
Packed bed flooding
Packed bed floodingPacked bed flooding
Packed bed flooding
 
Lab cstr in series
Lab cstr in seriesLab cstr in series
Lab cstr in series
 
L20 heat and power integration
L20 heat and power integrationL20 heat and power integration
L20 heat and power integration
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 

Viewers also liked

New Zealand Fine Dining
New Zealand Fine DiningNew Zealand Fine Dining
New Zealand Fine Dining
Bjorn Koch
 
The Top Things To Do In Chicago
The Top Things To Do In ChicagoThe Top Things To Do In Chicago
The Top Things To Do In Chicago
Elesh D Modi
 
4 Movies Every Entrepreneur Should Watch
4 Movies Every Entrepreneur Should Watch4 Movies Every Entrepreneur Should Watch
4 Movies Every Entrepreneur Should Watch
Elesh D Modi
 
Política fiscal
Política fiscalPolítica fiscal
Política fiscal
omar sanchez
 
Kenna Alexander CV (2)
Kenna Alexander CV (2)Kenna Alexander CV (2)
Kenna Alexander CV (2)
Kenna Alexander
 
Salud cv
Salud cvSalud cv
Salud cv
Eithan Trambley
 
Manual de serviço nx350 cabecote
Manual de serviço nx350 cabecoteManual de serviço nx350 cabecote
Manual de serviço nx350 cabecote
Thiago Huari
 
Améliorer la qualité des soins ainsi que la sécurité des patients et leur exp...
Améliorer la qualité des soins ainsi que la sécurité des patients et leur exp...Améliorer la qualité des soins ainsi que la sécurité des patients et leur exp...
Améliorer la qualité des soins ainsi que la sécurité des patients et leur exp...Canadian Patient Safety Institute
 
систематизация и диагностика васкулитов
систематизация и диагностика васкулитовсистематизация и диагностика васкулитов
систематизация и диагностика васкулитов
Mikhail Valivach
 
Presentation on audience feedback media
Presentation on audience feedback mediaPresentation on audience feedback media
Presentation on audience feedback media
Georgia34
 
Hardware y software
Hardware y softwareHardware y software
Hardware y software
MerlyMA
 
Realiza una presentacion electronica con los siguientes temas
Realiza una presentacion electronica con los siguientes temasRealiza una presentacion electronica con los siguientes temas
Realiza una presentacion electronica con los siguientes temas
gennaro mendoza
 

Viewers also liked (12)

New Zealand Fine Dining
New Zealand Fine DiningNew Zealand Fine Dining
New Zealand Fine Dining
 
The Top Things To Do In Chicago
The Top Things To Do In ChicagoThe Top Things To Do In Chicago
The Top Things To Do In Chicago
 
4 Movies Every Entrepreneur Should Watch
4 Movies Every Entrepreneur Should Watch4 Movies Every Entrepreneur Should Watch
4 Movies Every Entrepreneur Should Watch
 
Política fiscal
Política fiscalPolítica fiscal
Política fiscal
 
Kenna Alexander CV (2)
Kenna Alexander CV (2)Kenna Alexander CV (2)
Kenna Alexander CV (2)
 
Salud cv
Salud cvSalud cv
Salud cv
 
Manual de serviço nx350 cabecote
Manual de serviço nx350 cabecoteManual de serviço nx350 cabecote
Manual de serviço nx350 cabecote
 
Améliorer la qualité des soins ainsi que la sécurité des patients et leur exp...
Améliorer la qualité des soins ainsi que la sécurité des patients et leur exp...Améliorer la qualité des soins ainsi que la sécurité des patients et leur exp...
Améliorer la qualité des soins ainsi que la sécurité des patients et leur exp...
 
систематизация и диагностика васкулитов
систематизация и диагностика васкулитовсистематизация и диагностика васкулитов
систематизация и диагностика васкулитов
 
Presentation on audience feedback media
Presentation on audience feedback mediaPresentation on audience feedback media
Presentation on audience feedback media
 
Hardware y software
Hardware y softwareHardware y software
Hardware y software
 
Realiza una presentacion electronica con los siguientes temas
Realiza una presentacion electronica con los siguientes temasRealiza una presentacion electronica con los siguientes temas
Realiza una presentacion electronica con los siguientes temas
 

Similar to Tut09

Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Sukhvinder Singh
 
Week 5 [compatibility mode]
Week 5 [compatibility mode]Week 5 [compatibility mode]
Week 5 [compatibility mode]
Hazrul156
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First Degree
Dheirya Joshi
 
8 Continuous-Time Fourier Transform Solutions To Recommended Problems
8 Continuous-Time Fourier Transform Solutions To Recommended Problems8 Continuous-Time Fourier Transform Solutions To Recommended Problems
8 Continuous-Time Fourier Transform Solutions To Recommended Problems
Sara Alvarez
 
Ct signal operations
Ct signal operationsCt signal operations
Ct signal operations
mihir jain
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONS
mihir jain
 
Sect2 3
Sect2 3Sect2 3
Sect2 3
inKFUPM
 
Heat Map Modeling Using Resistive Network
Heat Map Modeling Using Resistive NetworkHeat Map Modeling Using Resistive Network
Heat Map Modeling Using Resistive Network
ssurgnier
 
Topic 2 kft 131
Topic 2 kft 131Topic 2 kft 131
Topic 2 kft 131
Nor Qurratu'aini Abdullah
 
Problem and solution i ph o 31
Problem and solution i ph o 31Problem and solution i ph o 31
Problem and solution i ph o 31
eli priyatna laidan
 
Presentation bachelor thesis
Presentation bachelor thesisPresentation bachelor thesis
Presentation bachelor thesis
Ransom90
 
Heat transfer
Heat transferHeat transfer
Heat transfer
Yuri Melliza
 
Laplace_1.ppt
Laplace_1.pptLaplace_1.ppt
Laplace_1.ppt
cantatebrugyral
 
Laws of Motion QA 2
Laws of Motion QA 2Laws of Motion QA 2
Laws of Motion QA 2
Lakshmikanta Satapathy
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
Alessandro Palmeri
 
Lesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, AccelerationLesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, Acceleration
Matthew Leingang
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
Matthew Leingang
 
11th Physics Notes - Thermal Expansion for JEE Main
11th Physics Notes -  Thermal Expansion for JEE Main 11th Physics Notes -  Thermal Expansion for JEE Main
11th Physics Notes - Thermal Expansion for JEE Main
Ednexa
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
HelpWithAssignment.com
 
Testsol
TestsolTestsol
Testsol
Najmi Madzlan
 

Similar to Tut09 (20)

Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
 
Week 5 [compatibility mode]
Week 5 [compatibility mode]Week 5 [compatibility mode]
Week 5 [compatibility mode]
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First Degree
 
8 Continuous-Time Fourier Transform Solutions To Recommended Problems
8 Continuous-Time Fourier Transform Solutions To Recommended Problems8 Continuous-Time Fourier Transform Solutions To Recommended Problems
8 Continuous-Time Fourier Transform Solutions To Recommended Problems
 
Ct signal operations
Ct signal operationsCt signal operations
Ct signal operations
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONS
 
Sect2 3
Sect2 3Sect2 3
Sect2 3
 
Heat Map Modeling Using Resistive Network
Heat Map Modeling Using Resistive NetworkHeat Map Modeling Using Resistive Network
Heat Map Modeling Using Resistive Network
 
Topic 2 kft 131
Topic 2 kft 131Topic 2 kft 131
Topic 2 kft 131
 
Problem and solution i ph o 31
Problem and solution i ph o 31Problem and solution i ph o 31
Problem and solution i ph o 31
 
Presentation bachelor thesis
Presentation bachelor thesisPresentation bachelor thesis
Presentation bachelor thesis
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Laplace_1.ppt
Laplace_1.pptLaplace_1.ppt
Laplace_1.ppt
 
Laws of Motion QA 2
Laws of Motion QA 2Laws of Motion QA 2
Laws of Motion QA 2
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Lesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, AccelerationLesson 8: Curves, Arc Length, Acceleration
Lesson 8: Curves, Arc Length, Acceleration
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
11th Physics Notes - Thermal Expansion for JEE Main
11th Physics Notes -  Thermal Expansion for JEE Main 11th Physics Notes -  Thermal Expansion for JEE Main
11th Physics Notes - Thermal Expansion for JEE Main
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Testsol
TestsolTestsol
Testsol
 

Tut09

  • 1. Q 9.1. Two tank heating process shown in fig. consist of two identical, well stirred tank in series. A flow of heat can enter tank2. At t = 0 , the flow rate of heat to tank2 suddenly increased according to a step function to 1000 Btu/min. and the temp of inlet Ti drops from 60oF to 52oF according to a step function. These changes in heat flow and inlet temp occurs simultaneously. (a) Develop a block diagram that relates the outlet temp of tank2 to inlet temp of tank1 and flow rate to tank2. (b) Obtain an expression for T2’(s) (c) Determine T2(2) and T2(∞) (d) Sketch the response T2’(t) Vs t. Initially Ti = T1 = T2 = 60oF and q=0 W = 250 lb/min Hold up volume of each tank = 5 ft3 Density of the fluid = 50 lb/ft3 Heat Capacity = 1 Btu/lb (oF) q w T1 w Ti T2 Solution: (a) For tank 1
  • 2. Input – output = accumulation dT1 WC(Ti – To) - WC(T1 – To) = ρ C V -------------------------- (1) dt At steady state WC(Tis – To) - WC(T1s – To) = 0 ------------------------------------(2) (1) – (2) gives dT '1 WC(Ti – Tis) - WC(T1 – T1s) = ρ C V dt ’ ’ dT '1 WTi - WT1 = ρ V dt Taking Laplace transform WTi(s) = WT1(s) + ρ V s T1(s) T1 ( s ) 1 = , where τ = ρ V / W. Ti ( s ) 1 +τs From tank 2 dT2 q + WC(T1 – To) - WC(T2 – To) = ρ C V -------------------------- (3) dt At steady state qs + WC(T1s – To) - WC(T2s – To) = 0 ------------------------------------(4) (3) – (4) gives dT ' 2 Q ‘ + WC(T1 – T1s) - WC(T2 – T2s) = ρ C V dt ‘ ’ ’ dT ' 2 Q + WCT1 - WCT2 = ρ C V dt Taking Laplace transform
  • 3. Q (s) + WC(T1(s) - T2(s)) = ρ C V s T2(s) 1 Q( s)  T2 ( s ) =  WC + T1 ( s )  , where τ = ρ V / W. 1 + τs   (b) τ = 50*5/250 = 1 min WC = 250*1 = 250 Ti(s) = -8/s and Q(s) = 1000/s Now by using above two equations we relate T2 and Ti as below and after taking laplace transform we will get T2(t) 1 Q( s) 1 T2 ( s ) = + Ti ( s ) 1 + τs 250 (1 + τs ) 2 4 8 T2 ( s ) = − (1 + s ) (1 + s ) 2 1 1  1 1 1   s (1 + s )  − 8 s − s + 1 − T2 ( s ) = 4 −        (1 + s ) 2  T2 (t ) = (4 + 8t )e −t − 4 (c) T2’(2) = -1.29 T2(2) = T2’(2) + T2s = 60 – 1.29 = 58.71 oF T2’(∞) = -4 T2(∞) = T2’(∞) + T2s = 60 – 4 = 56 oF
  • 4. 0.85 T2’(t) 0 0.5 t -4 Q – 9.2. The two tank heating process shown in fig. consist of two identical , well stirred tanks in series. At steady state Ta = Tb = 60 oF. At t = 0 , temp of each stream changes according to a step function Ta’(t) = 10 u(t) Tb’(t) = 20 u(t) (a) Develop a block diagram that relates T 2’ , the deviation in the temp of tank2, to Ta’ and Tb’. (b) Obtain an expression for T2’(s) (c) Determine T2(2) W1 = W2 = 250 lb/min V1 = V2 = 10 ft3 ρ1 = ρ2 = 50 lb/ft3 C = 1 Btu/lb (oF)
  • 5. Tb W1 T1 W2 W3=W1+W2 Ta W1 T2 Solution: (a) For tank1 T1 ( s ) 1 = , where τ1= ρ V / W1. Ta ( s ) 1 + τ 1 s For tank2 dT2 W1C(T1 – To) +W2C(Tb – To) – (W1+W2)C(T2 – To)= ρ C V ------ (1) dt At steady state W1C(T1s – To) +W2C(Tbs – To) – (W1+W2)C(T2s – To)= 0 -----------------(2) (1) – (2) dT ' 2 W1T1’ + W2Tb’- W3T2’ = ρ V dt Taking L.T W1T1(s) + W2Tb(s)- W3T2(s) = ρVs T2(s)
  • 6. T2 ( s ) = [ 1 W1 1 + τs T (S ) + W 2 W3 1 ] T ( S ) where τ= ρ V / W3. W3 b (b) τ1 = 50*10/250 = 2 min τ = 50*5/250 = 1 min W1/W3 = 1/2 = W2/W3 Ta(s) = 10/s and Tb(s) = 0/s Now by using above two equations we relate T 1 and Ta as below and after taking laplace transform we will get T2(t)
  • 7. 1 T (s) 1 T (s) T2 ( s ) = 2 − 2 1 b (1 + s ) (1 + s ) 1 Ta ( s ) 1 Tb ( s ) T2 ( s ) = 2 − 2 (1 + s )(1 + 2 s ) (1 + s ) 5 10 T2 ( s ) = − s (1 + s )(1 + 2 s ) s (1 + s ) 15 + 20 s T2 ( s ) = s (1 + s )(1 + 2 s )  15 5 20  T2 ( s ) =  −  s s + 1 − (1 + 2 s )     −t T2 (t ) = 15 − 5e −t − 10e 2 (c) T2’(2) = 10.64 oF T2(2) = T2’(2) + T2s = 60 + 10.64 = 70.64 oF Q – 9.3. Heat transfer equipment shown in fig. consist of tow tanks, one nested inside the other. Heat is transferred by convection through the wall of inner tank. 1. Hold up volume of each tank is 1 ft3 2. The cross sectional area for heat transfer is 1 ft2 3. The over all heat transfer coefficient for the flow of heat between the tanks is 10 Btu/(hr)(ft2)(oF) 4. Heat capacity of fluid in each tank is 2 Btu/(lb)(oF) 5. Density of each fluid is 50 lb/ft3 Initially the temp of feed stream to the outer tank and the contents of the outer tank are equal to 100 oF. Contents of inner tank are initially at 100 oF. the flow of heat to the inner tank (Q) changed according to a step change from 0 to 500 Btu/hr. (a) Obtain an expression for the laplace transform of the temperature of inner tank T(s). (b) Invert T(s) and obtain T for t= 0,5,10, ∞
  • 8. 10 lb/hr Q T1 T2 Solution: (a) For outer tank dT2 WC(Ti – To) + hA (T1 – T2)- WC(T2 – To) = ρ C V2 -------------------------- (1) dt At steady state WC(Tis – To) + hA (T1s – T2s)- WC(T2s – To) = 0 ------------------------------------ (2) (1) – (2) gives dT2 ' WCTi’ + hA (T1’ – T2’)- WCT2’ = ρ C V2 dt Substituting numerical values dT2 ' 10 Ti’ + 10 ( T1’ – T2’) – 10 T2’ = 50 dt Taking L.T. Ti(s) + T1(s) – 2T2(s) = 5 s T2(s) Now Ti(s) = 0, since there is no change in temp of feed stream to outer tank. Which gives T2 ( s ) 1 = T1 ( s ) 2 + 5s
  • 9. For inner tank dT1 Q - hA (T1 – T2) = ρ C V1 --------------------- (3) dt Qs - hA (T1s – T2s) = 0 ------------------------------- (4) (3) – (4) gives dT1 ' Q’ - hA (T1’– T2’ ) = ρ C V1 dt Taking L.T and putting numerical values Q(s) – 10 T1(s) + 10 T2(s) = 50 s T1(s) Q(s) = 500/s and T2(s) = T1(s) / (2+ 5s) 500 10T1 ( s ) −10T1 ( s ) + = 50 sT1 ( s ) s 2 + 5s 50  1  = T1 ( s ) 5s − + 1 s  2 + 5s  50(2 + 5s ) T1 ( s ) = s (25s 2 + 15s + 1) 2(2 + 5s ) T1 ( s ) = ( )( s s + 3.82 s + 26.18 50 50 ) 100 94.71 5.29 T1 ( s ) = − − s ( s + 3.82 50 ) ( s + 26.18 50 ) ' − 3.82 t − 26.18t T1 (t) = 100 - 94.71 e 50 - 5.29 e 50 and − 3.82t − 26.18t T1 (t) = 200 - 94.71 e 50 - 5.29 e 50 For t=0,5,10 and ∞ T(0) = 100 oF T(5) = 134.975 oF T(10) = 155.856 oF T(∞) = 200 oF