QUESTIONS
TRIGONOMETRY
Concepts
Trigonometry (from Greek trigōnon, "triangle" and metron, "measure") is a branch
of mathematics that studies relationships between side lengths and angles of
triangles.
The trigonometric ratios of a triangle are also called trigonometric functions.
Sine, cosine, and tangent are 3 important trigonometric functions.
The six trigonometric functions are sine, cosine, secant, co-secant, tangent and
co-tangent.
Concepts
Formulas of Multiple Angles in Trigonometric Functions
sin(2x) = 2 sin x cos x
sin(3x) = 3 sin x - 4 sin3x = sin x ( - 1 + 4 cos2x )
sin(4x) = cos x ( 4 sin x - 8 sin3x ) = sin x ( - 4 cos x + 8 cos3x )
sin(5x) = 5 sin x -20 sin3x + 16 sin5x = sin x ( 1 - 12 cos2x + 16 cos4x )
cos(2x) = cos2x - sin2x = - 1 + 2 cos2x
cos(3x) = cos3x - 3 cos x sin2x = -3 cos x + 4 cos3x
cos(4x) = cos4x - 6 cos2x sin2x +sin4x = 1 - 8 cos2x + 8 cos4x
Concepts
Formulas of Multiple Angles in Trigonometric Functions
cos(5x) = cos5x - 10 cos3x sin2x + 5 cos x sin4x = 5 cos x - 20 cos3x + 16 cos5x
tan(2x) = 2 tan x / (1 - tan2x)
tan(3x) = ( 3 tan x - tan3x ) / (1 - 3 tan2x)
tan(4x) = ( 4 tan x - 4 tan3x ) / (1 - 6 tan2x + tan4x)
Concepts
Trigonometric ratios of right angled triangle ABC with ∠B = 90° :
sin A = sine of ∠A = (side opposite to ∠A) / hypotenuse = (BC/AC)
cos A = cosine of ∠A = (side adjacent to ∠A) / hypotenuse = (AB/AC)
tan A = tangent of ∠A = (side opposite to ∠A) / (side adjacent to ∠A)=(BC/AB)
cosec A = cosecant of ∠A = 1/ sin A
sec A = secant of ∠A = 1/ cos A
cot A = cotangent of ∠A = 1/ tan A
Question: 01
If tan4θ + tan2θ = 1, then the value of cos4θ + cos2θ is
A. 1/4
B. 1/2
C. 1
D. 1/3
Answer: C
Question: 02
The value of sin (45° + θ) – cos (45° – θ) is
A. 0
B. 1
C. 2cosθ
D. 2sinθ
Answer: A
Question: 03
If cot A + cosec A = and A is an acute angle, then the value of cos A is
A. 4/5
B. 2/3
C. 1/2
D. 1/4
Answer: A
Question: 04
Evaluate : ( Cot4 Θ – Cosec4 Θ + Cot2 Θ + Cosec2 Θ )
A. 1
B. 0
C. -1
D. -2
Answer: B
Question: 05
If cosΘ + secΘ = 2 ,then the value of cos68Θ + sec68Θ equal to
A. 1
B. 2
C. 4
D. 3
Answer: B
Question: 06
If 8 sin x = 4 + cos x, the values of sin x are :
A. 3/5 , 5/13
B. 3/5, 15/13
C. -2/5, 5/13
D. 2/5, 5/13
Answer: A
Question: 07
If tanΘ + cotΘ = 16, then find the ratio of tan2Θ + cot2Θ to tan2Θ + cot2Θ + 20
tanΘ.cotΘ
A. 64 : 65
B. 127 : 137
C. 107 : 137
D. 120 : 138
Answer: B
Question: 08
If sin 3A = cos (A – 26°), where 3A is an acute angle then the value of A is
A. 29 degree
B. 19 degree
C. 16 degree
D. 18 degree
Answer: A
Question: 09
The value of (sin 39°) / (cos 51°) + 2 tan11° tan31° tan45° tan59° tan79° – 3
(sin2 21° + sin2 69°) is :
A. 0
B. 1
C. -1
D. 1/2
Answer: A
Question: 10
If cos2 Θ / (cot2 Θ – cos2 Θ) = 3 and 0° < Θ < 90°, then the value of Θ is :
A. 60 degree
B. 45 degree
C. 30 degree
D. 90 degree
Answer: A
Question: 11
If A = tan 11° tan 29°, B = 2 cot 61° cot 79°, then :
A. A = 2B
B. 2A = B
C. 3A = 2B
D. -A = 2B
Answer: B
Question: 12
The value of cot 10° . cot 20° . cot 60° . cot 70° . cot 80° is
A. 1/√3
B. √3
C. 1
D. 0
Answer: A
Question: 13
The minimum value of 2 sin2 Θ + 3 cos2 Θ is
A. 0
B. 1
C. 2
D. -1
Answer: C
Question: 14
What is cosec (75° + Θ) – sec (15° – Θ) – tan (55° + Θ) + cot (35° – Θ) equal to?
A. 0
B. 1
C. -1
D. 1/2
Answer: A
Question: 15
If cos A + cos2 A = 1, then what is the value of 2(sin2 A + sin4 A)?
A. 3/2
B. 2
C. 0
D. -1
Answer: B

trigonometry_2.pptx

  • 2.
  • 3.
    Concepts Trigonometry (from Greektrigōnon, "triangle" and metron, "measure") is a branch of mathematics that studies relationships between side lengths and angles of triangles. The trigonometric ratios of a triangle are also called trigonometric functions. Sine, cosine, and tangent are 3 important trigonometric functions. The six trigonometric functions are sine, cosine, secant, co-secant, tangent and co-tangent.
  • 4.
    Concepts Formulas of MultipleAngles in Trigonometric Functions sin(2x) = 2 sin x cos x sin(3x) = 3 sin x - 4 sin3x = sin x ( - 1 + 4 cos2x ) sin(4x) = cos x ( 4 sin x - 8 sin3x ) = sin x ( - 4 cos x + 8 cos3x ) sin(5x) = 5 sin x -20 sin3x + 16 sin5x = sin x ( 1 - 12 cos2x + 16 cos4x ) cos(2x) = cos2x - sin2x = - 1 + 2 cos2x cos(3x) = cos3x - 3 cos x sin2x = -3 cos x + 4 cos3x cos(4x) = cos4x - 6 cos2x sin2x +sin4x = 1 - 8 cos2x + 8 cos4x
  • 5.
    Concepts Formulas of MultipleAngles in Trigonometric Functions cos(5x) = cos5x - 10 cos3x sin2x + 5 cos x sin4x = 5 cos x - 20 cos3x + 16 cos5x tan(2x) = 2 tan x / (1 - tan2x) tan(3x) = ( 3 tan x - tan3x ) / (1 - 3 tan2x) tan(4x) = ( 4 tan x - 4 tan3x ) / (1 - 6 tan2x + tan4x)
  • 6.
    Concepts Trigonometric ratios ofright angled triangle ABC with ∠B = 90° : sin A = sine of ∠A = (side opposite to ∠A) / hypotenuse = (BC/AC) cos A = cosine of ∠A = (side adjacent to ∠A) / hypotenuse = (AB/AC) tan A = tangent of ∠A = (side opposite to ∠A) / (side adjacent to ∠A)=(BC/AB) cosec A = cosecant of ∠A = 1/ sin A sec A = secant of ∠A = 1/ cos A cot A = cotangent of ∠A = 1/ tan A
  • 7.
    Question: 01 If tan4θ+ tan2θ = 1, then the value of cos4θ + cos2θ is A. 1/4 B. 1/2 C. 1 D. 1/3 Answer: C
  • 8.
    Question: 02 The valueof sin (45° + θ) – cos (45° – θ) is A. 0 B. 1 C. 2cosθ D. 2sinθ Answer: A
  • 9.
    Question: 03 If cotA + cosec A = and A is an acute angle, then the value of cos A is A. 4/5 B. 2/3 C. 1/2 D. 1/4 Answer: A
  • 10.
    Question: 04 Evaluate :( Cot4 Θ – Cosec4 Θ + Cot2 Θ + Cosec2 Θ ) A. 1 B. 0 C. -1 D. -2 Answer: B
  • 11.
    Question: 05 If cosΘ+ secΘ = 2 ,then the value of cos68Θ + sec68Θ equal to A. 1 B. 2 C. 4 D. 3 Answer: B
  • 12.
    Question: 06 If 8sin x = 4 + cos x, the values of sin x are : A. 3/5 , 5/13 B. 3/5, 15/13 C. -2/5, 5/13 D. 2/5, 5/13 Answer: A
  • 13.
    Question: 07 If tanΘ+ cotΘ = 16, then find the ratio of tan2Θ + cot2Θ to tan2Θ + cot2Θ + 20 tanΘ.cotΘ A. 64 : 65 B. 127 : 137 C. 107 : 137 D. 120 : 138 Answer: B
  • 14.
    Question: 08 If sin3A = cos (A – 26°), where 3A is an acute angle then the value of A is A. 29 degree B. 19 degree C. 16 degree D. 18 degree Answer: A
  • 15.
    Question: 09 The valueof (sin 39°) / (cos 51°) + 2 tan11° tan31° tan45° tan59° tan79° – 3 (sin2 21° + sin2 69°) is : A. 0 B. 1 C. -1 D. 1/2 Answer: A
  • 16.
    Question: 10 If cos2Θ / (cot2 Θ – cos2 Θ) = 3 and 0° < Θ < 90°, then the value of Θ is : A. 60 degree B. 45 degree C. 30 degree D. 90 degree Answer: A
  • 17.
    Question: 11 If A= tan 11° tan 29°, B = 2 cot 61° cot 79°, then : A. A = 2B B. 2A = B C. 3A = 2B D. -A = 2B Answer: B
  • 18.
    Question: 12 The valueof cot 10° . cot 20° . cot 60° . cot 70° . cot 80° is A. 1/√3 B. √3 C. 1 D. 0 Answer: A
  • 19.
    Question: 13 The minimumvalue of 2 sin2 Θ + 3 cos2 Θ is A. 0 B. 1 C. 2 D. -1 Answer: C
  • 20.
    Question: 14 What iscosec (75° + Θ) – sec (15° – Θ) – tan (55° + Θ) + cot (35° – Θ) equal to? A. 0 B. 1 C. -1 D. 1/2 Answer: A
  • 21.
    Question: 15 If cosA + cos2 A = 1, then what is the value of 2(sin2 A + sin4 A)? A. 3/2 B. 2 C. 0 D. -1 Answer: B