Thermal Analysis
Different Techniques
• Thermometric Titration (TT)
– Heat of mixing
• Thermal Mechanical Analysis (TMA)
– Thermal Expansion Coefficient
• Dynamic Mechanical Analysis (DMA)
– Viscoelastic Properties
• Differential Scanning Calorimetric (DSC)
– Heat flow during Transitions
• Thermal Gravimetric Analysis (TGA)
– Weight Loss due to decomposition
– Derivative Thermogravimetric Analysis (DTG)
• Differential Thermal Analysis (DTA)
– Heat of Transitions
• Temperature Programmed Desorption (TPD)
– Temperature at which gas is desorbed from (catalyst) surface
– Emission gas Thermoanalysis (EGT)
Basic Principle
• Sample is heated at a constant heating
rate
• Sample’s Property Measured
– Wt TGA
– Temp DTA
TGA
• Constant Heating
Rate
– Initial Temp
– Final Temp
– Heating Rate (°C/min)
• Data
– Weight vs Time
– Weight vs Temp.
• Differential This Data
(DTG)
DTA
• Sample and Reference Placed in Heater
• Constant Heating Rate
– Initial Temp
– Final Temp
– Heating Rate (°C/min)
• Data
– Temp of Sample vs Time (or Temp)
– Temp of Reference vs Time (or Temp)
– Reference should be inert, e.g. Alumina
• Measures
– Heat of crystallization
– Glass Transition Temperature
DTA + DTG
We have TGA - only
• Heating a sample of Calcium oxalate
• Ca(C204)*xH2O  Ca(C204) *H2O + x-1 H2O
• Ca(C204)*H2O Ca(C204) + H2O
• Ca(C204)  CaCO3 + CO
• CaCO3  CaO + CO2
TGA
• Constant Heating
Rate
– Initial Temp
– Final Temp
– Heating Rate (°C/min)
• Data
– Weight vs Time
– Weight vs Temp.
• Differential This Data
(DTG)
TGA – Ca(C204)*xH2O
Different Heating Rates
Heating Rate
• Heating Too Fast
– Overlaps Transitions
• Interpretation Problems
• Kinetics of Decomposition
– Sample Size
– Mass Transfer
• Convective Mass Transfer
• Pore Diffusion
– Heat Transfer
• Convective Heat Transfer
• Thermal Conductivity
– Porous solid
Precipitated Zr5O8(SO4)2*15 H2O
This sample was dried fro 48 hrs at 110C before TGA analysis.
What is going on?
Analysis of Filtrate from
Precipitation
• Precipitation
• 5ZrOCl2 + 2H2SO4 + xH2O 
Zr5O8(SO4)2*15 H2O (s) + 10 HCl
• Decomposition
• Zr5O8(SO4)2*15 H2O (s) 
Zr5O8(SO4)2*14 H2O (s) + H2O (v)
• Zr5O8(SO4)2  5
ZrO2 (s) +2 SO2 (v)
15 H2O Water Loss Wt. Loss % loss
1 18.0152 1.721573
2 36.0304 3.443146
3 54.0456 5.164719
4 72.0608 6.886292
5 90.076 8.607865
6 108.0912 10.32944
7 126.1064 12.05101
8 144.1216 13.77258
9 162.1368 15.49416
10 180.152 17.21573
11 198.1672 18.9373
12 216.1824 20.65887
13 234.1976 22.38045
14 252.2128 24.10202
15 270.228 25.82359
SO2 1 64.0588 31.9452
2 128.1176 38.0668

Thermal Analysis.ppt

  • 1.
  • 2.
    Different Techniques • ThermometricTitration (TT) – Heat of mixing • Thermal Mechanical Analysis (TMA) – Thermal Expansion Coefficient • Dynamic Mechanical Analysis (DMA) – Viscoelastic Properties • Differential Scanning Calorimetric (DSC) – Heat flow during Transitions • Thermal Gravimetric Analysis (TGA) – Weight Loss due to decomposition – Derivative Thermogravimetric Analysis (DTG) • Differential Thermal Analysis (DTA) – Heat of Transitions • Temperature Programmed Desorption (TPD) – Temperature at which gas is desorbed from (catalyst) surface – Emission gas Thermoanalysis (EGT)
  • 3.
    Basic Principle • Sampleis heated at a constant heating rate • Sample’s Property Measured – Wt TGA – Temp DTA
  • 4.
    TGA • Constant Heating Rate –Initial Temp – Final Temp – Heating Rate (°C/min) • Data – Weight vs Time – Weight vs Temp. • Differential This Data (DTG)
  • 5.
    DTA • Sample andReference Placed in Heater • Constant Heating Rate – Initial Temp – Final Temp – Heating Rate (°C/min) • Data – Temp of Sample vs Time (or Temp) – Temp of Reference vs Time (or Temp) – Reference should be inert, e.g. Alumina • Measures – Heat of crystallization – Glass Transition Temperature
  • 6.
  • 7.
    We have TGA- only • Heating a sample of Calcium oxalate • Ca(C204)*xH2O  Ca(C204) *H2O + x-1 H2O • Ca(C204)*H2O Ca(C204) + H2O • Ca(C204)  CaCO3 + CO • CaCO3  CaO + CO2
  • 8.
    TGA • Constant Heating Rate –Initial Temp – Final Temp – Heating Rate (°C/min) • Data – Weight vs Time – Weight vs Temp. • Differential This Data (DTG)
  • 9.
  • 10.
  • 11.
    Heating Rate • HeatingToo Fast – Overlaps Transitions • Interpretation Problems • Kinetics of Decomposition – Sample Size – Mass Transfer • Convective Mass Transfer • Pore Diffusion – Heat Transfer • Convective Heat Transfer • Thermal Conductivity – Porous solid
  • 12.
    Precipitated Zr5O8(SO4)2*15 H2O Thissample was dried fro 48 hrs at 110C before TGA analysis. What is going on?
  • 13.
    Analysis of Filtratefrom Precipitation • Precipitation • 5ZrOCl2 + 2H2SO4 + xH2O  Zr5O8(SO4)2*15 H2O (s) + 10 HCl • Decomposition • Zr5O8(SO4)2*15 H2O (s)  Zr5O8(SO4)2*14 H2O (s) + H2O (v) • Zr5O8(SO4)2  5 ZrO2 (s) +2 SO2 (v) 15 H2O Water Loss Wt. Loss % loss 1 18.0152 1.721573 2 36.0304 3.443146 3 54.0456 5.164719 4 72.0608 6.886292 5 90.076 8.607865 6 108.0912 10.32944 7 126.1064 12.05101 8 144.1216 13.77258 9 162.1368 15.49416 10 180.152 17.21573 11 198.1672 18.9373 12 216.1824 20.65887 13 234.1976 22.38045 14 252.2128 24.10202 15 270.228 25.82359 SO2 1 64.0588 31.9452 2 128.1176 38.0668