SlideShare a Scribd company logo
1 of 23
Vladimir S. Aslanov
          aslanov_vs@mail.ru



Dynamics of satellite with
   a Tether System

  Theoretical Mechanics Department
            www.termech.ru

  Samara State Aerospace University,
               Russia
             www.ssau.ru



                 2012
Statement of the problem

   The motion about a centre of mass of a spacecraft (satellite) with a
   elastic heavy tethered system at a orbit is studied.

  Tethered satellite systems (TTS)
  includes:
          - rigid satellite (spacecraft),
          - elastic heavy tether,
          - end load.




The dynamics of a rotating body studied famous mathematicians of all time as Euler, Poinsot, Lagrange and Kovalevskaya. The
research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellites. In this
area we note the papers of scientists as Yaroshevsky, Belezky, Rumyantsev, J.Nicolaides, G.Gross et al. Study the behavior of
the space tethered systems devoted to the papers: Beletsky and Levin, Williams, Kruijff, Misra, Sidorov, Pirozhenko and
others.
                                                                                                                                  2
Example of the Tethered Satellite Systems

               Scheme of the dynamic deployment of TSS
                    «Foton-М3" №3 – YES2" (2008)


Initial Foton-M3 parameters are assumed
as follows:
Mass                         6530 kg
Ballistic coefficient       0.0123 m2/kg.
Inclination                 63 degrees
Minimum orbital altitude       262 km
Maximum orbital altitude        304 km

Tether parameters are assumed as
follows:
Diameter                   0.5 mm
Length                     30000 m
Mass density               0.00018 kg/m
Initial Speed of
 tether deployment         2.58 m/c
Mass End Load              12 kg
                                                         3
Aims of the research


1. To obtain mathematical models of the plane motion of the satellite of
   about of mass center under the influence of elastic the tether system.
2. To deduce approximate analytical solutions describing
   the oscillations of the satellite caused by the change magnitude and
   direction of the tether force.
3. To build models chaotic behavior of the satellite and to study of the
   satellite motion under the influence the elastic tether of the chaotic
   dynamics methods.
4. To find the approximate estimates of the accelerations in the
   satellite arising from the deployment of the tether.



                                                                            4
The Lagrange equations
   Kinetic energy of the TSS

      1             1 2        1
   T  m(r  r  )   mi i2  C0 (   )2  C1 (   )2 
          2  2 2
                                                                               (1)
      2             2 i0      2


where ρi  ri  r, i  0,1,2; q j   , , , l , r - generalized coordinates


 Potential energy
            2
              mi 3               m1l 2          c
 W      3  A  B  cos  
                            2
                                         cos 2   (l  l0 )2                   (2)
         i 0 ri 2r0              8r13            2

 Lagrange equations of the second kind

                              d L L
                                           Qj                                               D0 P, l  PD2
                              dt q j q j
                                  

where L    T W       - Lagrange function,        Qj   - nonpotential forces
                                                                                                                5
The motion equations

                The approximate motion equations of the TTS

                                We assume          / l  1, l / r  1


C0  C0  ml cos(   )  ml cos(   )  m sin(   )  f1 (l, , , )  Q
                                                              l                           (3)


ml cos(   )   I  ml cos(   )   f 2 (l, , , , )  Q
                                                                                           (4)


                 
                l                        Q
 sin(   )       f3 (l, , , , )  l
                                                m
                                                                                                 (5)


 mr   2
            C0  I   C0  I  f3 (l, , r , , )  Q
                                                                                         (6)

             3 I                      9
                    4 
r      
  r 2  2         1  3cos 2        4 
                                                A  B  cos 2   Qr                             (7)
           r    2mr                     2mr


where         m  m0 m2 / m, I  ml 2
                                                                                                       6
The motion equations on a elliptic orbit

  Since the orbital time on a elliptic orbit is relatively short, it may be assumed that the
  centre of mass remains in an unperturbed Keplerian elliptic orbit. In such a case, the
  generalized coordinates and are known through

                                                   p      p
                                        r                                    
                                                                                nk 2       n   p 3
                                              1  e cos k
                                                                                               d
Substitution variable from t to the true anomaly angle θ:                         dt 
                                                                                         n 1  e cos 
                                                                                                           2




                                                          The motion equations
                                                                                                                                  Q
     C0  k   2e  sin    ml cos(   )  k   2e  sin    m sin(   )kl   f1* ( , , , ', l ',)             (8)
                                                                                                                                 n2 k 3
                                                                                              Q
     ml cos(   )  k   2e  sin    I k   f 2* ( , , , ', ', l ',)                                                 (9)
                                                                                             n2 k 3

                                                                     Ql
      sin(   )k   kl   f3* ( , , , ', ', l ',)                                                                       (10)
                                                                   mn2 k 3

                                                                                                                                             7
The equations of elastic vibrations the tether


We assume that the line of action of the tether tension is the center of mass
of the spacecraft, then   0 Q 0      




                     The equations of elastic vibrations the tether


                     l             3               e
             2      1      sin  cos   2 1     sin                (11)
                     l              k               k


                            l  l0   1  3cos    l 1  
                     c                l                                e
                      2 4 
          l                                                     2 l  sin 
                                                2                  2
                                                                                    (12)
                   mn k              k                                k




                                                                                           8
The elastic vibrations of tether near the local vertical

                    We assume, that:       O  

                            Motion equations of the elastic tether


              A B
      3        sin  cos   J 1  L  sin   2 L cos    2e 1     sin 
                                                                                              (13)
              kC
               c
   L               L  1  3   sin    1     cos   2e  cos  L sin  
                                                             2
                                                                                                (14)
           n2 k 4 m                                              


                                 l     ml02
            where          , L , J        , C  C0  m0 
                                                               2

                            l    l0      C




                                                                                                       9
The approximate analytical solutions

     The motion equation of the spacecraft under the action of the tension force
                             and the gravitational moment

                               C  T  sin(   )  3n 2 ( B  A) sin  cos 
                                                                                 (15)

where

     -angle between the longitudinal axis of the spacecraft
       and the local vertical
    ( ) - angle between the rope and the local vertical
  T  T ( ) - tension force
  A, B, C - inertia moments of the spacecraft
  3n 2 ( B  A) sin  cos    - gravitational moment

    t    - the slow time

     - small parameter
    CA



                                                                                          10
The approximate analytical solutions

    The motion equation of the spacecraft under the action of the tension force only

      ( )sin   ( ) cos    sin 2
                                                      (16)



  where
        ( )   2 ( ) cos  ( ),
        ( )   2 ( ) sin  ( ),
               3
         n 2  B  A / C ,
               2
        2 ( )  T ( ) / C


Exact solution in terms of elliptic functions for   0
                   2arcsin  sn(t  K (k ), k )      (17)

                                                                                       11
The approximate analytical solutions
The tension force and its direction change slowly over time                     T  T ( ),    ( )

                                      The adiabatic invariant

                         J (, k )    E (k )  (1  k 2 ) K  k   h  const
                                                                                                       (18)

                                  The approximate analytical solutions
                                                                            2                 3
                                                    h      1     h         1        h 
                min,max  t    (t )  2 arcsin                         2
                                                                  (t )  4          (t )   ...    (19)
                                                    (t ) 2                               


              If        - is small value, then

                                                                0
                                 min,max  t    (t )  A0                                            (20)
                                                                 (t )
where   A0   is the arbitrary constant

  Micro-acceleration at the point the remote at a distance d from the mass center

                                                  x0 d  4
                                    Wmax (t )             T0 T (t )
                                                                      3/4
                                                                                                         (21)
                                                    C
                                                                                                                12
The approximate analytical solutions
                        The simulations for the YES-2
The deployment trajectory of the TTS      The deflection angle of the tether from
                                          the local vertical and the tension force




   Oscillations of the spacecraft about                 Accelerations on
               mass center                  the spacecraft to point removed at d = 1m




                                                                                     13
The approximate analytical solutions

           The linearized equation of the spacecraft motion under
        the influence of the gravitational torque and the tension force


                                       a( )  c   b( )  0
                                                                                                      (22)


                                                                         B A
where   a( )  T ( )     cos  ( ), b( )  T ( ) sin  ( ), c  3n 2      0
                         C                           C                      C



            The approximate solution for the oscillation amplitude
                             of the spacecraft

                                       const C                               T (t ) sin  (t )
             max (t )                                                                                (23)
                             T (t ) cos  (t )  3n ( B  A)
                                                   2                T (t ) cos  (t )  3n2 ( B  A)


                                                                                                               14
Chaotic oscillations of the spacecraft
                   with a vertical tether
 The motion equations of the spacecraft with the elastic vertical tether for
                              a circular orbit
                A B
             3    sin  cos   J 1  L  sin   2 L cos 
                                                                                             (24)
                 kC
                  c
          L  2 4  L  1  3   sin    1     cos 
                                                            2
                                                                                               (25)
               n k m                                            
     Approximate law of change rope length (δ = 0)

                                     L                      c / m 1/2 / n, L1   3  2  2 
                             L  L1  0 sin                                                       
                                     
                                                              3
                                               
The tether will always be stretched (L> 1) if L0 
                                                              

       The equation of the perturbed motion of the spacecraft about its mass center

                        a sin   c sin  cos     sin  sin   2cos cos               (26)

             ml0           B A                 
                                           ml0 L0
where a              , c3           ,                         - the small parameter
            C  m1 2       C  m1 2      C  m1 2
                                                                                                             15
Chaotic oscillations of the spacecraft
                  with a vertical tether
           The equation of the unperturbed motion of the spacecraft

                              a sin   c sin  cos            (27)


                           2
The energy integral:              W ( )  E
                           2

Equilibrium position is defined as the roots of the equation

                                               c B A 1    3 2 
                  1   cos   sin   0,                    (28)
                                               a    m2l0 ES 

                 for     *    ,0   0,  

                                    *   arccos   1 
                 for the remaining provisions of
                                      *   , 0, 
                                                                            16
Chaotic oscillations of the spacecraft
             with a vertical tether
The types of spacecraft     The bifurcation diagram




1  cos  sin   0
Chaotic oscillations of the spacecraft
                 with a vertical tether
              The homo-heteroclinic trajectories (separatrix solutions)

k    c/a                                                          Separatrix solutions
1                                     d                                  2 d sinh t
       1      (t )  2arctg              ,   (t )  ( )   
                                                                                         ,   a  c , d   a  c
                                      cosh t                          (cosh t )  d
                                                                                   2    2
                                                                                                                 a

2     1,                                                                     2 d cosh t
                (t )  2arctg  d sinh t  ,   (t )  ( )  
                                                                                                ,     a  c, d 
                                                                                                                       a
                                                                               1  d 2 sinh 2 t                      ac
      1
                                                                              2 cosh t
3
      0                                          
                (t )  2arctg sinh at ,   (t )  ( )  
                                                       
                                                                              1  sinh 2 t
                                                                                            , a

                                         S        t                             sin  S
                (t )  2arctg  tg          th     ,   (t )  ( )   
                                                                                                ,
                                         2         2                         cosh t  cos  S
4     1
                              1        c2  a2       a
               S   arccos    ,           ,d 
                                         c          c

                                              S            t                           sin  S
                (t )    2arctg  ctg               th     ,   (t )  ( )  
                                                                                                       .
                                               2            2                       cosh t  cos  S
5
      1
                              1        c2  a2        a
               S   arccos    ,           , d 
                                         c           c

                                                                                                                            18
Chaotic oscillations of the spacecraft
                    with a vertical tether
                                                   Melnikov method
  The equation of perturbed motion of the spacecraft - a generalized Duffing equation

                          a sin   c sin  cos   sin sin t   .
                                                                                                  (29)

  Two first-order equations
                                                       f1  g1 ,
                                                                                                    (30)
                                                     f2  g2 ,
                                                                                                    (31)

where   f1   , g1  0, f 2  a sin   c sin  cos  , g 2   sin  sin t  

                                                   
  Melnikov function                M  (t0 )   ( f1g2  f 2 g1 )dt  M   M  ,
                                                   

                                        
                         M  ( k )     k ) sin  k ) sin (t  t0 )dt   I k ) sin(t0 )
                                            (          (                            (
                                        

                                               
                            M  ( k )    ( k ) )2dt   J k ) , k  1,2...5
                                                (               (
                                              


  The condition of absence of the chaos:                                 M  M
                                                                                                            19
Chaotic oscillations of the spacecraft
        with a vertical tether
               Improper integrals appearing in Melnikov function
                         for the different motion types
                             sinh 2                                      sinh
                                                                                             2
                                                                                
     I   (1)
               2d     2
                                         sin 1 d , J   4d 2  
                                                        (1)
                                                                                  2
                                                                                     d
                       (cosh   d )                               cosh   d
                                                                                  
                               2     2 2                                    2




                            sinh 2                                        cosh
                                                                                                     2
                                                                                 
 I   (2)
               d  2
                                         sin 2 d , J   4d 2  
                                                        (2)
                                                                                 2 
                                                                                      d
                      (d sinh   1)                               1  d sinh 
                                                                                   
                          2     2      2                                    2




                             sinh 2                                  cosh 
                                                                                             2
                                                                                   
         I   (3)
                                        sin  2 d , J   4  
                                                           (3)
                                                                                      d
                       (sinh 2   1) 2                           1  sinh 2  
                                                                                   
                                                                                         2
                                  sinh
                                                                          sin  S     
         (4)
                (1  d )       2
                                               sin 4 d , J     
                                                              (4)
                                                                                           d
                                                                       cosh   cos  
     I                      (cosh   d ) 2
                                                                                      S 


                                                                                                 2
                                  sinh
                                                                          sin  S     
     (5)
                (1  d )       2
                                               sin 5 d , J     
                                                              (5)
                                                                                           d
                                                                       cosh   cos  
 I                          (cosh   d ) 2
                                                                                      S 



where                 i   / ,   t
                                                                                                         20
Chaotic oscillations of the spacecraft
              with a vertical tether
                   The Poincare sections




                  Load mass 100kg          Load mass 100kg
Load mass 20kg
       0                 0                   5  104




                                                              21
Chaotic oscillations of the spacecraft
                 with a vertical tether
                         Numerical simulation
   The TTS parameters: the mass of spacecraft - 6000kg, load weight - 100 kg,
p =6621 km, Δ = 2m, E = 5000N, load weight of 100 km, 30 km length of the tether,
              inertia moments: A = 2500kgm2, B = C = 10000kgm2,
                 the initial velocity load-1m / s (the case k = 2).

                           The Melnikov functions




                                                                                    22
The main results were published
                       in the following papers
1. Aslanov V. S. and Ledkov A. S. Chaotic Oscillations of Spacecraft with an Elastic Radially
Oriented Tether, ISSN 00109525, Cosmic Research, 2012, Vol. 50, No. 2, pp. 188–198.
2. Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol.
46, Number 5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013.
3. Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite -
Journal of Applied Mathematics and Mechanics 74 (2010) 416–424.
4. Aslanov V. Oscillations of a Spacecraft with a Vertical Elastic Tether, AIP Conference Proceedings
1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World
Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, One Volume, pp.1-16.
5. Aslanov V. Oscillations of a Spacecraft with a Vertical Tether. Proceedings of the World Congress on
Engineering 2009 v. 2, pp. 1827-1831.
6. Aslanov V. The Oscillations of a Spacecraft under the Action of the Tether Tension. Moment and the
Gravitational Moment AIP (American Institute of Physics) Conf. Proc. September 1. 2008. v. 1048. 56-59
p. (ISBN: 978-0-7354-0576-9 )
7. Aslanov V. S. Chaotic behavior of the biharmonic dynamics system. International Journal of
Mathematics and Mathematical Sciences Volume 2009, Article ID 319179, 18 pages
doi:10.1155/2009/319179. 2009.
8. Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied
Mathematics and Mechanics 71 (2007) 926–932.




                                                                                                          23

More Related Content

What's hot

Simulation of Steam Coal Gasifier
Simulation of Steam Coal GasifierSimulation of Steam Coal Gasifier
Simulation of Steam Coal Gasifieregepaul
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergySEENET-MTP
 
On gradient Ricci solitons
On gradient Ricci solitonsOn gradient Ricci solitons
On gradient Ricci solitonsmnlfdzlpz
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graphguestcc333c
 
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelExistence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelIJMER
 
P2 Area Under A Graph Modul
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modulguestcc333c
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinFredy Mojica
 
Module 16 Earth As A Sphere
Module 16  Earth As A SphereModule 16  Earth As A Sphere
Module 16 Earth As A Sphereguestcc333c
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Alessandro Palmeri
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZoe Zontou
 
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedfoxtrot jp R
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologySEENET-MTP
 
20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_distFujii Mikiya
 
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.popochis
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jay Wacker
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...ijceronline
 

What's hot (20)

Simulation of Steam Coal Gasifier
Simulation of Steam Coal GasifierSimulation of Steam Coal Gasifier
Simulation of Steam Coal Gasifier
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
On gradient Ricci solitons
On gradient Ricci solitonsOn gradient Ricci solitons
On gradient Ricci solitons
 
Module 13 Gradient And Area Under A Graph
Module 13  Gradient And Area Under A GraphModule 13  Gradient And Area Under A Graph
Module 13 Gradient And Area Under A Graph
 
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN ModelExistence of Hopf-Bifurcations on the Nonlinear FKN Model
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
 
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
 
P2 Area Under A Graph Modul
P2  Area Under A Graph ModulP2  Area Under A Graph Modul
P2 Area Under A Graph Modul
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica Goldstein
 
Module 16 Earth As A Sphere
Module 16  Earth As A SphereModule 16  Earth As A Sphere
Module 16 Earth As A Sphere
 
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
 
Zontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_MotionZontos___EP_410___Particle_Motion
Zontos___EP_410___Particle_Motion
 
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrectedFieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
 
D. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in CosmologyD. Mladenov - On Integrable Systems in Cosmology
D. Mladenov - On Integrable Systems in Cosmology
 
20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist20150304 ims mikiya_fujii_dist
20150304 ims mikiya_fujii_dist
 
[Download] rev chapter-9-june26th
[Download] rev chapter-9-june26th[Download] rev chapter-9-june26th
[Download] rev chapter-9-june26th
 
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
 
Localized Electrons with Wien2k
Localized Electrons with Wien2kLocalized Electrons with Wien2k
Localized Electrons with Wien2k
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 

Viewers also liked

Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Theoretical mechanics department
 
Написание научной статьи на английском языке
Написание научной статьи на английском языкеНаписание научной статьи на английском языке
Написание научной статьи на английском языкеTheoretical mechanics department
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugTheoretical mechanics department
 
Satellite dynamic and control
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and controlZuliana Ismail
 
Active Suspension System
Active Suspension SystemActive Suspension System
Active Suspension SystemBehzad Samadi
 

Viewers also liked (8)

Chaotic motions of tethered satellites with low thrust
Chaotic motions of tethered satellites with low thrust Chaotic motions of tethered satellites with low thrust
Chaotic motions of tethered satellites with low thrust
 
Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion Mathematical models and analysis of the space tether systems motion
Mathematical models and analysis of the space tether systems motion
 
Написание научной статьи на английском языке
Написание научной статьи на английском языкеНаписание научной статьи на английском языке
Написание научной статьи на английском языке
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space Tug
 
Seminar project
Seminar projectSeminar project
Seminar project
 
Satellite dynamic and control
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and control
 
Active Suspension System
Active Suspension SystemActive Suspension System
Active Suspension System
 
Модификация механизма Йо-Йо
Модификация механизма Йо-ЙоМодификация механизма Йо-Йо
Модификация механизма Йо-Йо
 

Similar to Dynamics of Satellite With a Tether System

Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Colm Connaughton
 
Colpitts startup
Colpitts startupColpitts startup
Colpitts startupvulanskyi
 
Atomic Structure (II)
Atomic Structure (II)Atomic Structure (II)
Atomic Structure (II)Bernard Ng
 
การเคล อนท__แบบหม_น
การเคล  อนท__แบบหม_นการเคล  อนท__แบบหม_น
การเคล อนท__แบบหม_นrsurachat
 
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...ijrap
 
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...ijrap
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)Alexander Tsupko
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Alexander Decker
 
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...Xavier Terri
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSSRINIVASULU N V
 
A new six point finite difference scheme for nonlinear waves interaction model
A new six point finite difference scheme for nonlinear waves interaction modelA new six point finite difference scheme for nonlinear waves interaction model
A new six point finite difference scheme for nonlinear waves interaction modelAlexander Decker
 
Properties of Metallic Helimagnets
Properties of Metallic HelimagnetsProperties of Metallic Helimagnets
Properties of Metallic HelimagnetsKwan-yuet Ho
 
Molecular orbital theory
Molecular orbital theoryMolecular orbital theory
Molecular orbital theoryPallavi Kumbhar
 

Similar to Dynamics of Satellite With a Tether System (20)

#26 Key
#26 Key#26 Key
#26 Key
 
Da32633636
Da32633636Da32633636
Da32633636
 
Da32633636
Da32633636Da32633636
Da32633636
 
Angdist
AngdistAngdist
Angdist
 
Angdist
AngdistAngdist
Angdist
 
Part 1:Electrostatics
Part 1:ElectrostaticsPart 1:Electrostatics
Part 1:Electrostatics
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
 
Colpitts startup
Colpitts startupColpitts startup
Colpitts startup
 
Atomic Structure (II)
Atomic Structure (II)Atomic Structure (II)
Atomic Structure (II)
 
การเคล อนท__แบบหม_น
การเคล  อนท__แบบหม_นการเคล  อนท__แบบหม_น
การเคล อนท__แบบหม_น
 
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
Classical and Quasi-Classical Consideration of Charged Particles in Coulomb F...
 
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
CLASSICAL AND QUASI-CLASSICAL CONSIDERATION OF CHARGED PARTICLES IN COULOMB F...
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)
 
M.Sc. Phy SII UV Quantum Mechanics
M.Sc. Phy SII UV Quantum MechanicsM.Sc. Phy SII UV Quantum Mechanics
M.Sc. Phy SII UV Quantum Mechanics
 
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
Phonon frequency spectrum through lattice dynamics and normal coordinate anal...
 
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
 
A new six point finite difference scheme for nonlinear waves interaction model
A new six point finite difference scheme for nonlinear waves interaction modelA new six point finite difference scheme for nonlinear waves interaction model
A new six point finite difference scheme for nonlinear waves interaction model
 
Properties of Metallic Helimagnets
Properties of Metallic HelimagnetsProperties of Metallic Helimagnets
Properties of Metallic Helimagnets
 
Molecular orbital theory
Molecular orbital theoryMolecular orbital theory
Molecular orbital theory
 

More from Theoretical mechanics department

Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Theoretical mechanics department
 
Основы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыОсновы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыTheoretical mechanics department
 
Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Theoretical mechanics department
 
Docking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismDocking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismTheoretical mechanics department
 
Алгоритмы и языки программирования
Алгоритмы и языки программированияАлгоритмы и языки программирования
Алгоритмы и языки программированияTheoretical mechanics department
 
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherChaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherTheoretical mechanics department
 
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Theoretical mechanics department
 
On problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingOn problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingTheoretical mechanics department
 
Методы решения нелинейных уравнений
Методы решения нелинейных уравненийМетоды решения нелинейных уравнений
Методы решения нелинейных уравненийTheoretical mechanics department
 

More from Theoretical mechanics department (20)

Космический мусор
Космический мусорКосмический мусор
Космический мусор
 
Основы SciPy
Основы SciPyОсновы SciPy
Основы SciPy
 
Основы NumPy
Основы NumPyОсновы NumPy
Основы NumPy
 
Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование Python. Объектно-ориентированное программирование
Python. Объектно-ориентированное программирование
 
Python. Обработка ошибок
Python. Обработка ошибокPython. Обработка ошибок
Python. Обработка ошибок
 
Python: ввод и вывод
Python: ввод и выводPython: ввод и вывод
Python: ввод и вывод
 
Python: Модули и пакеты
Python: Модули и пакетыPython: Модули и пакеты
Python: Модули и пакеты
 
Основы Python. Функции
Основы Python. ФункцииОсновы Python. Функции
Основы Python. Функции
 
Основы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторыОсновы языка Питон: типы данных, операторы
Основы языка Питон: типы данных, операторы
 
Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754Машинная арифметика. Cтандарт IEEE-754
Машинная арифметика. Cтандарт IEEE-754
 
Docking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanismDocking with noncooperative spent orbital stage using probe-cone mechanism
Docking with noncooperative spent orbital stage using probe-cone mechanism
 
Алгоритмы и языки программирования
Алгоритмы и языки программированияАлгоритмы и языки программирования
Алгоритмы и языки программирования
 
Deployers for nanosatellites
Deployers for nanosatellitesDeployers for nanosatellites
Deployers for nanosatellites
 
CubeSat separation dynamics
CubeSat separation dynamicsCubeSat separation dynamics
CubeSat separation dynamics
 
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a TetherChaotic Behavior of a Passive Satellite During Towing by a Tether
Chaotic Behavior of a Passive Satellite During Towing by a Tether
 
Основы MATLAB. Численные методы
Основы MATLAB. Численные методыОсновы MATLAB. Численные методы
Основы MATLAB. Численные методы
 
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
 
On problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingOn problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towing
 
Методы решения нелинейных уравнений
Методы решения нелинейных уравненийМетоды решения нелинейных уравнений
Методы решения нелинейных уравнений
 
Наноспутники формата кубсат
Наноспутники формата кубсатНаноспутники формата кубсат
Наноспутники формата кубсат
 

Recently uploaded

CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 

Recently uploaded (20)

CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 

Dynamics of Satellite With a Tether System

  • 1. Vladimir S. Aslanov aslanov_vs@mail.ru Dynamics of satellite with a Tether System Theoretical Mechanics Department www.termech.ru Samara State Aerospace University, Russia www.ssau.ru 2012
  • 2. Statement of the problem The motion about a centre of mass of a spacecraft (satellite) with a elastic heavy tethered system at a orbit is studied. Tethered satellite systems (TTS) includes: - rigid satellite (spacecraft), - elastic heavy tether, - end load. The dynamics of a rotating body studied famous mathematicians of all time as Euler, Poinsot, Lagrange and Kovalevskaya. The research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellites. In this area we note the papers of scientists as Yaroshevsky, Belezky, Rumyantsev, J.Nicolaides, G.Gross et al. Study the behavior of the space tethered systems devoted to the papers: Beletsky and Levin, Williams, Kruijff, Misra, Sidorov, Pirozhenko and others. 2
  • 3. Example of the Tethered Satellite Systems Scheme of the dynamic deployment of TSS «Foton-М3" №3 – YES2" (2008) Initial Foton-M3 parameters are assumed as follows: Mass 6530 kg Ballistic coefficient 0.0123 m2/kg. Inclination 63 degrees Minimum orbital altitude 262 km Maximum orbital altitude 304 km Tether parameters are assumed as follows: Diameter 0.5 mm Length 30000 m Mass density 0.00018 kg/m Initial Speed of tether deployment 2.58 m/c Mass End Load 12 kg 3
  • 4. Aims of the research 1. To obtain mathematical models of the plane motion of the satellite of about of mass center under the influence of elastic the tether system. 2. To deduce approximate analytical solutions describing the oscillations of the satellite caused by the change magnitude and direction of the tether force. 3. To build models chaotic behavior of the satellite and to study of the satellite motion under the influence the elastic tether of the chaotic dynamics methods. 4. To find the approximate estimates of the accelerations in the satellite arising from the deployment of the tether. 4
  • 5. The Lagrange equations Kinetic energy of the TSS 1 1 2 1 T  m(r  r  )   mi i2  C0 (   )2  C1 (   )2   2 2 2        (1) 2 2 i0 2 where ρi  ri  r, i  0,1,2; q j   , , , l , r - generalized coordinates Potential energy 2 mi 3  m1l 2 c W      3  A  B  cos   2 cos 2   (l  l0 )2 (2) i 0 ri 2r0 8r13 2 Lagrange equations of the second kind d L L   Qj   D0 P, l  PD2 dt q j q j  where L  T W - Lagrange function, Qj - nonpotential forces 5
  • 6. The motion equations The approximate motion equations of the TTS We assume  / l  1, l / r  1 C0  C0  ml cos(   )  ml cos(   )  m sin(   )  f1 (l, , , )  Q    l  (3) ml cos(   )   I  ml cos(   )   f 2 (l, , , , )  Q     (4)    l    Q  sin(   )       f3 (l, , , , )  l m (5)  mr 2  C0  I   C0  I  f3 (l, , r , , )  Q      (6)  3 I 9 4  r    r 2  2  1  3cos 2    4  A  B  cos 2   Qr (7) r 2mr 2mr where m  m0 m2 / m, I  ml 2 6
  • 7. The motion equations on a elliptic orbit Since the orbital time on a elliptic orbit is relatively short, it may be assumed that the centre of mass remains in an unperturbed Keplerian elliptic orbit. In such a case, the generalized coordinates and are known through p p r     nk 2 n   p 3 1  e cos k d Substitution variable from t to the true anomaly angle θ: dt  n 1  e cos  2 The motion equations Q C0  k   2e  sin    ml cos(   )  k   2e  sin    m sin(   )kl   f1* ( , , , ', l ',)  (8) n2 k 3 Q ml cos(   )  k   2e  sin    I k   f 2* ( , , , ', ', l ',)  (9) n2 k 3 Ql  sin(   )k   kl   f3* ( , , , ', ', l ',)  (10) mn2 k 3 7
  • 8. The equations of elastic vibrations the tether We assume that the line of action of the tether tension is the center of mass of the spacecraft, then 0 Q 0  The equations of elastic vibrations the tether l 3 e    2 1      sin  cos   2 1     sin  (11) l k k l  l0   1  3cos    l 1   c l e 2 4  l      2 l  sin  2 2 (12) mn k k k 8
  • 9. The elastic vibrations of tether near the local vertical We assume, that:   O   Motion equations of the elastic tether A B    3 sin  cos   J 1  L  sin   2 L cos    2e 1     sin    (13) kC c L   L  1  3   sin    1     cos   2e  cos  L sin   2 (14) n2 k 4 m    l ml02 where   , L , J  , C  C0  m0  2 l l0 C 9
  • 10. The approximate analytical solutions The motion equation of the spacecraft under the action of the tension force and the gravitational moment C  T  sin(   )  3n 2 ( B  A) sin  cos   (15) where  -angle between the longitudinal axis of the spacecraft and the local vertical    ( ) - angle between the rope and the local vertical T  T ( ) - tension force A, B, C - inertia moments of the spacecraft 3n 2 ( B  A) sin  cos  - gravitational moment   t - the slow time  - small parameter   CA 10
  • 11. The approximate analytical solutions The motion equation of the spacecraft under the action of the tension force only   ( )sin   ( ) cos    sin 2  (16) where  ( )   2 ( ) cos  ( ),  ( )   2 ( ) sin  ( ), 3   n 2  B  A / C , 2  2 ( )  T ( ) / C Exact solution in terms of elliptic functions for   0     2arcsin  sn(t  K (k ), k ) (17) 11
  • 12. The approximate analytical solutions The tension force and its direction change slowly over time T  T ( ),    ( ) The adiabatic invariant J (, k )    E (k )  (1  k 2 ) K  k   h  const   (18) The approximate analytical solutions 2 3 h 1  h  1  h   min,max  t    (t )  2 arcsin   2   (t )  4   (t )   ... (19)  (t ) 2     If   - is small value, then 0  min,max  t    (t )  A0 (20)  (t ) where A0 is the arbitrary constant Micro-acceleration at the point the remote at a distance d from the mass center x0 d  4 Wmax (t )  T0 T (t ) 3/4 (21) C 12
  • 13. The approximate analytical solutions The simulations for the YES-2 The deployment trajectory of the TTS The deflection angle of the tether from the local vertical and the tension force Oscillations of the spacecraft about Accelerations on mass center the spacecraft to point removed at d = 1m 13
  • 14. The approximate analytical solutions The linearized equation of the spacecraft motion under the influence of the gravitational torque and the tension force    a( )  c   b( )  0  (22)   B A where a( )  T ( ) cos  ( ), b( )  T ( ) sin  ( ), c  3n 2 0 C C C The approximate solution for the oscillation amplitude of the spacecraft const C T (t ) sin  (t )  max (t )   (23) T (t ) cos  (t )  3n ( B  A) 2 T (t ) cos  (t )  3n2 ( B  A) 14
  • 15. Chaotic oscillations of the spacecraft with a vertical tether The motion equations of the spacecraft with the elastic vertical tether for a circular orbit A B    3 sin  cos   J 1  L  sin   2 L cos    (24) kC c L  2 4  L  1  3   sin    1     cos  2 (25) n k m   Approximate law of change rope length (δ = 0) L    c / m 1/2 / n, L1   3  2  2  L  L1  0 sin     3  The tether will always be stretched (L> 1) if L0   The equation of the perturbed motion of the spacecraft about its mass center    a sin   c sin  cos     sin  sin   2cos cos   (26) ml0 B A  ml0 L0 where a  , c3 ,  - the small parameter C  m1 2 C  m1 2 C  m1 2 15
  • 16. Chaotic oscillations of the spacecraft with a vertical tether The equation of the unperturbed motion of the spacecraft    a sin   c sin  cos (27)  2 The energy integral:  W ( )  E 2 Equilibrium position is defined as the roots of the equation c B A 1 3 2  1   cos   sin   0,       (28) a   m2l0 ES  for  *    ,0   0,    *   arccos   1  for the remaining provisions of  *   , 0,  16
  • 17. Chaotic oscillations of the spacecraft with a vertical tether The types of spacecraft The bifurcation diagram 1  cos  sin   0
  • 18. Chaotic oscillations of the spacecraft with a vertical tether The homo-heteroclinic trajectories (separatrix solutions) k  c/a Separatrix solutions 1  d  2 d sinh t   1   (t )  2arctg   ,   (t )  ( )     ,   a  c , d   a  c  cosh t  (cosh t )  d 2 2 a 2   1, 2 d cosh t   (t )  2arctg  d sinh t  ,   (t )  ( )    ,   a  c, d  a 1  d 2 sinh 2 t ac  1 2 cosh t 3  0     (t )  2arctg sinh at ,   (t )  ( )    1  sinh 2 t , a  S t   sin  S   (t )  2arctg  tg th  ,   (t )  ( )     ,  2 2 cosh t  cos  S 4  1  1 c2  a2 a  S   arccos    ,   ,d    c c  S t   sin  S   (t )    2arctg  ctg th  ,   (t )  ( )    .  2 2 cosh t  cos  S 5  1  1 c2  a2 a  S   arccos    ,   , d    c c 18
  • 19. Chaotic oscillations of the spacecraft with a vertical tether Melnikov method The equation of perturbed motion of the spacecraft - a generalized Duffing equation   a sin   c sin  cos   sin sin t   .   (29) Two first-order equations     f1  g1 ,  (30)   f2  g2 ,  (31) where f1   , g1  0, f 2  a sin   c sin  cos  , g 2   sin  sin t    Melnikov function M  (t0 )   ( f1g2  f 2 g1 )dt  M   M  ,   M  ( k )     k ) sin  k ) sin (t  t0 )dt   I k ) sin(t0 ) ( ( (   M  ( k )    ( k ) )2dt   J k ) , k  1,2...5 ( (  The condition of absence of the chaos: M  M 19
  • 20. Chaotic oscillations of the spacecraft with a vertical tether Improper integrals appearing in Melnikov function for the different motion types sinh 2 sinh 2     I (1)   2d  2 sin 1 d , J   4d 2   (1) 2 d  (cosh   d )  cosh   d   2 2 2 2 sinh 2 cosh 2     I (2)   d  2 sin 2 d , J   4d 2   (2) 2  d  (d sinh   1)  1  d sinh    2 2 2 2 sinh 2   cosh  2   I (3)   sin  2 d , J   4   (3) d   (sinh 2   1) 2  1  sinh 2     2 sinh    sin  S  (4)  (1  d )  2 sin 4 d , J      (4) d  cosh   cos   I   (cosh   d ) 2  S  2 sinh    sin  S  (5)  (1  d )  2 sin 5 d , J      (5) d  cosh   cos   I   (cosh   d ) 2  S  where i   / ,   t 20
  • 21. Chaotic oscillations of the spacecraft with a vertical tether The Poincare sections Load mass 100kg Load mass 100kg Load mass 20kg  0  0   5  104 21
  • 22. Chaotic oscillations of the spacecraft with a vertical tether Numerical simulation The TTS parameters: the mass of spacecraft - 6000kg, load weight - 100 kg, p =6621 km, Δ = 2m, E = 5000N, load weight of 100 km, 30 km length of the tether, inertia moments: A = 2500kgm2, B = C = 10000kgm2, the initial velocity load-1m / s (the case k = 2). The Melnikov functions 22
  • 23. The main results were published in the following papers 1. Aslanov V. S. and Ledkov A. S. Chaotic Oscillations of Spacecraft with an Elastic Radially Oriented Tether, ISSN 00109525, Cosmic Research, 2012, Vol. 50, No. 2, pp. 188–198. 2. Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol. 46, Number 5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013. 3. Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite - Journal of Applied Mathematics and Mechanics 74 (2010) 416–424. 4. Aslanov V. Oscillations of a Spacecraft with a Vertical Elastic Tether, AIP Conference Proceedings 1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, One Volume, pp.1-16. 5. Aslanov V. Oscillations of a Spacecraft with a Vertical Tether. Proceedings of the World Congress on Engineering 2009 v. 2, pp. 1827-1831. 6. Aslanov V. The Oscillations of a Spacecraft under the Action of the Tether Tension. Moment and the Gravitational Moment AIP (American Institute of Physics) Conf. Proc. September 1. 2008. v. 1048. 56-59 p. (ISBN: 978-0-7354-0576-9 ) 7. Aslanov V. S. Chaotic behavior of the biharmonic dynamics system. International Journal of Mathematics and Mathematical Sciences Volume 2009, Article ID 319179, 18 pages doi:10.1155/2009/319179. 2009. 8. Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied Mathematics and Mechanics 71 (2007) 926–932. 23