TABLA DE DERIVADAS 
Funciones elementales 
Funciones compuestas 
Función 
f(x) 
Derivada 
f '(x) 
Función 
f(u) con u = u(x) 
Derivada 
f '(x) = f '(u).u'(x) 
f(x) = k 
f '(x) = 0 
f(x) = x 
f '(x) = 1 
pxxf=)( p∈R 
1)('−=ppxxf 
puuf=)( p∈R 
' )('1upuufp−= 
xxfln)(= xxf1)('= 
uxfln)(= uuxf')('= 
xxfalog)(= axxfln1)('= 
uxfalog)(= auuxfln')('= 
xexf=)( 
xexf=)( 
ueuf=)( 
' )('ueufu= 
xaxf=)( 
aaxfxln)(= 
uauf=)( 
' ln)('uaaufu= 
)()()(xhxgxf= ) (' )(ln)()(')( )()()(1)(xhxgxgxgxgxhxfxhxh+=− 
f(x) = sen x 
f '(x) = cos x 
f(x) = sen u 
f '(x) = cos u u' 
f(x) = cos x 
f '(x) = − sen x 
f(x) = cos u 
f '(x) = − sen u u' 
xxftg)(= == xxf2cos1)(' 
x2tg1+= 
uxftg)(= == uuxf2cos')(' 
' )tg1(2uu+= 
xxfarcsen)(= 211)(' xxf− = 
uxfarcsen)(= 21')(' uuxf− = 
xxfarccos)(= 211)(' xxf− − = 
uxfarccos)(= 21')(' uuxf− − = 
xxfarctg)(= 211)(' xxf+ = 
uxfarctg)(= 21')(' uuxf+ = 
f(x) = sh x 
f '(x) = ch x 
f(x) = sh u 
f '(x) = ch u u' 
f(x) = ch x 
f '(x) = sh x 
f(x) = ch u 
f '(x) = sh u u' 
xxfth )(= == xxf2ch1)(' 
x2th1−= 
uxfth )(= == uuxf2ch')(' 
' )th1(2uu−= 
xxfsh arg)(= 211)(' xxf+ = 
uxfsh arg)(= 21')(' uuxf+ = 
xxfch arg)(= 11)(' 2− = xxf 
uxfch arg)(= 1')(' 2− = uuxf 
xxfth arg)(= 211)(' xxf− = 
uxfth arg)(= 21')(' uuxf− =

Tabla derivadas

  • 1.
    TABLA DE DERIVADAS Funciones elementales Funciones compuestas Función f(x) Derivada f '(x) Función f(u) con u = u(x) Derivada f '(x) = f '(u).u'(x) f(x) = k f '(x) = 0 f(x) = x f '(x) = 1 pxxf=)( p∈R 1)('−=ppxxf puuf=)( p∈R ' )('1upuufp−= xxfln)(= xxf1)('= uxfln)(= uuxf')('= xxfalog)(= axxfln1)('= uxfalog)(= auuxfln')('= xexf=)( xexf=)( ueuf=)( ' )('ueufu= xaxf=)( aaxfxln)(= uauf=)( ' ln)('uaaufu= )()()(xhxgxf= ) (' )(ln)()(')( )()()(1)(xhxgxgxgxgxhxfxhxh+=− f(x) = sen x f '(x) = cos x f(x) = sen u f '(x) = cos u u' f(x) = cos x f '(x) = − sen x f(x) = cos u f '(x) = − sen u u' xxftg)(= == xxf2cos1)(' x2tg1+= uxftg)(= == uuxf2cos')(' ' )tg1(2uu+= xxfarcsen)(= 211)(' xxf− = uxfarcsen)(= 21')(' uuxf− = xxfarccos)(= 211)(' xxf− − = uxfarccos)(= 21')(' uuxf− − = xxfarctg)(= 211)(' xxf+ = uxfarctg)(= 21')(' uuxf+ = f(x) = sh x f '(x) = ch x f(x) = sh u f '(x) = ch u u' f(x) = ch x f '(x) = sh x f(x) = ch u f '(x) = sh u u' xxfth )(= == xxf2ch1)(' x2th1−= uxfth )(= == uuxf2ch')(' ' )th1(2uu−= xxfsh arg)(= 211)(' xxf+ = uxfsh arg)(= 21')(' uuxf+ = xxfch arg)(= 11)(' 2− = xxf uxfch arg)(= 1')(' 2− = uuxf xxfth arg)(= 211)(' xxf− = uxfth arg)(= 21')(' uuxf− =