TABLA DE DERIVADAS
Funciones elementales Funciones compuestas
Función
f(x)
Derivada
f '(x)
Función
f(u) con u = u(x)
Derivada
f '(x) = f '(u).u'(x)
f(x) = k f '(x) = 0
f(x) = x f '(x) = 1
p
xxf =)( p∈R 1
)(' −
= p
pxxf p
uuf =)( p∈R ')(' 1
upuuf p−
=
xxf ln)( =
x
xf
1
)(' = uxf ln)( =
u
u
xf
'
)(' =
xxf alog)( =
ax
xf
ln
1
)(' = uxf alog)( =
au
u
xf
ln
'
)(' =
x
exf =)( x
exf =)( u
euf =)( ')(' ueuf u
=
x
axf =)( aaxf x
ln)( = u
auf =)( 'ln)(' uaauf u
=
)(
)()( xh
xgxf = )(')(ln)()(')()()( )(1)(
xhxgxgxgxgxhxf xhxh
+= −
f(x) = sen x f '(x) = cos x f(x) = sen u f '(x) = cos u u'
f(x) = cos x f '(x) = − sen x f(x) = cos u f '(x) = − sen u u'
xxf tg)( = ==
x
xf 2
cos
1
)('
x2
tg1+=
uxf tg)( = ==
u
u
xf 2
cos
'
)('
')tg1( 2
uu+=
xxf arcsen)( =
2
1
1
)('
x
xf
−
= uxf arcsen)( =
2
1
'
)('
u
u
xf
−
=
xxf arccos)( =
2
1
1
)('
x
xf
−
−
= uxf arccos)( =
2
1
'
)('
u
u
xf
−
−
=
xxf arctg)( = 2
1
1
)('
x
xf
+
= uxf arctg)( = 2
1
'
)('
u
u
xf
+
=
f(x) = sh x f '(x) = ch x f(x) = sh u f '(x) = ch u u'
f(x) = ch x f '(x) = sh x f(x) = ch u f '(x) = sh u u'
xxf th)( = ==
x
xf 2
ch
1
)('
x2
th1−=
uxf th)( = ==
u
u
xf 2
ch
'
)('
')th1( 2
uu−=
xxf sharg)( =
2
1
1
)('
x
xf
+
= uxf sharg)( =
2
1
'
)('
u
u
xf
+
=
xxf charg)( =
1
1
)('
2
−
=
x
xf uxf charg)( =
1
'
)('
2
−
=
u
u
xf
xxf tharg)( =
2
1
1
)('
x
xf
−
=
uxf tharg)( =
2
1
'
)('
u
u
xf
−
=

Tabla de derivadas

  • 1.
    TABLA DE DERIVADAS Funcioneselementales Funciones compuestas Función f(x) Derivada f '(x) Función f(u) con u = u(x) Derivada f '(x) = f '(u).u'(x) f(x) = k f '(x) = 0 f(x) = x f '(x) = 1 p xxf =)( p∈R 1 )(' − = p pxxf p uuf =)( p∈R ')(' 1 upuuf p− = xxf ln)( = x xf 1 )(' = uxf ln)( = u u xf ' )(' = xxf alog)( = ax xf ln 1 )(' = uxf alog)( = au u xf ln ' )(' = x exf =)( x exf =)( u euf =)( ')(' ueuf u = x axf =)( aaxf x ln)( = u auf =)( 'ln)(' uaauf u = )( )()( xh xgxf = )(')(ln)()(')()()( )(1)( xhxgxgxgxgxhxf xhxh += − f(x) = sen x f '(x) = cos x f(x) = sen u f '(x) = cos u u' f(x) = cos x f '(x) = − sen x f(x) = cos u f '(x) = − sen u u' xxf tg)( = == x xf 2 cos 1 )(' x2 tg1+= uxf tg)( = == u u xf 2 cos ' )(' ')tg1( 2 uu+= xxf arcsen)( = 2 1 1 )(' x xf − = uxf arcsen)( = 2 1 ' )(' u u xf − = xxf arccos)( = 2 1 1 )(' x xf − − = uxf arccos)( = 2 1 ' )(' u u xf − − = xxf arctg)( = 2 1 1 )(' x xf + = uxf arctg)( = 2 1 ' )(' u u xf + = f(x) = sh x f '(x) = ch x f(x) = sh u f '(x) = ch u u' f(x) = ch x f '(x) = sh x f(x) = ch u f '(x) = sh u u' xxf th)( = == x xf 2 ch 1 )(' x2 th1−= uxf th)( = == u u xf 2 ch ' )(' ')th1( 2 uu−= xxf sharg)( = 2 1 1 )(' x xf + = uxf sharg)( = 2 1 ' )(' u u xf + = xxf charg)( = 1 1 )(' 2 − = x xf uxf charg)( = 1 ' )(' 2 − = u u xf xxf tharg)( = 2 1 1 )(' x xf − = uxf tharg)( = 2 1 ' )(' u u xf − =