SlideShare a Scribd company logo
Derivación
Ing. Mg. Luis Gabriel Lescano Paredes
Definición
• La derivada de una función es un concepto local, es decir, se
calcula como el limite de la rapidez de cambio media de la
función en cierto intervalo, cuando el intervalo considerado
para la variable independiente se torna cada vez más
pequeño.
Pendiente de la función
La recta 𝑥 = 𝑥1 si
𝑚(𝑥1) = lim
∆𝑥→0±
𝑓 𝑥1 + ∆𝑥 − 𝑓 𝑥1
∆𝑥
Es +∞ 𝑜 − ∞
Por lo tanto:
𝑚(𝑓 𝑥 ) = lim
∆𝑥→0
𝑓 𝑥+∆𝑥 −𝑓 𝑥
∆𝑥
𝑓′
𝑥 = lim
∆𝑥→0
𝑓 𝑥 + ∆𝑥 − 𝑓 𝑥
∆𝑥
P
𝑃 𝑥1, 𝑓 𝑥1
Q 𝑥2, 𝑓 𝑥2
∆𝑥 = 𝑥2 − 𝑥1
𝑓 𝑥2 − 𝑓 𝑥1
𝑥2
𝑥1
∆𝑥
Pendiente de la función
𝑓′ 𝑡 = lim
∆𝑡→0
𝑓 𝑡 + ∆𝑡 − 𝑓 𝑡
∆𝑡
𝑓 𝑡 = 𝑡3 − 2𝑡2; s 𝑡 = 𝑡3 − 2𝑡2
𝑣𝑠(𝑡) = 𝑠′(𝑡)
P
𝑃 𝑡1, 𝑓 𝑡1
Q 𝑡2, 𝑓 𝑡2
∆𝑡 = 𝑡2 − 𝑡1
𝑓 𝑡2 − 𝑓 𝑡1
𝑡2
𝑡1
∆𝑡
𝑓 𝑡 = 𝑠
Ejemplo velocidad:
𝑓 𝑡 = 𝑡3 − 2𝑡2; s 𝑡 = 𝑡3 − 2𝑡2
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• s 𝑡 = 𝑡3 − 2𝑡2
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
𝑠 𝑡+∆𝑡 −𝑠 𝑡
∆𝑡
• 𝑠 𝑡 + ∆𝑡 = ( 𝑡 + ∆𝑡 3−2 𝑡 + ∆𝑡 2)
• 𝑠 𝑡 = ( 𝑡 3−2 𝑡 2)
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
( 𝑡+∆𝑡 3−2 𝑡+∆𝑡 2) −( 𝑡 3−2 𝑡 2)
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
((𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3)−(2 𝑡2+2𝑡.∆𝑡+∆𝑡2 )) −( 𝑡 3−2 𝑡 2)
∆𝑡
Ejemplo:
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• s 𝑡 = 𝑡3 − 2𝑡2
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
𝑠 𝑡+∆𝑡 −𝑠 𝑡
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
((𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3)−(2 𝑡2+2𝑡.∆𝑡+∆𝑡2 )) −( 𝑡 3−2 𝑡 2)
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3−2𝑡2−4𝑡.∆𝑡−2∆𝑡2 −𝑡3+2𝑡2)
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3−4𝑡.∆𝑡−2∆𝑡2
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
∆𝑡(3𝑡2+3𝑡∆𝑡+∆𝑡2−4𝑡−2∆𝑡)
∆𝑡
Ejemplo:
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• s 𝑡 = 𝑡3 − 2𝑡2
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
𝑠 𝑡+∆𝑡 −𝑠 𝑡
∆𝑡
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
1(3𝑡2+3𝑡∆𝑡+∆𝑡2−4𝑡−2∆𝑡)
1
• 𝑚(𝑠 𝑡 ) = lim
∆𝑡→0
3𝑡2 + 3𝑡∆𝑡 + ∆𝑡2 − 4𝑡 − 2∆𝑡
• 𝑚(𝑠 𝑡 ) = 3𝑡2 + 3𝑡(0) + 0 2 − 4𝑡 − 2(0)
• 𝑚(𝑠 𝑡 ) = 3𝑡2 − 4t
• 𝑠′ 𝑡 = 3𝑡2 − 4t
• 𝑣𝑠(𝑡) = 3𝑡2
− 4t
Ejemplo Aceleración
• 𝑓 𝑡 = 𝑡3
− 2𝑡2
; s 𝑡 = 𝑡3
− 2𝑡2
• 𝑣𝑠(𝑡) = 𝑠′(𝑡)
• 𝑎𝑠(𝑡) = 𝑠′′(𝑡)
• 𝑣𝑠(𝑡) = 𝑠′(𝑡)
• 𝑠′
𝑡 = 3𝑡2
− 4t
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
𝑠′ 𝑡+∆𝑡 −𝑠′ 𝑡
∆𝑡
• 𝑠′ 𝑡 + ∆𝑡 = 3(𝑡 + ∆𝑡)2
−4(𝑡 + ∆𝑡)
• 𝑠′ 𝑡 = 3𝑡2 − 4t
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
(3 𝑡+∆𝑡 2−4 𝑡+∆𝑡 )−(3𝑡2−4t)
∆𝑡
Ejemplo Aceleración
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• 𝑎𝑠(𝑡) = 𝑠′′(𝑡)
• 𝑠′ 𝑡 = 3𝑡2 − 4t
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
(3 𝑡+∆𝑡 2−4 𝑡+∆𝑡 )−(3𝑡2−4t)
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
3 𝑡2+2𝑡.∆𝑡+∆𝑡2 −4𝑡−4∆𝑡 −3𝑡2+4t
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
3𝑡2+6𝑡.∆𝑡+3∆𝑡2−4𝑡−4∆𝑡−3𝑡2+4t
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
6𝑡.∆𝑡+3∆𝑡2−4∆𝑡
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
∆𝑡(6𝑡+3∆𝑡−4)
∆𝑡
Ejemplo Aceleración
𝑣𝑠(𝑡) = 𝑠′(𝑡)
• 𝑎𝑠(𝑡) = 𝑠′′(𝑡)
• 𝑠′ 𝑡 = 3𝑡2 − 4t
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
∆𝑡(6𝑡+3∆𝑡−4)
∆𝑡
• 𝑚(𝑠′ 𝑡 ) = lim
∆𝑡→0
6𝑡 + 3∆𝑡 − 4
• 𝑚(𝑠′ 𝑡 ) = 6𝑡 + 3(0) − 4
• 𝑚(𝑠′ 𝑡 ) = 6𝑡 − 4
• 𝑠′′ 𝑡 = 6𝑡 − 4
• 𝑎𝑠(𝑡) = 6𝑡 − 4
• 𝑎𝑠(𝑡) = 𝑣′𝑠(𝑡)
Formulas
Formulas
Formulas
Formulas
Funciones Transcendentes
Formulas
Formulas
Ejemplos:
• 𝑦 = 𝑥2 + 3𝑥 − 1 𝑓 𝑥 = 𝑥2 + 3𝑥 − 1
• 𝑦 = 𝑓 𝑥 ;𝑦 = 𝑉. 𝐷. ; 𝑥 = 𝑉. 𝐼.
• 𝑠 = 𝑡3 − 2𝑡2 𝑠 𝑡 = 𝑡3 − 2𝑡2
• 𝑠 = 𝑠 𝑡 ; 𝑠 = 𝑉. 𝐷. ; 𝑡 = 𝑉. 𝐼.
• 𝑦 = 𝑥2 + 3𝑥 − 1 𝑓 𝑥 = 𝑥2 + 3𝑥 − 1
•
𝑑
𝑑𝑥
𝑦 =
𝑑
𝑑𝑥
𝑥2 +
𝑑
𝑑𝑥
3𝑥 −
𝑑
𝑑𝑥
1
𝑑
𝑑𝑥
𝑓 𝑥 =
𝑑
𝑑𝑥
𝑥2 +
𝑑
𝑑𝑥
3𝑥 −
𝑑
𝑑𝑥
1
• 𝑠 = 𝑡3 − 2𝑡2 𝑠 𝑡 = 𝑡3 − 2𝑡2
•
𝑑
𝑑𝑡
𝑠 =
𝑑
𝑑𝑡
𝑡3 −
𝑑
𝑑𝑡
2𝑡2 𝑑
𝑑𝑡
𝑠 𝑡 =
𝑑
𝑑𝑡
𝑡3 −
𝑑
𝑑𝑡
2𝑡2
Ejemplos:
•
𝑑
𝑑𝑥
𝑐 = 0 ;
𝑑𝑐
𝑑𝑥
= 0; 𝑓′ 𝑐 = 0
• 𝑦 = 5 ; 𝑧 = 3 ; 𝑓 𝑡 = 7
•
𝑑
𝑑𝑥
𝑦 =
𝑑
𝑑𝑥
5 ;
𝑑
𝑑𝑥
𝑧 =
𝑑
𝑑𝑥
3 ;
𝑑
𝑑𝑡
𝑓 𝑡 =
𝑑
𝑑𝑡
7
•
𝑑𝑦
𝑑𝑥
= 0 ;
𝑑𝑧
𝑑𝑥
= 0 ;
𝑑𝑓(𝑡)
𝑑𝑡
= 0 ; f′ t = 0
Ejemplos:
•
𝑑
𝑑𝑥
𝑥 = 1 ;
𝑑𝑥
𝑑𝑥
= 1 ; 𝑓 𝑥 = 𝑥
• 𝑓′ 𝑥 = 1
• 𝑦 = 𝑥 + 1 ; 𝑧 = 3𝑥 − 2 ; 𝑓 𝑡 = 2𝑡 + 7
•
𝑑
𝑑𝑥
𝑦 =
𝑑
𝑑𝑥
𝑥 +
𝑑
𝑑𝑥
1 ;
𝑑
𝑑𝑥
𝑧 =
𝑑
𝑑𝑥
3𝑥 −
𝑑
𝑑𝑥
2 ;
𝑑
𝑑𝑡
𝑓 𝑡 =
𝑑
𝑑𝑡
2𝑡 +
𝑑
𝑑𝑡
7
•
𝑑𝑦
𝑑𝑥
= 1 + 0 ;
𝑑𝑧
𝑑𝑥
= 3.
𝑑
𝑑𝑥
𝑥 − 0 ; 𝑓′ 𝑡 = 2.
𝑑
𝑑𝑡
𝑡 + 0
•
𝑑𝑦
𝑑𝑥
= 1 ;
𝑑𝑧
𝑑𝑥
= 3. (1) ; 𝑓′
𝑡 = 2. (1)
•
𝑑𝑦
𝑑𝑥
= 1 ;
𝑑𝑧
𝑑𝑥
= 3 ; 𝑓′
𝑡 = 2
Ejemplo
•
𝑑
𝑑𝑥
𝑥 + 𝑦 + 𝑧 =
𝑑
𝑑𝑥
𝑥 +
𝑑
𝑑𝑦
𝑦 +
𝑑
𝑑𝑧
𝑧
•
𝑑
𝑑𝑥
𝑓 𝑥 + 𝑔 𝑥 + ℎ 𝑥 = 𝑓′ 𝑥 + 𝑔′ 𝑥 + ℎ′ 𝑥
• 𝑓 𝑥 = 3𝑥 + 1 ; 𝑔 𝑥 = 9 ; ℎ 𝑥 = −2𝑥
•
𝑑
𝑑𝑥
3𝑥 + 1 + 9 + −2𝑥 =
𝑑
𝑑𝑥
𝑥 + 10 =
𝑑
𝑑𝑥
𝑥 +
𝑑
𝑑𝑥
10 = 1 + 0
•
𝑑
𝑑𝑥
3𝑥 + 1 + 9 + −2𝑥 = 1
Ejemplo
•
𝑑
𝑑𝑥
𝑐𝑥𝑛 = 𝑐.
𝑑
𝑑𝑥
𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1
•
𝑑
𝑑𝑥
𝑐. (𝑓 𝑥 )𝑛 = 𝑐.
𝑑
𝑑𝑥
(𝑓 𝑥 )𝑛= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1. 𝑓′(𝑥)
• 𝑦 = 𝑥4 + 2𝑥2 + 3𝑥 + 1
•
𝑑
𝑑𝑥
𝑦 =
𝑑
𝑑𝑥
𝑥4 +
𝑑
𝑑𝑥
2𝑥2 +
𝑑
𝑑𝑥
3𝑥 +
𝑑
𝑑𝑥
1
•
𝑑𝑦
𝑑𝑥
= 4. 𝑥4−1
+ 2.
𝑑
𝑑𝑥
𝑥2
+ 3.
𝑑
𝑑𝑥
𝑥 + 0
•
𝑑𝑦
𝑑𝑥
= 4. 𝑥3
+ 2. 2𝑥2−1
+ 3. 1 + 0
•
𝑑𝑦
𝑑𝑥
= 4. 𝑥3 + 4𝑥 + 3
Ejemplo
•
𝑑
𝑑𝑥
𝑐𝑥𝑛
= 𝑐.
𝑑
𝑑𝑥
𝑥𝑛
= 𝑐. 𝑛. 𝑥𝑛−1
•
𝑑
𝑑𝑥
𝑐. (𝑓 𝑥 )𝑛
= 𝑐.
𝑑
𝑑𝑥
(𝑓 𝑥 )𝑛
= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1
. 𝑓′
(𝑥)
• 𝑓 𝑥 =
3
𝑥3 − 2 𝑥 + 3𝑥−2 + 5𝑥1/7
•
𝑑
𝑑𝑥
𝑓 𝑥 =
𝑑
𝑑𝑥
3
𝑥3 −
𝑑
𝑑𝑥
2 𝑥 +
𝑑
𝑑𝑥
3𝑥−2 +
𝑑
𝑑𝑥
5𝑥1/7
• 𝑓′ 𝑥 = 3
𝑑
𝑑𝑥
1
𝑥3 − 2
𝑑
𝑑𝑥
𝑥 + 3
𝑑
𝑑𝑥
𝑥−2
+ 5
𝑑
𝑑𝑥
𝑥1/7
• 𝑓′ 𝑥
= 3
𝑑
𝑑𝑥
𝑥−3
− 2
𝑑
𝑑𝑥
𝑥
1
2 + 3
𝑑
𝑑𝑥
𝑥−2
+ 5
𝑑
𝑑𝑥
𝑥
1
7
• 𝑓′(𝑥) = 3 −3 𝑥(−3−1) − 2 (
1
2
)𝑥(
1
2
−1)
+ (3)(−2)𝑥(−2−1) + (5)(
1
7
)𝑥(
1
7
−1)
• 𝑓′
𝑥 = −9𝑥 −4
− 1𝑥
−
1
2 − 6𝑥(−3)
+
5
7
𝑥(−
6
7
)
• 𝑓′ 𝑥 = −
9
𝑥4 −
1
2
−
6
𝑥3 +
5
7
7
𝑥6
Ejemplo
•
𝑑
𝑑𝑥
𝑐𝑥𝑛 = 𝑐.
𝑑
𝑑𝑥
𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1
•
𝑑
𝑑𝑥
𝑐. (𝑓 𝑥 )𝑛 = 𝑐.
𝑑
𝑑𝑥
(𝑓 𝑥 )𝑛= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1. 𝑓′(𝑥)
• ℎ 𝑥 = 3(𝑓 𝑥 )6 ; 𝑓 𝑥 = 𝑥3 + 𝑥2 + 1
• 𝑓′ 𝑥 = 3𝑥3−1 + 2𝑥2−1
• 𝑓′ 𝑥 = 3𝑥2 + 2𝑥
• ℎ′
𝑥 = 3.6 𝑓 𝑥
6−1
. (𝑓′
𝑥 )
• ℎ′ 𝑥 = 18 𝑥3 + 𝑥2 + 1 5. (3𝑥2 + 2𝑥)
• ℎ 𝑥 = 𝑔(𝑓 𝑥 ); 𝑔 𝑥 = 3𝑥6
; 𝑓 𝑥 = 𝑥3
+ 𝑥2
+ 1
• ℎ 𝑥 = 3(𝑥3 + 𝑥2 + 1)6
•
𝑑
𝑑𝑥
ℎ 𝑥 =
𝑑
𝑑𝑥
((3(𝑥3 + 𝑥2 + 1 )6))
Ejemplo
•
𝑑
𝑑𝑥
𝑐. (𝑓 𝑥 )𝑛
= 𝑐.
𝑑
𝑑𝑥
(𝑓 𝑥 )𝑛
= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1
. 𝑓′
(𝑥)
• ℎ 𝑥 = 𝑔(𝑓 𝑥 ); 𝑔 𝑥 = 3𝑥6
; 𝑓 𝑥 = 𝑥3
+ 𝑥2
+ 1
• 𝑔′ 𝑥 = 18𝑥5
; 𝑓 𝑥 = 3𝑥2
+ 2𝑥
• ℎ 𝑥 = 3(𝑥3
+ 𝑥2
+ 1)6
; ℎ 𝑥 = 𝑐(𝑓 𝑥 )𝑛
• ℎ′ 𝑥
= c. 𝑛. (𝑓 𝑥 )𝑛−1
. 𝑓′
(𝑥)
• ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛
• ℎ′ 𝑥
= 𝑔′
𝑓 𝑥 . 𝑓′
(𝑥)
•
𝑑
𝑑𝑥
ℎ 𝑥 =
𝑑
𝑑𝑥
( 3 𝑥3
+ 𝑥2
+ 1 6
)
• ℎ′ 𝑥 = 3.6 𝑥3 + 𝑥2 + 1 6−1. (3𝑥2 + 2𝑥)
• ℎ′
𝑥 = 18 𝑥3
+ 𝑥2
+ 1 5
. (3𝑥2
+ 2𝑥)
Ejemplo
• ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛
• ℎ′(𝑥) = 𝑔′ 𝑓 𝑥 . 𝑓′(𝑥)
• ℎ 𝑥 =
4
(2𝑥3 + 3𝑥4 − 𝑥2)3
• f 𝑥 = 2𝑥3 + 3𝑥4 − 𝑥2 ; g x =
4
𝑥3 = 𝑥
3
4
• 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 =
3
4
. 𝑥(
3
4
−1)
• 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 =
3
4
. 𝑥(−
1
4
)
• 𝑔′
𝑥 =
3
4𝑥
1
4
=
3
44
𝑥
Ejemplo
• ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛
• ℎ′(𝑥) = 𝑔′ 𝑓 𝑥 . 𝑓′(𝑥)
• ℎ 𝑥 =
4
(2𝑥3 + 3𝑥4 − 𝑥2)3
• f 𝑥 = 2𝑥3 + 3𝑥4 − 𝑥2 ; g x =
4
𝑥3 = 𝑥
3
4
•
• 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 =
3
44
𝑥
• ℎ′ 𝑥 =
3
4
4
2𝑥3+3𝑥4−𝑥2
. 6𝑥2 + 12𝑥3 − 2𝑥
• ℎ 𝑥 = 𝑓 𝑔 𝑥 = (𝑓𝑜𝑔)(𝑥) Regla de la cadena
• ℎ′(𝑥) = 𝑓′ 𝑔 𝑥 . 𝑓′(𝑥)
Ejemplo:
•
𝑑
𝑑𝑥
𝑣. 𝑢 =
𝑑𝑣
𝑑𝑥
. 𝑢 +
𝑑𝑢
𝑑𝑥
. 𝑣
• ℎ 𝑥 = 𝑓 𝑥 . [𝑔 𝑥 ]
• ℎ′ 𝑥 = 𝑓′ 𝑥 . 𝑔 𝑥 + [𝑔′ 𝑥 . 𝑓 𝑥 ]
• ℎ 𝑥 = [ 𝑥2 − 1 . 𝑥4 + 𝑥3 − 3𝑥2 ]
• 𝑓 𝑥 = 𝑥2 − 1 𝑔 𝑥 = 𝑥4 + 𝑥3 − 3𝑥2
• 𝑓′ 𝑥 =
𝑑
𝑑𝑥
𝑥2 −
𝑑
𝑑𝑥
1 𝑔′ 𝑥 =
𝑑
𝑑𝑥
𝑥4 +
𝑑
𝑑𝑥
𝑥3 − 3.
𝑑
𝑑𝑥
𝑥2
• 𝑓′ 𝑥 = 2x − 0 𝑔′ 𝑥 = 4𝑥3 + 3𝑥2 − 6𝑥
• ℎ′ 𝑥 = 2x . 𝑥4 + 𝑥3 − 3𝑥2 + [ 4𝑥3 + 3𝑥2 − 6𝑥 . 𝑥2 − 1 ]
• ℎ′ 𝑥 = 2𝑥5 + 2𝑥4 − 6𝑥3 + [4𝑥5 + 3𝑥4 − 6𝑥3 − 4𝑥3 − 3𝑥2 + 6𝑥]
• ℎ′ 𝑥 = 2𝑥5 + 2𝑥4 − 6𝑥3 + 4𝑥5 + 3𝑥4 − 6𝑥3 − 4𝑥3 − 3𝑥2 + 6𝑥
• ℎ′ 𝑥 = 6𝑥5 + 5𝑥4 − 16𝑥3 − 3𝑥3 + 6𝑥
Ejemplo:
•
𝑑
𝑑𝑥
𝑣/𝑢 =
[ 𝑢.
𝑑𝑣
𝑑𝑥
−𝑣.
𝑑𝑢
𝑑𝑥
]
𝑢2
• ℎ 𝑥 =
𝑓 𝑥
𝑔 𝑥
; 𝑔 𝑥 ≠ 0
• ℎ′ 𝑥 =
[𝑓′ 𝑥 .𝑔 𝑥 −𝑔′ 𝑥 .𝑓 𝑥 ]
[𝑔(𝑥)]2
• ℎ 𝑥 = [
𝑥2−1
𝑥4+𝑥3−3𝑥2]
• 𝑓 𝑥 = 𝑥2
− 1 𝑔 𝑥 = 𝑥4
+ 𝑥3
− 3𝑥2
• 𝑓′
𝑥 =
𝑑
𝑑𝑥
𝑥2
−
𝑑
𝑑𝑥
1 𝑔′
𝑥 =
𝑑
𝑑𝑥
𝑥4
+
𝑑
𝑑𝑥
𝑥3
− 3.
𝑑
𝑑𝑥
𝑥2
• 𝑓′ 𝑥 = 2x − 0 𝑔′ 𝑥 = 4𝑥3 + 3𝑥2 − 6𝑥
• ℎ′
𝑥 =
[ 2x . 𝑥4+𝑥3−3𝑥2 − 4𝑥3+3𝑥2−6𝑥 .(𝑥2−1)]
[𝑥4+𝑥3−3𝑥2]2
• ℎ′
𝑥 =
[ 2𝑥5+2𝑥4−6𝑥3 − 4𝑥5+3𝑥4−6𝑥3−4𝑥3−3𝑥2+6𝑥 ]
[𝑥4+𝑥3−3𝑥2]2
Ejemplo:
•
𝑑
𝑑𝑥
𝑣/𝑢 =
[ 𝑢.
𝑑𝑣
𝑑𝑥
−𝑣.
𝑑𝑢
𝑑𝑥
]
𝑢2
• ℎ 𝑥 =
𝑓 𝑥
𝑔 𝑥
; 𝑔 𝑥 ≠ 0
• ℎ′ 𝑥 =
[𝑓′ 𝑥 .𝑔 𝑥 −𝑔′ 𝑥 .𝑓 𝑥 ]
[𝑔(𝑥)]2
• ℎ′ 𝑥 =
[ 2𝑥5+2𝑥4−6𝑥3 − 4𝑥5+3𝑥4−6𝑥3−4𝑥3−3𝑥2+6𝑥 ]
[𝑥4+𝑥3−3𝑥2]2
• ℎ′ 𝑥 =
[2𝑥5+2𝑥4−6𝑥3−4𝑥5−3𝑥4+6𝑥3+4𝑥3+3𝑥2−6𝑥]
[𝑥4+𝑥3−3𝑥2]2
• ℎ′
𝑥 =
[−2𝑥5−𝑥4+4𝑥3+3𝑥2−6𝑥]
[𝑥4+𝑥3−3𝑥2]2
Aplicaciones:
• En un circuito eléctrico, Si V volts es la fuerza electromotriz, I amperes es la corriente y R ohms
es la resistencia, entonces de la ley de Ohms IR = V. Si se supone que V es una constante
positiva ¿Cuál es la tasa instantánea de variación de I con respecto a R en un circuito eléctrico
de 90 volts cuando la resistencia es de 15 ohms? :
• 𝐼𝑅 = 𝑉; 𝐼 =
𝑉
𝑅
• V.I.=R (x)
𝑑
𝑑𝑥
;
𝑑
𝑑𝑅
; V.D.=I (y)
•
𝑑𝐼
𝑑𝑅
=
𝑑
𝑑𝑅
.
𝑉
𝑅
•
𝑑𝐼
𝑑𝑅
=
𝑑
𝑑𝑅
.
90
𝑅
•
𝑑𝐼
𝑑𝑅
= 90.
𝑑
𝑑𝑅
. 𝑅−1
•
𝑑𝐼
𝑑𝑅
= −1(90). 𝑅−1−1
•
𝑑𝐼
𝑑𝑅
= −1(90). 𝑅−2
I
R
Aplicaciones:
• En un circuito eléctrico, Si V volts es la fuerza electromotriz, I amperes es la corriente y R ohms
es la resistencia, entonces de la ley de Ohms IR = V. Si se supone que V es una constante
positiva ¿Cuál es la tasa instantánea de variación de I con respecto a R en un circuito eléctrico
de 90 volts cuando la resistencia es de 15 ohms? :
• 𝐼𝑅 = 𝐸; 𝐼 =
𝐸
𝑅
•
𝑑𝐼
𝑑𝑅
= −1(90). 𝑅−2
•
𝑑𝐼
𝑑𝑅
=
−90 𝑉𝑜𝑙𝑡
𝑅2𝑜ℎ𝑚2
•
𝑑𝐼
𝑑𝑅
=
−90
15 2
•
𝑑𝐼
𝑑𝑅
= −0.4
I
R
Aplicaciones:
• f(x)=x^(3)+3 x^(2)-x
• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥
• 𝑓′ 𝑥 =
𝑑
𝑑𝑥
𝑥3 + 3
𝑑
𝑑𝑥
𝑥2 −
𝑑
𝑑𝑥
𝑥
• 𝑓′ 𝑥 = 3𝑥2 + 6𝑥 − 1
• 3𝑥2 + 6𝑥 − 1 = 0
• 𝑥 =
−𝑏± 𝑏2−43𝑐
23
• 𝑥 =
−6± 62−4(2)(−1)
2(2)
• 𝑥1 = 0.1547
• 𝑥2 = −2.154
Aplicaciones:
• f(x)=x^(3)+3 x^(2)-x
• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥
• 𝑥1 = 0.1547
• 𝑥2 = −2.154
• 𝑓 𝑥1 = 𝑥1
3 + 3𝑥1
2 − 𝑥1
• 𝑓 0.1547 = 0.1547 3
+ (3)0.1547 2
− 0.1547
• 𝑓 0.1547 = −0.08
• 𝑓 𝑥2 = 𝑥2
3 + 3𝑥2
2 − 𝑥2
• 𝑓 −2.154 = −2.154 3
+ (3)(−2.154 )2
−(−2.154)
• 𝑓 −2.154 = 6.08
Aplicaciones:
• f(x)=x^(3)+3 x^(2)-x
• 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥
• 𝑥1 = 0.1547
• 𝑥2 = −2.154
• 𝑓 0.1547 = −0.08
• 𝑓 −2.154 = 6.08
x F(x)=y Max o Min
0.1547 −0.08 Min
−2.154 6.08 Max
Ejercicios
• 𝑦 = 𝑠𝑒𝑛𝑥 ;
𝑑𝑦
𝑑𝑥
= 𝑐𝑜𝑠𝑥; ℎ 𝑥 = 𝑠𝑒𝑛 𝑓 𝑥 ; ℎ′ 𝑥 = cos 𝑓 𝑥 . (𝑓′(𝑥))
•
𝑑𝑦
𝑑𝑥
=
𝑑
𝑑𝑥
𝑠𝑒𝑛𝑥
•
𝑑𝑦
𝑑𝑥
= cosx
• ℎ 𝑥 = 𝑔(𝑓 𝑥 ) ; 𝑔 𝑓 𝑥 = 𝑠𝑒𝑛(𝑥3 − 1)
• ℎ 𝑥 = 𝑠𝑒𝑛(𝑥3
− 1) ;𝑔 𝑥 = 𝑠𝑒𝑛 𝑥 ; 𝑓 𝑥 = 𝑥3
− 1
• ;𝑔′ 𝑥 = cos(𝑥) ; 𝑓′ 𝑥 = 3𝑥2
• ℎ′ 𝑥 = cos 𝑥3 − 1 . (3𝑥2)
Ejercicios
• 𝑦 = 𝑐𝑜𝑠𝑥 ;
𝑑𝑦
𝑑𝑥
= −𝑠𝑒𝑛𝑥; ℎ 𝑥 = 𝑐𝑜𝑠 𝑓 𝑥 ; ℎ′
𝑥 = −𝑠𝑒𝑛(𝑓 𝑥 ). (𝑓′(𝑥))
• 𝑦 = cos(2𝑥5 + 𝑥)
•
𝑑𝑦
𝑑𝑥
=
𝑑
𝑑𝑥
𝑐𝑜𝑠 2𝑥5 + 𝑥
• 𝑔 𝑥 = 𝑐𝑜𝑠𝑥 ; 𝑓 𝑥 = 2𝑥5 + 𝑥
• 𝑔′ 𝑥 = −𝑠𝑒𝑛𝑥 ; f′(x) = 10𝑥4 + 1
•
𝑑𝑦
𝑑𝑥
= −𝑠𝑒𝑛 2𝑥5 + 𝑥 . (10𝑥4 + 1)
•
𝑑𝑦
𝑑𝑥
= − 10𝑥4 + 1 . 𝑠𝑒𝑛 2𝑥5 + 𝑥
Ejercicios
• 𝑦 = 𝑡𝑎𝑛𝑥 ;
𝑑𝑦
𝑑𝑥
= 𝑠𝑒𝑐2𝑥; ℎ 𝑥 = 𝑡𝑎𝑛 𝑓 𝑥 ; ℎ′ 𝑥 = 𝑠𝑒𝑐2(𝑓 𝑥 ). (𝑓′(𝑥))
• ℎ 𝑥 = tan 𝑥 − 1
• 𝑔 𝑥 = 𝑡𝑎𝑛𝑥 ; 𝑓 𝑥 = 𝑥 − 1
• 𝑔′
𝑥 = 𝑠𝑒𝑐2
𝑥 ; f 𝑥 = 𝑥
1
2 − 1
• 𝑓′(𝑥) =
1
2
𝑥
1
2
−1
− 0
• 𝑓′(𝑥) =
1
2
𝑥−
1
2
• ℎ′
𝑥 = 𝑠𝑒𝑐2
𝑥 − 1 . (
1
2
𝑥−
1
2)
• ℎ′ 𝑥 = (
1
2𝑥
1
2
). 𝑠𝑒𝑐2 𝑥 − 1
• ℎ′ 𝑥 = (
1
2 𝑥
). 𝑠𝑒𝑐2 𝑥 − 1
Ejercicios
• 𝑦 = 𝑐𝑜𝑡𝑥 ;
𝑑𝑦
𝑑𝑥
= −𝑐𝑠𝑐2
𝑥; ℎ 𝑥 = 𝑐𝑜𝑡 𝑓 𝑥 ; ℎ′
𝑥 = −𝑐𝑠𝑐2
(𝑓 𝑥 ). (𝑓′(𝑥))
• 𝑦 = cot(𝑥
1
4 − 𝑥)
•
𝑑𝑦
𝑑𝑥
=
𝑑
𝑑𝑥
(cot 𝑥
1
4 − 𝑥 )
• 𝑔 𝑥 = 𝑐𝑜𝑡𝑥 ; 𝑓 𝑥 = 𝑥
1
4 − 𝑥
• 𝑔′ 𝑥 = −𝑐𝑠𝑐2(𝑥) ; 𝑓′ 𝑥 =
1
4
𝑥−
3
4 − 1
•
𝑑𝑦
𝑑𝑥
= −𝑐𝑠𝑐2
𝑥
1
4 − 𝑥 . (
1
4
𝑥−
3
4 − 1)
•
𝑑𝑦
𝑑𝑥
= −
1
4𝑥
3
4
− 1 . 𝑐𝑠𝑐2 𝑥
1
4 − 𝑥
Ejercicios
• 𝑦 = 𝑠𝑒𝑐𝑥 ;
𝑑𝑦
𝑑𝑥
= 𝑠𝑒𝑐𝑥. 𝑡𝑎𝑛𝑥;
• ℎ 𝑥 = 𝑠𝑒𝑐 𝑓 𝑥 ; ℎ′ 𝑥 = 𝑠𝑒𝑐 𝑓 𝑥 . tan(𝑓 𝑥 ). (𝑓′(𝑥))
• ℎ(𝑥) = sec(1 − 𝑥3)
• 𝑔 𝑥 = 𝑠𝑒𝑐𝑥 ; 𝑓 𝑥 = 1 − 𝑥3
• 𝑔′ 𝑥 = 𝑠𝑒𝑐𝑥. 𝑡𝑎𝑛𝑥 ; 𝑓′ 𝑥 = −3𝑥2
• ℎ′ 𝑥 = sec 1 − 𝑥3 . tan 1 − 𝑥3 . (−3𝑥2)
• ℎ′
𝑥 =. −3𝑥2
. sec 1 − 𝑥3
. tan 1 − 𝑥3
Ejercicios
• 𝑦 = 𝑐𝑠𝑐𝑥 ;
𝑑𝑦
𝑑𝑥
= −𝑐𝑠𝑐𝑥. 𝑐𝑜𝑡𝑥;
• ℎ 𝑥 = 𝑐𝑠𝑐 𝑓 𝑥 ; ℎ′ 𝑥 = −𝑐𝑠𝑐 𝑓 𝑥 . 𝑐𝑜𝑡(𝑓 𝑥 ). (𝑓′(𝑥))
• ℎ(𝑥) = csc(𝑥7 − 𝑥3)
• 𝑔 𝑥 = 𝑐𝑠𝑐𝑥 ; 𝑓 𝑥 = 𝑥7
− 𝑥3
• 𝑔′ 𝑥 = −𝑐𝑠𝑐𝑥. 𝑐𝑜𝑡𝑥 ; 𝑓′ 𝑥 = 7𝑥6 − 3𝑥2
• ℎ′ 𝑥 = − csc 𝑥7 − 𝑥3 . cot 𝑥7 − 𝑥3 . (7𝑥6 − 3𝑥2)
• ℎ′
𝑥 = − 7𝑥6
− 3𝑥2
. csc 𝑥7
− 𝑥3
. cot 𝑥7
− 𝑥3
Ejercicios
• 𝑦 = 𝑙𝑛𝑥;
𝑑𝑦
𝑑𝑥
=
1
𝑥
; ℎ 𝑥 = ln(𝑓 𝑥 ) ; ℎ′ 𝑥 =
1
𝑓 𝑥
. (𝑓′ 𝑥 )
• ℎ 𝑥 = ln(𝑥2 − 1) ; ℎ 𝑥 = 𝑔(𝑓 𝑥 )
• 𝑔 𝑥 = 𝑙𝑛𝑥 ; 𝑓 𝑥 = 𝑥2
− 1
• 𝑔′ 𝑥 =
1
𝑥
; 𝑓′ 𝑥 = 2𝑥
• ℎ′ 𝑥 =
1
𝑥2−1
. (2𝑥)
• ℎ′
𝑥 =
2𝑥
𝑥2−1
Ejercicios
• 𝑦 = 𝑒𝑥 ;
𝑑𝑦
𝑑𝑥
= 𝑒𝑥 ; ℎ 𝑥 = 𝑒(𝑓(𝑥)); ℎ′ 𝑥 = 𝑒 𝑓 𝑥 . 𝑓′(𝑥)
• ℎ 𝑥 = 𝑒(𝑥2−2𝑥+1)
• 𝑔 𝑥 = 𝑒𝑥 ; 𝑓 𝑥 = 𝑥2 − 2𝑥 + 1
• 𝑔′ 𝑥 = 𝑒𝑥 ; 𝑓′ 𝑥 = 2𝑥 − 2
• ℎ′
𝑥 = 𝑒 𝑥2−2𝑥+1
. (2𝑥 − 2)

More Related Content

What's hot

Dekarboksilasi Oksidatif dan Siklus Krebs
Dekarboksilasi Oksidatif dan Siklus KrebsDekarboksilasi Oksidatif dan Siklus Krebs
Dekarboksilasi Oksidatif dan Siklus Krebs
Komarudin Muhamad Zaelani
 
SENYAWA DIKETON DAN ASAM KETO KARBOKSILAT
SENYAWA DIKETON DAN ASAM KETO KARBOKSILATSENYAWA DIKETON DAN ASAM KETO KARBOKSILAT
SENYAWA DIKETON DAN ASAM KETO KARBOKSILAT
suraya fathin
 
senyawa turunan alkana
senyawa turunan alkanasenyawa turunan alkana
senyawa turunan alkanamfebri26
 
Lks mgmp kls xi smt 2. rev
Lks mgmp kls xi smt 2. rev Lks mgmp kls xi smt 2. rev
Lks mgmp kls xi smt 2. rev
samuel clinton
 
Alkali tanah
Alkali tanahAlkali tanah
Alkali tanah
UNIMUS
 
Molaritas
MolaritasMolaritas
Molaritas
Rahmad Java Niez
 
Diagram tiga komponen
Diagram tiga komponen Diagram tiga komponen
Diagram tiga komponen Dede Suhendra
 
Katabolisme lemak
Katabolisme lemakKatabolisme lemak
Katabolisme lemak
AndiSatrianiandi
 
IBM1_Pengantar Minyak dan Lemak
IBM1_Pengantar Minyak dan LemakIBM1_Pengantar Minyak dan Lemak
IBM1_Pengantar Minyak dan LemakTitis Sari
 

What's hot (11)

Dekarboksilasi Oksidatif dan Siklus Krebs
Dekarboksilasi Oksidatif dan Siklus KrebsDekarboksilasi Oksidatif dan Siklus Krebs
Dekarboksilasi Oksidatif dan Siklus Krebs
 
SENYAWA DIKETON DAN ASAM KETO KARBOKSILAT
SENYAWA DIKETON DAN ASAM KETO KARBOKSILATSENYAWA DIKETON DAN ASAM KETO KARBOKSILAT
SENYAWA DIKETON DAN ASAM KETO KARBOKSILAT
 
senyawa turunan alkana
senyawa turunan alkanasenyawa turunan alkana
senyawa turunan alkana
 
Lks mgmp kls xi smt 2. rev
Lks mgmp kls xi smt 2. rev Lks mgmp kls xi smt 2. rev
Lks mgmp kls xi smt 2. rev
 
Alkali tanah
Alkali tanahAlkali tanah
Alkali tanah
 
Molaritas
MolaritasMolaritas
Molaritas
 
Diagram tiga komponen
Diagram tiga komponen Diagram tiga komponen
Diagram tiga komponen
 
Glukoneogenesis p4
Glukoneogenesis p4Glukoneogenesis p4
Glukoneogenesis p4
 
Katabolisme lemak
Katabolisme lemakKatabolisme lemak
Katabolisme lemak
 
IBM1_Pengantar Minyak dan Lemak
IBM1_Pengantar Minyak dan LemakIBM1_Pengantar Minyak dan Lemak
IBM1_Pengantar Minyak dan Lemak
 
Cinética pdf
Cinética  pdfCinética  pdf
Cinética pdf
 

Similar to Derivación 1.

Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
Nurkhalifah Anwar
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Santhanam Krishnan
 
derivatives part 1.pptx
derivatives part 1.pptxderivatives part 1.pptx
derivatives part 1.pptx
KulsumPaleja1
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
tinardo
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones lineales
emojose107
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices
Hipólito Aguilar
 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
JHANDRYALCIVARGUAJAL
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
katherinecedeo11
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
sumanmathews
 
06.scd_muestreo_de_senales_continuas
06.scd_muestreo_de_senales_continuas06.scd_muestreo_de_senales_continuas
06.scd_muestreo_de_senales_continuas
Hipólito Aguilar
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
Nurkhalifah Anwar
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
tungwc
 
Factoring common monomial
Factoring common monomialFactoring common monomial
Factoring common monomial
AjayQuines
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Rai University
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
Rai University
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Santhanam Krishnan
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
Gualberto Lopéz Durán
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Rai University
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
jyotidighole2
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
SoyaMathew1
 

Similar to Derivación 1. (20)

Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
derivatives part 1.pptx
derivatives part 1.pptxderivatives part 1.pptx
derivatives part 1.pptx
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones lineales
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices
 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
 
06.scd_muestreo_de_senales_continuas
06.scd_muestreo_de_senales_continuas06.scd_muestreo_de_senales_continuas
06.scd_muestreo_de_senales_continuas
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
 
Factoring common monomial
Factoring common monomialFactoring common monomial
Factoring common monomial
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Integrales solucionario
Integrales solucionarioIntegrales solucionario
Integrales solucionario
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Laurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptxLaurents & Taylors series of complex numbers.pptx
Laurents & Taylors series of complex numbers.pptx
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 

Recently uploaded

Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
zwunae
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 

Recently uploaded (20)

Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单专业办理
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 

Derivación 1.

  • 1. Derivación Ing. Mg. Luis Gabriel Lescano Paredes
  • 2. Definición • La derivada de una función es un concepto local, es decir, se calcula como el limite de la rapidez de cambio media de la función en cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño.
  • 3. Pendiente de la función La recta 𝑥 = 𝑥1 si 𝑚(𝑥1) = lim ∆𝑥→0± 𝑓 𝑥1 + ∆𝑥 − 𝑓 𝑥1 ∆𝑥 Es +∞ 𝑜 − ∞ Por lo tanto: 𝑚(𝑓 𝑥 ) = lim ∆𝑥→0 𝑓 𝑥+∆𝑥 −𝑓 𝑥 ∆𝑥 𝑓′ 𝑥 = lim ∆𝑥→0 𝑓 𝑥 + ∆𝑥 − 𝑓 𝑥 ∆𝑥 P 𝑃 𝑥1, 𝑓 𝑥1 Q 𝑥2, 𝑓 𝑥2 ∆𝑥 = 𝑥2 − 𝑥1 𝑓 𝑥2 − 𝑓 𝑥1 𝑥2 𝑥1 ∆𝑥
  • 4. Pendiente de la función 𝑓′ 𝑡 = lim ∆𝑡→0 𝑓 𝑡 + ∆𝑡 − 𝑓 𝑡 ∆𝑡 𝑓 𝑡 = 𝑡3 − 2𝑡2; s 𝑡 = 𝑡3 − 2𝑡2 𝑣𝑠(𝑡) = 𝑠′(𝑡) P 𝑃 𝑡1, 𝑓 𝑡1 Q 𝑡2, 𝑓 𝑡2 ∆𝑡 = 𝑡2 − 𝑡1 𝑓 𝑡2 − 𝑓 𝑡1 𝑡2 𝑡1 ∆𝑡 𝑓 𝑡 = 𝑠
  • 5. Ejemplo velocidad: 𝑓 𝑡 = 𝑡3 − 2𝑡2; s 𝑡 = 𝑡3 − 2𝑡2 𝑣𝑠(𝑡) = 𝑠′(𝑡) • s 𝑡 = 𝑡3 − 2𝑡2 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 𝑠 𝑡+∆𝑡 −𝑠 𝑡 ∆𝑡 • 𝑠 𝑡 + ∆𝑡 = ( 𝑡 + ∆𝑡 3−2 𝑡 + ∆𝑡 2) • 𝑠 𝑡 = ( 𝑡 3−2 𝑡 2) • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 ( 𝑡+∆𝑡 3−2 𝑡+∆𝑡 2) −( 𝑡 3−2 𝑡 2) ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 ((𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3)−(2 𝑡2+2𝑡.∆𝑡+∆𝑡2 )) −( 𝑡 3−2 𝑡 2) ∆𝑡
  • 6. Ejemplo: 𝑣𝑠(𝑡) = 𝑠′(𝑡) • s 𝑡 = 𝑡3 − 2𝑡2 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 𝑠 𝑡+∆𝑡 −𝑠 𝑡 ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 ((𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3)−(2 𝑡2+2𝑡.∆𝑡+∆𝑡2 )) −( 𝑡 3−2 𝑡 2) ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 𝑡3+3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3−2𝑡2−4𝑡.∆𝑡−2∆𝑡2 −𝑡3+2𝑡2) ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 +3𝑡2∆𝑡+3𝑡∆𝑡2+∆𝑡3−4𝑡.∆𝑡−2∆𝑡2 ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 ∆𝑡(3𝑡2+3𝑡∆𝑡+∆𝑡2−4𝑡−2∆𝑡) ∆𝑡
  • 7. Ejemplo: 𝑣𝑠(𝑡) = 𝑠′(𝑡) • s 𝑡 = 𝑡3 − 2𝑡2 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 𝑠 𝑡+∆𝑡 −𝑠 𝑡 ∆𝑡 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 1(3𝑡2+3𝑡∆𝑡+∆𝑡2−4𝑡−2∆𝑡) 1 • 𝑚(𝑠 𝑡 ) = lim ∆𝑡→0 3𝑡2 + 3𝑡∆𝑡 + ∆𝑡2 − 4𝑡 − 2∆𝑡 • 𝑚(𝑠 𝑡 ) = 3𝑡2 + 3𝑡(0) + 0 2 − 4𝑡 − 2(0) • 𝑚(𝑠 𝑡 ) = 3𝑡2 − 4t • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑣𝑠(𝑡) = 3𝑡2 − 4t
  • 8. Ejemplo Aceleración • 𝑓 𝑡 = 𝑡3 − 2𝑡2 ; s 𝑡 = 𝑡3 − 2𝑡2 • 𝑣𝑠(𝑡) = 𝑠′(𝑡) • 𝑎𝑠(𝑡) = 𝑠′′(𝑡) • 𝑣𝑠(𝑡) = 𝑠′(𝑡) • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 𝑠′ 𝑡+∆𝑡 −𝑠′ 𝑡 ∆𝑡 • 𝑠′ 𝑡 + ∆𝑡 = 3(𝑡 + ∆𝑡)2 −4(𝑡 + ∆𝑡) • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 (3 𝑡+∆𝑡 2−4 𝑡+∆𝑡 )−(3𝑡2−4t) ∆𝑡
  • 9. Ejemplo Aceleración 𝑣𝑠(𝑡) = 𝑠′(𝑡) • 𝑎𝑠(𝑡) = 𝑠′′(𝑡) • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 (3 𝑡+∆𝑡 2−4 𝑡+∆𝑡 )−(3𝑡2−4t) ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 3 𝑡2+2𝑡.∆𝑡+∆𝑡2 −4𝑡−4∆𝑡 −3𝑡2+4t ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 3𝑡2+6𝑡.∆𝑡+3∆𝑡2−4𝑡−4∆𝑡−3𝑡2+4t ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 6𝑡.∆𝑡+3∆𝑡2−4∆𝑡 ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 ∆𝑡(6𝑡+3∆𝑡−4) ∆𝑡
  • 10. Ejemplo Aceleración 𝑣𝑠(𝑡) = 𝑠′(𝑡) • 𝑎𝑠(𝑡) = 𝑠′′(𝑡) • 𝑠′ 𝑡 = 3𝑡2 − 4t • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 ∆𝑡(6𝑡+3∆𝑡−4) ∆𝑡 • 𝑚(𝑠′ 𝑡 ) = lim ∆𝑡→0 6𝑡 + 3∆𝑡 − 4 • 𝑚(𝑠′ 𝑡 ) = 6𝑡 + 3(0) − 4 • 𝑚(𝑠′ 𝑡 ) = 6𝑡 − 4 • 𝑠′′ 𝑡 = 6𝑡 − 4 • 𝑎𝑠(𝑡) = 6𝑡 − 4 • 𝑎𝑠(𝑡) = 𝑣′𝑠(𝑡)
  • 17. Ejemplos: • 𝑦 = 𝑥2 + 3𝑥 − 1 𝑓 𝑥 = 𝑥2 + 3𝑥 − 1 • 𝑦 = 𝑓 𝑥 ;𝑦 = 𝑉. 𝐷. ; 𝑥 = 𝑉. 𝐼. • 𝑠 = 𝑡3 − 2𝑡2 𝑠 𝑡 = 𝑡3 − 2𝑡2 • 𝑠 = 𝑠 𝑡 ; 𝑠 = 𝑉. 𝐷. ; 𝑡 = 𝑉. 𝐼. • 𝑦 = 𝑥2 + 3𝑥 − 1 𝑓 𝑥 = 𝑥2 + 3𝑥 − 1 • 𝑑 𝑑𝑥 𝑦 = 𝑑 𝑑𝑥 𝑥2 + 𝑑 𝑑𝑥 3𝑥 − 𝑑 𝑑𝑥 1 𝑑 𝑑𝑥 𝑓 𝑥 = 𝑑 𝑑𝑥 𝑥2 + 𝑑 𝑑𝑥 3𝑥 − 𝑑 𝑑𝑥 1 • 𝑠 = 𝑡3 − 2𝑡2 𝑠 𝑡 = 𝑡3 − 2𝑡2 • 𝑑 𝑑𝑡 𝑠 = 𝑑 𝑑𝑡 𝑡3 − 𝑑 𝑑𝑡 2𝑡2 𝑑 𝑑𝑡 𝑠 𝑡 = 𝑑 𝑑𝑡 𝑡3 − 𝑑 𝑑𝑡 2𝑡2
  • 18. Ejemplos: • 𝑑 𝑑𝑥 𝑐 = 0 ; 𝑑𝑐 𝑑𝑥 = 0; 𝑓′ 𝑐 = 0 • 𝑦 = 5 ; 𝑧 = 3 ; 𝑓 𝑡 = 7 • 𝑑 𝑑𝑥 𝑦 = 𝑑 𝑑𝑥 5 ; 𝑑 𝑑𝑥 𝑧 = 𝑑 𝑑𝑥 3 ; 𝑑 𝑑𝑡 𝑓 𝑡 = 𝑑 𝑑𝑡 7 • 𝑑𝑦 𝑑𝑥 = 0 ; 𝑑𝑧 𝑑𝑥 = 0 ; 𝑑𝑓(𝑡) 𝑑𝑡 = 0 ; f′ t = 0
  • 19. Ejemplos: • 𝑑 𝑑𝑥 𝑥 = 1 ; 𝑑𝑥 𝑑𝑥 = 1 ; 𝑓 𝑥 = 𝑥 • 𝑓′ 𝑥 = 1 • 𝑦 = 𝑥 + 1 ; 𝑧 = 3𝑥 − 2 ; 𝑓 𝑡 = 2𝑡 + 7 • 𝑑 𝑑𝑥 𝑦 = 𝑑 𝑑𝑥 𝑥 + 𝑑 𝑑𝑥 1 ; 𝑑 𝑑𝑥 𝑧 = 𝑑 𝑑𝑥 3𝑥 − 𝑑 𝑑𝑥 2 ; 𝑑 𝑑𝑡 𝑓 𝑡 = 𝑑 𝑑𝑡 2𝑡 + 𝑑 𝑑𝑡 7 • 𝑑𝑦 𝑑𝑥 = 1 + 0 ; 𝑑𝑧 𝑑𝑥 = 3. 𝑑 𝑑𝑥 𝑥 − 0 ; 𝑓′ 𝑡 = 2. 𝑑 𝑑𝑡 𝑡 + 0 • 𝑑𝑦 𝑑𝑥 = 1 ; 𝑑𝑧 𝑑𝑥 = 3. (1) ; 𝑓′ 𝑡 = 2. (1) • 𝑑𝑦 𝑑𝑥 = 1 ; 𝑑𝑧 𝑑𝑥 = 3 ; 𝑓′ 𝑡 = 2
  • 20. Ejemplo • 𝑑 𝑑𝑥 𝑥 + 𝑦 + 𝑧 = 𝑑 𝑑𝑥 𝑥 + 𝑑 𝑑𝑦 𝑦 + 𝑑 𝑑𝑧 𝑧 • 𝑑 𝑑𝑥 𝑓 𝑥 + 𝑔 𝑥 + ℎ 𝑥 = 𝑓′ 𝑥 + 𝑔′ 𝑥 + ℎ′ 𝑥 • 𝑓 𝑥 = 3𝑥 + 1 ; 𝑔 𝑥 = 9 ; ℎ 𝑥 = −2𝑥 • 𝑑 𝑑𝑥 3𝑥 + 1 + 9 + −2𝑥 = 𝑑 𝑑𝑥 𝑥 + 10 = 𝑑 𝑑𝑥 𝑥 + 𝑑 𝑑𝑥 10 = 1 + 0 • 𝑑 𝑑𝑥 3𝑥 + 1 + 9 + −2𝑥 = 1
  • 21. Ejemplo • 𝑑 𝑑𝑥 𝑐𝑥𝑛 = 𝑐. 𝑑 𝑑𝑥 𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1 • 𝑑 𝑑𝑥 𝑐. (𝑓 𝑥 )𝑛 = 𝑐. 𝑑 𝑑𝑥 (𝑓 𝑥 )𝑛= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1. 𝑓′(𝑥) • 𝑦 = 𝑥4 + 2𝑥2 + 3𝑥 + 1 • 𝑑 𝑑𝑥 𝑦 = 𝑑 𝑑𝑥 𝑥4 + 𝑑 𝑑𝑥 2𝑥2 + 𝑑 𝑑𝑥 3𝑥 + 𝑑 𝑑𝑥 1 • 𝑑𝑦 𝑑𝑥 = 4. 𝑥4−1 + 2. 𝑑 𝑑𝑥 𝑥2 + 3. 𝑑 𝑑𝑥 𝑥 + 0 • 𝑑𝑦 𝑑𝑥 = 4. 𝑥3 + 2. 2𝑥2−1 + 3. 1 + 0 • 𝑑𝑦 𝑑𝑥 = 4. 𝑥3 + 4𝑥 + 3
  • 22. Ejemplo • 𝑑 𝑑𝑥 𝑐𝑥𝑛 = 𝑐. 𝑑 𝑑𝑥 𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1 • 𝑑 𝑑𝑥 𝑐. (𝑓 𝑥 )𝑛 = 𝑐. 𝑑 𝑑𝑥 (𝑓 𝑥 )𝑛 = 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1 . 𝑓′ (𝑥) • 𝑓 𝑥 = 3 𝑥3 − 2 𝑥 + 3𝑥−2 + 5𝑥1/7 • 𝑑 𝑑𝑥 𝑓 𝑥 = 𝑑 𝑑𝑥 3 𝑥3 − 𝑑 𝑑𝑥 2 𝑥 + 𝑑 𝑑𝑥 3𝑥−2 + 𝑑 𝑑𝑥 5𝑥1/7 • 𝑓′ 𝑥 = 3 𝑑 𝑑𝑥 1 𝑥3 − 2 𝑑 𝑑𝑥 𝑥 + 3 𝑑 𝑑𝑥 𝑥−2 + 5 𝑑 𝑑𝑥 𝑥1/7 • 𝑓′ 𝑥 = 3 𝑑 𝑑𝑥 𝑥−3 − 2 𝑑 𝑑𝑥 𝑥 1 2 + 3 𝑑 𝑑𝑥 𝑥−2 + 5 𝑑 𝑑𝑥 𝑥 1 7 • 𝑓′(𝑥) = 3 −3 𝑥(−3−1) − 2 ( 1 2 )𝑥( 1 2 −1) + (3)(−2)𝑥(−2−1) + (5)( 1 7 )𝑥( 1 7 −1) • 𝑓′ 𝑥 = −9𝑥 −4 − 1𝑥 − 1 2 − 6𝑥(−3) + 5 7 𝑥(− 6 7 ) • 𝑓′ 𝑥 = − 9 𝑥4 − 1 2 − 6 𝑥3 + 5 7 7 𝑥6
  • 23. Ejemplo • 𝑑 𝑑𝑥 𝑐𝑥𝑛 = 𝑐. 𝑑 𝑑𝑥 𝑥𝑛 = 𝑐. 𝑛. 𝑥𝑛−1 • 𝑑 𝑑𝑥 𝑐. (𝑓 𝑥 )𝑛 = 𝑐. 𝑑 𝑑𝑥 (𝑓 𝑥 )𝑛= 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1. 𝑓′(𝑥) • ℎ 𝑥 = 3(𝑓 𝑥 )6 ; 𝑓 𝑥 = 𝑥3 + 𝑥2 + 1 • 𝑓′ 𝑥 = 3𝑥3−1 + 2𝑥2−1 • 𝑓′ 𝑥 = 3𝑥2 + 2𝑥 • ℎ′ 𝑥 = 3.6 𝑓 𝑥 6−1 . (𝑓′ 𝑥 ) • ℎ′ 𝑥 = 18 𝑥3 + 𝑥2 + 1 5. (3𝑥2 + 2𝑥) • ℎ 𝑥 = 𝑔(𝑓 𝑥 ); 𝑔 𝑥 = 3𝑥6 ; 𝑓 𝑥 = 𝑥3 + 𝑥2 + 1 • ℎ 𝑥 = 3(𝑥3 + 𝑥2 + 1)6 • 𝑑 𝑑𝑥 ℎ 𝑥 = 𝑑 𝑑𝑥 ((3(𝑥3 + 𝑥2 + 1 )6))
  • 24. Ejemplo • 𝑑 𝑑𝑥 𝑐. (𝑓 𝑥 )𝑛 = 𝑐. 𝑑 𝑑𝑥 (𝑓 𝑥 )𝑛 = 𝑐. 𝑛. (𝑓 𝑥 )𝑛−1 . 𝑓′ (𝑥) • ℎ 𝑥 = 𝑔(𝑓 𝑥 ); 𝑔 𝑥 = 3𝑥6 ; 𝑓 𝑥 = 𝑥3 + 𝑥2 + 1 • 𝑔′ 𝑥 = 18𝑥5 ; 𝑓 𝑥 = 3𝑥2 + 2𝑥 • ℎ 𝑥 = 3(𝑥3 + 𝑥2 + 1)6 ; ℎ 𝑥 = 𝑐(𝑓 𝑥 )𝑛 • ℎ′ 𝑥 = c. 𝑛. (𝑓 𝑥 )𝑛−1 . 𝑓′ (𝑥) • ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛 • ℎ′ 𝑥 = 𝑔′ 𝑓 𝑥 . 𝑓′ (𝑥) • 𝑑 𝑑𝑥 ℎ 𝑥 = 𝑑 𝑑𝑥 ( 3 𝑥3 + 𝑥2 + 1 6 ) • ℎ′ 𝑥 = 3.6 𝑥3 + 𝑥2 + 1 6−1. (3𝑥2 + 2𝑥) • ℎ′ 𝑥 = 18 𝑥3 + 𝑥2 + 1 5 . (3𝑥2 + 2𝑥)
  • 25. Ejemplo • ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛 • ℎ′(𝑥) = 𝑔′ 𝑓 𝑥 . 𝑓′(𝑥) • ℎ 𝑥 = 4 (2𝑥3 + 3𝑥4 − 𝑥2)3 • f 𝑥 = 2𝑥3 + 3𝑥4 − 𝑥2 ; g x = 4 𝑥3 = 𝑥 3 4 • 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 = 3 4 . 𝑥( 3 4 −1) • 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 = 3 4 . 𝑥(− 1 4 ) • 𝑔′ 𝑥 = 3 4𝑥 1 4 = 3 44 𝑥
  • 26. Ejemplo • ℎ 𝑥 = 𝑔[𝑓 𝑥 ]𝑛 • ℎ′(𝑥) = 𝑔′ 𝑓 𝑥 . 𝑓′(𝑥) • ℎ 𝑥 = 4 (2𝑥3 + 3𝑥4 − 𝑥2)3 • f 𝑥 = 2𝑥3 + 3𝑥4 − 𝑥2 ; g x = 4 𝑥3 = 𝑥 3 4 • • 𝑓′ 𝑥 = 6𝑥2 + 12𝑥3 − 2𝑥 ; 𝑔′ 𝑥 = 3 44 𝑥 • ℎ′ 𝑥 = 3 4 4 2𝑥3+3𝑥4−𝑥2 . 6𝑥2 + 12𝑥3 − 2𝑥 • ℎ 𝑥 = 𝑓 𝑔 𝑥 = (𝑓𝑜𝑔)(𝑥) Regla de la cadena • ℎ′(𝑥) = 𝑓′ 𝑔 𝑥 . 𝑓′(𝑥)
  • 27. Ejemplo: • 𝑑 𝑑𝑥 𝑣. 𝑢 = 𝑑𝑣 𝑑𝑥 . 𝑢 + 𝑑𝑢 𝑑𝑥 . 𝑣 • ℎ 𝑥 = 𝑓 𝑥 . [𝑔 𝑥 ] • ℎ′ 𝑥 = 𝑓′ 𝑥 . 𝑔 𝑥 + [𝑔′ 𝑥 . 𝑓 𝑥 ] • ℎ 𝑥 = [ 𝑥2 − 1 . 𝑥4 + 𝑥3 − 3𝑥2 ] • 𝑓 𝑥 = 𝑥2 − 1 𝑔 𝑥 = 𝑥4 + 𝑥3 − 3𝑥2 • 𝑓′ 𝑥 = 𝑑 𝑑𝑥 𝑥2 − 𝑑 𝑑𝑥 1 𝑔′ 𝑥 = 𝑑 𝑑𝑥 𝑥4 + 𝑑 𝑑𝑥 𝑥3 − 3. 𝑑 𝑑𝑥 𝑥2 • 𝑓′ 𝑥 = 2x − 0 𝑔′ 𝑥 = 4𝑥3 + 3𝑥2 − 6𝑥 • ℎ′ 𝑥 = 2x . 𝑥4 + 𝑥3 − 3𝑥2 + [ 4𝑥3 + 3𝑥2 − 6𝑥 . 𝑥2 − 1 ] • ℎ′ 𝑥 = 2𝑥5 + 2𝑥4 − 6𝑥3 + [4𝑥5 + 3𝑥4 − 6𝑥3 − 4𝑥3 − 3𝑥2 + 6𝑥] • ℎ′ 𝑥 = 2𝑥5 + 2𝑥4 − 6𝑥3 + 4𝑥5 + 3𝑥4 − 6𝑥3 − 4𝑥3 − 3𝑥2 + 6𝑥 • ℎ′ 𝑥 = 6𝑥5 + 5𝑥4 − 16𝑥3 − 3𝑥3 + 6𝑥
  • 28. Ejemplo: • 𝑑 𝑑𝑥 𝑣/𝑢 = [ 𝑢. 𝑑𝑣 𝑑𝑥 −𝑣. 𝑑𝑢 𝑑𝑥 ] 𝑢2 • ℎ 𝑥 = 𝑓 𝑥 𝑔 𝑥 ; 𝑔 𝑥 ≠ 0 • ℎ′ 𝑥 = [𝑓′ 𝑥 .𝑔 𝑥 −𝑔′ 𝑥 .𝑓 𝑥 ] [𝑔(𝑥)]2 • ℎ 𝑥 = [ 𝑥2−1 𝑥4+𝑥3−3𝑥2] • 𝑓 𝑥 = 𝑥2 − 1 𝑔 𝑥 = 𝑥4 + 𝑥3 − 3𝑥2 • 𝑓′ 𝑥 = 𝑑 𝑑𝑥 𝑥2 − 𝑑 𝑑𝑥 1 𝑔′ 𝑥 = 𝑑 𝑑𝑥 𝑥4 + 𝑑 𝑑𝑥 𝑥3 − 3. 𝑑 𝑑𝑥 𝑥2 • 𝑓′ 𝑥 = 2x − 0 𝑔′ 𝑥 = 4𝑥3 + 3𝑥2 − 6𝑥 • ℎ′ 𝑥 = [ 2x . 𝑥4+𝑥3−3𝑥2 − 4𝑥3+3𝑥2−6𝑥 .(𝑥2−1)] [𝑥4+𝑥3−3𝑥2]2 • ℎ′ 𝑥 = [ 2𝑥5+2𝑥4−6𝑥3 − 4𝑥5+3𝑥4−6𝑥3−4𝑥3−3𝑥2+6𝑥 ] [𝑥4+𝑥3−3𝑥2]2
  • 29. Ejemplo: • 𝑑 𝑑𝑥 𝑣/𝑢 = [ 𝑢. 𝑑𝑣 𝑑𝑥 −𝑣. 𝑑𝑢 𝑑𝑥 ] 𝑢2 • ℎ 𝑥 = 𝑓 𝑥 𝑔 𝑥 ; 𝑔 𝑥 ≠ 0 • ℎ′ 𝑥 = [𝑓′ 𝑥 .𝑔 𝑥 −𝑔′ 𝑥 .𝑓 𝑥 ] [𝑔(𝑥)]2 • ℎ′ 𝑥 = [ 2𝑥5+2𝑥4−6𝑥3 − 4𝑥5+3𝑥4−6𝑥3−4𝑥3−3𝑥2+6𝑥 ] [𝑥4+𝑥3−3𝑥2]2 • ℎ′ 𝑥 = [2𝑥5+2𝑥4−6𝑥3−4𝑥5−3𝑥4+6𝑥3+4𝑥3+3𝑥2−6𝑥] [𝑥4+𝑥3−3𝑥2]2 • ℎ′ 𝑥 = [−2𝑥5−𝑥4+4𝑥3+3𝑥2−6𝑥] [𝑥4+𝑥3−3𝑥2]2
  • 30. Aplicaciones: • En un circuito eléctrico, Si V volts es la fuerza electromotriz, I amperes es la corriente y R ohms es la resistencia, entonces de la ley de Ohms IR = V. Si se supone que V es una constante positiva ¿Cuál es la tasa instantánea de variación de I con respecto a R en un circuito eléctrico de 90 volts cuando la resistencia es de 15 ohms? : • 𝐼𝑅 = 𝑉; 𝐼 = 𝑉 𝑅 • V.I.=R (x) 𝑑 𝑑𝑥 ; 𝑑 𝑑𝑅 ; V.D.=I (y) • 𝑑𝐼 𝑑𝑅 = 𝑑 𝑑𝑅 . 𝑉 𝑅 • 𝑑𝐼 𝑑𝑅 = 𝑑 𝑑𝑅 . 90 𝑅 • 𝑑𝐼 𝑑𝑅 = 90. 𝑑 𝑑𝑅 . 𝑅−1 • 𝑑𝐼 𝑑𝑅 = −1(90). 𝑅−1−1 • 𝑑𝐼 𝑑𝑅 = −1(90). 𝑅−2 I R
  • 31. Aplicaciones: • En un circuito eléctrico, Si V volts es la fuerza electromotriz, I amperes es la corriente y R ohms es la resistencia, entonces de la ley de Ohms IR = V. Si se supone que V es una constante positiva ¿Cuál es la tasa instantánea de variación de I con respecto a R en un circuito eléctrico de 90 volts cuando la resistencia es de 15 ohms? : • 𝐼𝑅 = 𝐸; 𝐼 = 𝐸 𝑅 • 𝑑𝐼 𝑑𝑅 = −1(90). 𝑅−2 • 𝑑𝐼 𝑑𝑅 = −90 𝑉𝑜𝑙𝑡 𝑅2𝑜ℎ𝑚2 • 𝑑𝐼 𝑑𝑅 = −90 15 2 • 𝑑𝐼 𝑑𝑅 = −0.4 I R
  • 32. Aplicaciones: • f(x)=x^(3)+3 x^(2)-x • 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥 • 𝑓′ 𝑥 = 𝑑 𝑑𝑥 𝑥3 + 3 𝑑 𝑑𝑥 𝑥2 − 𝑑 𝑑𝑥 𝑥 • 𝑓′ 𝑥 = 3𝑥2 + 6𝑥 − 1 • 3𝑥2 + 6𝑥 − 1 = 0 • 𝑥 = −𝑏± 𝑏2−43𝑐 23 • 𝑥 = −6± 62−4(2)(−1) 2(2) • 𝑥1 = 0.1547 • 𝑥2 = −2.154
  • 33. Aplicaciones: • f(x)=x^(3)+3 x^(2)-x • 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥 • 𝑥1 = 0.1547 • 𝑥2 = −2.154 • 𝑓 𝑥1 = 𝑥1 3 + 3𝑥1 2 − 𝑥1 • 𝑓 0.1547 = 0.1547 3 + (3)0.1547 2 − 0.1547 • 𝑓 0.1547 = −0.08 • 𝑓 𝑥2 = 𝑥2 3 + 3𝑥2 2 − 𝑥2 • 𝑓 −2.154 = −2.154 3 + (3)(−2.154 )2 −(−2.154) • 𝑓 −2.154 = 6.08
  • 34. Aplicaciones: • f(x)=x^(3)+3 x^(2)-x • 𝑓 𝑥 = 𝑥3 + 3𝑥2 − 𝑥 • 𝑥1 = 0.1547 • 𝑥2 = −2.154 • 𝑓 0.1547 = −0.08 • 𝑓 −2.154 = 6.08 x F(x)=y Max o Min 0.1547 −0.08 Min −2.154 6.08 Max
  • 35. Ejercicios • 𝑦 = 𝑠𝑒𝑛𝑥 ; 𝑑𝑦 𝑑𝑥 = 𝑐𝑜𝑠𝑥; ℎ 𝑥 = 𝑠𝑒𝑛 𝑓 𝑥 ; ℎ′ 𝑥 = cos 𝑓 𝑥 . (𝑓′(𝑥)) • 𝑑𝑦 𝑑𝑥 = 𝑑 𝑑𝑥 𝑠𝑒𝑛𝑥 • 𝑑𝑦 𝑑𝑥 = cosx • ℎ 𝑥 = 𝑔(𝑓 𝑥 ) ; 𝑔 𝑓 𝑥 = 𝑠𝑒𝑛(𝑥3 − 1) • ℎ 𝑥 = 𝑠𝑒𝑛(𝑥3 − 1) ;𝑔 𝑥 = 𝑠𝑒𝑛 𝑥 ; 𝑓 𝑥 = 𝑥3 − 1 • ;𝑔′ 𝑥 = cos(𝑥) ; 𝑓′ 𝑥 = 3𝑥2 • ℎ′ 𝑥 = cos 𝑥3 − 1 . (3𝑥2)
  • 36. Ejercicios • 𝑦 = 𝑐𝑜𝑠𝑥 ; 𝑑𝑦 𝑑𝑥 = −𝑠𝑒𝑛𝑥; ℎ 𝑥 = 𝑐𝑜𝑠 𝑓 𝑥 ; ℎ′ 𝑥 = −𝑠𝑒𝑛(𝑓 𝑥 ). (𝑓′(𝑥)) • 𝑦 = cos(2𝑥5 + 𝑥) • 𝑑𝑦 𝑑𝑥 = 𝑑 𝑑𝑥 𝑐𝑜𝑠 2𝑥5 + 𝑥 • 𝑔 𝑥 = 𝑐𝑜𝑠𝑥 ; 𝑓 𝑥 = 2𝑥5 + 𝑥 • 𝑔′ 𝑥 = −𝑠𝑒𝑛𝑥 ; f′(x) = 10𝑥4 + 1 • 𝑑𝑦 𝑑𝑥 = −𝑠𝑒𝑛 2𝑥5 + 𝑥 . (10𝑥4 + 1) • 𝑑𝑦 𝑑𝑥 = − 10𝑥4 + 1 . 𝑠𝑒𝑛 2𝑥5 + 𝑥
  • 37. Ejercicios • 𝑦 = 𝑡𝑎𝑛𝑥 ; 𝑑𝑦 𝑑𝑥 = 𝑠𝑒𝑐2𝑥; ℎ 𝑥 = 𝑡𝑎𝑛 𝑓 𝑥 ; ℎ′ 𝑥 = 𝑠𝑒𝑐2(𝑓 𝑥 ). (𝑓′(𝑥)) • ℎ 𝑥 = tan 𝑥 − 1 • 𝑔 𝑥 = 𝑡𝑎𝑛𝑥 ; 𝑓 𝑥 = 𝑥 − 1 • 𝑔′ 𝑥 = 𝑠𝑒𝑐2 𝑥 ; f 𝑥 = 𝑥 1 2 − 1 • 𝑓′(𝑥) = 1 2 𝑥 1 2 −1 − 0 • 𝑓′(𝑥) = 1 2 𝑥− 1 2 • ℎ′ 𝑥 = 𝑠𝑒𝑐2 𝑥 − 1 . ( 1 2 𝑥− 1 2) • ℎ′ 𝑥 = ( 1 2𝑥 1 2 ). 𝑠𝑒𝑐2 𝑥 − 1 • ℎ′ 𝑥 = ( 1 2 𝑥 ). 𝑠𝑒𝑐2 𝑥 − 1
  • 38. Ejercicios • 𝑦 = 𝑐𝑜𝑡𝑥 ; 𝑑𝑦 𝑑𝑥 = −𝑐𝑠𝑐2 𝑥; ℎ 𝑥 = 𝑐𝑜𝑡 𝑓 𝑥 ; ℎ′ 𝑥 = −𝑐𝑠𝑐2 (𝑓 𝑥 ). (𝑓′(𝑥)) • 𝑦 = cot(𝑥 1 4 − 𝑥) • 𝑑𝑦 𝑑𝑥 = 𝑑 𝑑𝑥 (cot 𝑥 1 4 − 𝑥 ) • 𝑔 𝑥 = 𝑐𝑜𝑡𝑥 ; 𝑓 𝑥 = 𝑥 1 4 − 𝑥 • 𝑔′ 𝑥 = −𝑐𝑠𝑐2(𝑥) ; 𝑓′ 𝑥 = 1 4 𝑥− 3 4 − 1 • 𝑑𝑦 𝑑𝑥 = −𝑐𝑠𝑐2 𝑥 1 4 − 𝑥 . ( 1 4 𝑥− 3 4 − 1) • 𝑑𝑦 𝑑𝑥 = − 1 4𝑥 3 4 − 1 . 𝑐𝑠𝑐2 𝑥 1 4 − 𝑥
  • 39. Ejercicios • 𝑦 = 𝑠𝑒𝑐𝑥 ; 𝑑𝑦 𝑑𝑥 = 𝑠𝑒𝑐𝑥. 𝑡𝑎𝑛𝑥; • ℎ 𝑥 = 𝑠𝑒𝑐 𝑓 𝑥 ; ℎ′ 𝑥 = 𝑠𝑒𝑐 𝑓 𝑥 . tan(𝑓 𝑥 ). (𝑓′(𝑥)) • ℎ(𝑥) = sec(1 − 𝑥3) • 𝑔 𝑥 = 𝑠𝑒𝑐𝑥 ; 𝑓 𝑥 = 1 − 𝑥3 • 𝑔′ 𝑥 = 𝑠𝑒𝑐𝑥. 𝑡𝑎𝑛𝑥 ; 𝑓′ 𝑥 = −3𝑥2 • ℎ′ 𝑥 = sec 1 − 𝑥3 . tan 1 − 𝑥3 . (−3𝑥2) • ℎ′ 𝑥 =. −3𝑥2 . sec 1 − 𝑥3 . tan 1 − 𝑥3
  • 40. Ejercicios • 𝑦 = 𝑐𝑠𝑐𝑥 ; 𝑑𝑦 𝑑𝑥 = −𝑐𝑠𝑐𝑥. 𝑐𝑜𝑡𝑥; • ℎ 𝑥 = 𝑐𝑠𝑐 𝑓 𝑥 ; ℎ′ 𝑥 = −𝑐𝑠𝑐 𝑓 𝑥 . 𝑐𝑜𝑡(𝑓 𝑥 ). (𝑓′(𝑥)) • ℎ(𝑥) = csc(𝑥7 − 𝑥3) • 𝑔 𝑥 = 𝑐𝑠𝑐𝑥 ; 𝑓 𝑥 = 𝑥7 − 𝑥3 • 𝑔′ 𝑥 = −𝑐𝑠𝑐𝑥. 𝑐𝑜𝑡𝑥 ; 𝑓′ 𝑥 = 7𝑥6 − 3𝑥2 • ℎ′ 𝑥 = − csc 𝑥7 − 𝑥3 . cot 𝑥7 − 𝑥3 . (7𝑥6 − 3𝑥2) • ℎ′ 𝑥 = − 7𝑥6 − 3𝑥2 . csc 𝑥7 − 𝑥3 . cot 𝑥7 − 𝑥3
  • 41. Ejercicios • 𝑦 = 𝑙𝑛𝑥; 𝑑𝑦 𝑑𝑥 = 1 𝑥 ; ℎ 𝑥 = ln(𝑓 𝑥 ) ; ℎ′ 𝑥 = 1 𝑓 𝑥 . (𝑓′ 𝑥 ) • ℎ 𝑥 = ln(𝑥2 − 1) ; ℎ 𝑥 = 𝑔(𝑓 𝑥 ) • 𝑔 𝑥 = 𝑙𝑛𝑥 ; 𝑓 𝑥 = 𝑥2 − 1 • 𝑔′ 𝑥 = 1 𝑥 ; 𝑓′ 𝑥 = 2𝑥 • ℎ′ 𝑥 = 1 𝑥2−1 . (2𝑥) • ℎ′ 𝑥 = 2𝑥 𝑥2−1
  • 42. Ejercicios • 𝑦 = 𝑒𝑥 ; 𝑑𝑦 𝑑𝑥 = 𝑒𝑥 ; ℎ 𝑥 = 𝑒(𝑓(𝑥)); ℎ′ 𝑥 = 𝑒 𝑓 𝑥 . 𝑓′(𝑥) • ℎ 𝑥 = 𝑒(𝑥2−2𝑥+1) • 𝑔 𝑥 = 𝑒𝑥 ; 𝑓 𝑥 = 𝑥2 − 2𝑥 + 1 • 𝑔′ 𝑥 = 𝑒𝑥 ; 𝑓′ 𝑥 = 2𝑥 − 2 • ℎ′ 𝑥 = 𝑒 𝑥2−2𝑥+1 . (2𝑥 − 2)