Departamento de Ciencias B´asicas
DEPARTAMENTO DE MATEM´ATICA
TABLA B´ASICA DE DERIVADAS E INTEGRALES
Derivadas Integrales
(xn
) = nxn−1
xn
dx =
xn+1
n + 1
+ c
( n
√
x) =
1
n
n
√
xn−1
ax
dx =
ax
ln a
+ c
(loga x) =
1
x ln a
1
x ln a
dx = loga |x| + c
(sin (x)) = cos (x) sin (x) dx = − cos (x) + c
(cos (x)) = − sin (x) cos (x) dx = sin x + c
(tan (x)) = sec2
(x) tan (x) dx = ln |sec (x)| + c
(cot (x)) = − csc2
(x) cot (x) dx = ln |sin (x)| + c
(sec (x)) = sec (x) tan (x) sec (x) dx = ln |sec (x) + tan (x)| + c
(csc (x)) = − csc (x) cot (x) csc (x) dx = ln |csc (x) − cot (x)| + c
(arcsin (x)) =
1
√
1 − x2
sin2
(x) dx =
(x − sin (x) cos (x))
2
+ c
(arc cos (x)) = −
1
√
1 − x2
cos2
(x) dx =
(x + sin (x) cos (x))
2
+ c
(arctan (x)) =
1
1 + x2
sec2
(x) dx = tan (x) + c
(arccot (x)) = −
1
1 + x2
csc2
(x) dx = − cot (x) + c
(arcsec (x)) =
1
x
√
x2 − 1
sec (x) tan (x) dx = sec (x) + c
(arccsc (x)) = −
1
x
√
x2 − 1
csc (x) cot (x) dx = − csc (x) + c
(ln (x)) =
1
x
1
x
dx = ln |x| + c
(loga x) =
1
x ln a
1
x ln a
dx = loga |x| + c
1 Ufidelitas

Tabla de integrales ii

  • 1.
    Departamento de CienciasB´asicas DEPARTAMENTO DE MATEM´ATICA TABLA B´ASICA DE DERIVADAS E INTEGRALES Derivadas Integrales (xn ) = nxn−1 xn dx = xn+1 n + 1 + c ( n √ x) = 1 n n √ xn−1 ax dx = ax ln a + c (loga x) = 1 x ln a 1 x ln a dx = loga |x| + c (sin (x)) = cos (x) sin (x) dx = − cos (x) + c (cos (x)) = − sin (x) cos (x) dx = sin x + c (tan (x)) = sec2 (x) tan (x) dx = ln |sec (x)| + c (cot (x)) = − csc2 (x) cot (x) dx = ln |sin (x)| + c (sec (x)) = sec (x) tan (x) sec (x) dx = ln |sec (x) + tan (x)| + c (csc (x)) = − csc (x) cot (x) csc (x) dx = ln |csc (x) − cot (x)| + c (arcsin (x)) = 1 √ 1 − x2 sin2 (x) dx = (x − sin (x) cos (x)) 2 + c (arc cos (x)) = − 1 √ 1 − x2 cos2 (x) dx = (x + sin (x) cos (x)) 2 + c (arctan (x)) = 1 1 + x2 sec2 (x) dx = tan (x) + c (arccot (x)) = − 1 1 + x2 csc2 (x) dx = − cot (x) + c (arcsec (x)) = 1 x √ x2 − 1 sec (x) tan (x) dx = sec (x) + c (arccsc (x)) = − 1 x √ x2 − 1 csc (x) cot (x) dx = − csc (x) + c (ln (x)) = 1 x 1 x dx = ln |x| + c (loga x) = 1 x ln a 1 x ln a dx = loga |x| + c 1 Ufidelitas