SlideShare a Scribd company logo
1 of 20
Download to read offline
Kohei Shinohara (@lan496)
Software Development for Space-group Analysis
Magnetic Space Group and Irreducible Representation
2
Outline
Part 1: Magnetic space group (MSG)
‣ Magnetic symmetry operation
‣ De
fi
nition and classi
fi
cation of MSG
‣ Procedure to detect magnetic symmetry operations
‣ MSG support in Spglib v2
Part 2: Irreducible representations (irreps) of space group
‣ De
fi
nition and projection operator
‣ Example applications of irreps
‣ Symmetry-adapted tensor
‣ Block diagonalization via symmetry
‣ Band connectivity
3
Magnetic symmetry operation
‣ Symmetry operations act on point coordinates
‣ Time-reversal operations change signs of collinear spins
‣ Magnetic symmetry operations are products of symmetry
operations and (non-)time-reversal operations
‣ Example: BCC(AFM)
‣
‣
(R, v)x = Rx + v
(R, v)m = m, 1′

m = − m
(R, v)θ (θ ∈ {1,1′

})
(E, (1/2,1/2,1/2))1′

x1 = x2
(E, (1/2,1/2,1/2))1′

m1 = − m1 = m2
x1, m1
x2, m2
4
Magnetic Space Group (MSG)
[1] D. B. Litvin, in International Tables for Crystallography, Vol. A, 6th ed., Chap. 3.6, pp. 852-865.
[2] B. J. Campbell et al., Acta Cryst. A 78, 2, 99-106 (2022).
: lattice
: point coordinates
: atomic types
: magnetic moments
A
X
T
M
‣ Magnetic symmetry operations form a group (MSG)
‣ Space groups derived from MSG [1,2]
Family space group (FSG)
Ignore time-reversal parts
Similar to point group for SG
Maximal space subgroup (XSG)
Remove anti-symmetry operations
Similar to translation group for SG
ℳ
ℱ = {(R, v) ∣ ∃θ ∈ {1,1′

}, (R, v)θ ∈ ℳ}
𝒟
= {(R, v) ∣ (R, v)1 ∈ ℳ}
5
Classification of MSGs
‣ Type-I , ferromagnetic
‣ Type-II , non-magnetic
‣ Type-III , translational groups of and are identical
‣ Type-IV , point groups of and are identical
‣ Primitive cell for is double of that for !
ℳ = ℱ1 =
𝒟
1
ℳ =
𝒟
1 ⊔
𝒟
1′

, ℱ =
𝒟
ℳ =
𝒟
1 ⊔ (ℱ
𝒟
)1′

𝒟
ℱ
ℳ =
𝒟
1 ⊔ (ℱ
𝒟
)1′

𝒟
ℱ
𝒟
ℱ
MSGs are represented by Magnetic Hall symbols: J. González-Platas et al., J. Appl. Crystallogr. 54, 338 (2021).
x3, m3
x4, m4
AFM Rutile (type-III)
(BNS 136.498)
(No. 136)
(No. 58)
ℳ ≅ P4′

n2′

n
ℱ ≅ P4n2n
𝒟
≅ P22 ̂
n
x1, m1
x2, m2
AFM BCC (type-IV)
(BNS 221.97)
(No. 229)
(No. 221)
ℳ ≅ P4231′

abc
ℱ ≅ I423
𝒟
≅ P423
6
Procedure to detect magnetic symmetry operations
1. Detect symmetry operations by ignoring magnetic moments,
, …
2. Compute atomic permutation for each symmetry operation
3. Try to apply time-reversal parts for non-zero magnetic
moments
4. Check if preserves the magnetic cell
N.B. Type-II MSG has both and
𝒮
(A, X, T)
(R, v) =
(
C4,
(
1
2
1
2
1
2 ))
(R, v)
(R, v)x3 = x4
θ = 1,1′

(R, v)θm3 = m4 ⟹ θ = 1′

(R, v)θ
(R, v)1 (R, v)1′

x3, m3
x4, m4
AFM Rutile (type-III)
7
Magnetic symmetry operation search in Spglib v2
‣ Specify tensors (magnetic moment) with shape num_atom (collinear, tensor_rank=0) or 3*num_atom (non-
collinear, tensor_rank=1)
‣ Return magnetic symmetry operations (rotation[i], translation[i], spin_flips[i])
‣ Flags to control action (later slide): tensor_rank, with_time_reversal, is_axial
‣ Python API: get_magnetic_symmetry
int spg_get_symmetry_with_site_tensors(
int rotation[][3][3], double translation[][3],
int equivalent_atoms[], double primitive_lattice[3][3],
int *spin_flips,
const int max_size,
SPGCONST double lattice[3][3],
SPGCONST double position[][3],
const int types[],
const double *tensors, const int tensor_rank,
const int num_atom,
const int with_time_reversal,
const int is_axial,
const double symprec)
8
MSG identification in Spglib v2
‣ Search for transformation to MSG in a standardized
setting [1]
‣ Transform cell to the standardized setting
‣ Python API: get_magnetic_symmetry_dataset
ℳstd
(P, p)−1
ℳ(P, p) = ℳstd
[1] D. B. Litvin, Magnetic group tables (IUCr, 2014).
SpglibMagneticDataset *spg_get_magnetic_dataset(
SPGCONST double lattice[3][3],
SPGCONST double position[][3],
const int types[],
const double *tensors, const int tensor_rank,
const int num_atom,
const int is_axial,
const double symprec);
typedef struct {
/* Magnetic space-group type */
int uni_number;
int msg_type;
.
.
.
/* Magnetic symmetry operations */
int n_operations;
int (*rotations)[3][3];
double (*translations)[3];
int *time_reversals;
/* Equivalent atoms */
.
.
.
/* Standardized crystal structure */
double transformation_matrix[3][3];
double origin_shift[3];
int n_std_atoms;
double std_lattice[3][3];
int *std_types;
double (*std_positions)[3];
double *std_tensors;
double std_rotation_matrix[3][3];
/* Intermediate datum */
.
.
.
} SpglibMagneticDataset;
9
Access to MSG type information in Spglib v2
‣ Access to MSG type information by serial number from 1 to 1651
‣ uni_number: Serial number of UNI (or BNS) symbols
‣ litvin_number: Serial number in Litvinʼs Magnetic group tables [1]
‣ bns_number: BNS number e.g. “156.32”
‣ og_number: OG number e.g. “153.4.1270”
‣ number: ITAʼs serial number of space group for reference setting
‣ type: Type of MSG from 1 to 4
[1] D. B. Litvin, Magnetic group tables (IUCr, 2014).
SpglibMagneticSpacegroupType
spg_get_magnetic_spacegroup_type(const int uni_number);
typedef struct {
int uni_number;
int litvin_number;
char bns_number[8];
char og_number[12];
int number;
int type;
} SpglibMagneticSpacegroupType;
10
Flags to control action of MSG in Spglib v2
https://spglib.github.io/spglib/magnetic̲symmetry̲
fl
ags.html
‣ Action of MSG depends on system and
Hamiltonian
‣ Rank of magnetic moments
tensor_rank=1: 3-dimensional vector
tensor_rank=0: scalar
‣ Action of time-reversal operation
with_time_reversal=1:
with_time_reversal=0:
‣ Action of improper rotation
is_axial=1: axial scalar or vector
is_axial=0: polar scalar or vector
1′

m = − m
1′

m = m
→ e.g. collinear spin
→ e.g. velocity
→ e.g. non-collinear spin
11
Outline
Part 1: Magnetic space group (MSG)
‣ Magnetic symmetry operation
‣ De
fi
nition and classi
fi
cation of MSG
‣ Procedure to detect magnetic symmetry operations
‣ MSG support in Spglib v2
Part 2: Irreducible representations (irreps) of space group
‣ De
fi
nition and projection operator
‣ Example applications of irreps
‣ Symmetry-adapted tensor
‣ Block diagonalization via symmetry
‣ Band connectivity
Features
‣ Irreps of space group from spglibʼs cell and
kpoints
‣ Symmetry-adapted basis forming given irreps
‣ Only ~2500 lines in total
‣ Minimal dependency (numpy and spglib)
‣ Permissive license (BSD-3)
https://github.com/spglib/spgrep
12
Spgrep: Python package for space-group irreps generation
13
Irreducible representation (irrep)
Practical problem statement
‣ Consider a vector space with basis
‣ Group element acts on basis vectors:
‣ Representation matrices should satisfy
‣ How
fi
nely can be block-diagonalized simultaneously?
{|ϕi⟩}
g ∈ G
Γ(g)Γ(g′

) = Γ(gg′

)
Γ(g)
g|ϕj⟩ =
∑
i
|ϕi⟩Γij(g)
g(g′

|ϕj⟩) = g
∑
i
|ϕi⟩Γij(g′

) =
∑
k
|ϕk⟩
∑
i
Γki(g)Γij(g′

) =
∑
k
|ϕk⟩Γkj(gg′

) = (gg′

)|ϕj⟩
Γ(g) {|ϕi⟩}
6 dimensions
U−1
Γ(g)U {|ϕ′

i⟩ = ∑j
|ϕj⟩Uji⟩}
1+2+3 dimensions
14
Projection operator
Typical procedure to use irreps
1. Fourier-transform basis like Bloch functions
2. Enumerate “all” unitary irreps of group [1,2]
3. Apply projection operator of each to
→ New basis is null or forms irrep
4. Stack non-zero coe
ffi
cients,
g|ϕk
j ⟩ =
∑
i
|ϕk
i ⟩Γk
ij(g), (E, t)|ϕk
j ⟩ = e−ik⋅t
|ϕk
j ⟩
Γkα
G
Γkα
Γ
Pkα
ij :=
dkα
|G| ∑
g∈G
Γkα
ij (g)*g, |ψkαjl
i
⟩ := Pkα
ij |ϕk
l ⟩ =
∑
m
|ϕk
m⟩Ukαjl
mi
{|ψkαjl
i
⟩}dkα
i=1
Γkα
U = (Ukαjl
:,1
…Ukαjl
:,dkα
…)
U−1
Γk
(g)U =
Γkα
(g) O
Γkα′

(g)
O ⋱
[1] T. Maehara and K. Murota, SIAM J. Matrix Anal. Appl. 32, 2, pp.605-620 (2011).
[2] N. Neto, Acta Cryst. A 29, 4, pp.464-472 (1973).
15
Example: symmetry-adapted tensor
‣ Symmetrize elastic constant (rank-2 tensor)
‣ Basis for symmetric tensor in Voigt order
‣ Action of rotation on basis
‣ Projection operator for to gives symmetry-adapted basis
P = m3m
̂
R ∈ P
Γ ⊗ Γ Γid
[1] J. C. Thomas et al., J. Mech. Phys. Solids 107, 76-95 (2017).
[2] M. El-Batanouny and F. Wooten, Symmetry and Condensed Matter Physics (Cambridge, 2008).
C =
6
∑
i,j=1
CijEi ⊗ Ej
E1 =
(
1 0 0
0 0 0
0 0 0)
, E2 =
(
0 0 0
0 1 0
0 0 0)
, E3 =
(
0 0 0
0 0 0
0 0 1)
, E4 =
1
2 (
0 0 0
0 0 1
0 1 0)
, E5 =
1
2 (
0 0 1
0 0 0
1 0 0)
, E6 =
1
2 (
0 1 0
1 0 0
0 0 0)
̂
REj = REjR⊤
=
6
∑
i=1
EiΓij( ̂
R)
̂
REj ⊗ Ej′

= ( ̂
REj) ⊗ ( ̂
REj′

) =
∑
ii′

Ei ⊗ Ei′

Γij( ̂
R)Γi′

j′

( ̂
R)
Ẽ(1)
=
1
3
(E1 ⊗ E1 + E2 ⊗ E2 + E3 ⊗ E3), Ẽ(2)
=
1
3
(E4 ⊗ E4 + E5 ⊗ E5 + E6 ⊗ E6)
Ẽ(3)
=
1
6
(E2 ⊗ E3 + E3 ⊗ E1 + E1 ⊗ E2 + sym)
16
Example: block-diagonalizing dynamical matrix
‣ Consider to diagonalize harmonic lattice-vibration Hamiltonian
‣ Fourier-transform displacement (direction , atom in unit cell )
‣ Representation matrix of space group and invariance [1]
‣ Enumerate unitary irreps of and apply projection operators
uμ(lκ) μ κ l
G
Γkα
G
[1] A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1‒37 (1968).
Hph =
1
2 ∑
q
∑
κμκ′

μ′

Φμμ′

(κκ′

; q)uμ(κ; q)uμ′

(κ′

; − q)
u(κ; q) =
Mκ
N ∑
l
u(lκ)eiq⋅r(l)
(R, v)uμ(κ; q) =
∑
κ′

μ′

uμ′

(κ′

; Rq)Γq
κ′

μ′

,κμ
((R, v))
Φ(Rq) = Γq
((R, v))Φ(q)Γq
((R, v))†
(3 5 dimensions)
Φ(q) (2+2+6+4+1 dimensions)
UΦ(q)U†
17
Example: band connectivity
‣ Characters of irreps can be used to “sew” bands
‣ Each -vector has a di
ff
erent little group
‣ Pairs of irrep and eigenvalue, and , can be
connected if includes [1]
‣ Currently implement for phonon, but application to
wave functions is as well
k
(Γkα
, λ) (Γk′

α′

, λ′

)
Γkα
↓ Gk′

Γk′

α′

[1] B. Bradlyn et al., Phys. Rev. B 97, 035138 (2018).
phonondb/id-661/AlN
χkα
(g) =
dα
∑
i=1
Γkα
ii (g) (g ∈ Gk
)
Gk
= {(R, v) ∈ G ∣ Rk ≡ k}
⇔
1
|Gk′

| ∑
g′

∈Gk′

χkα
(g′

)*χk′

α′

(g′

) ≥ 1
18
Current limitation and future plan of spgrep
‣ No support of labeling of irreps (e.g. )
‣ Need enormous look-up tables
‣ Bilbao Crystallographic Server provides
‣ Co-representation for magnetic space group (MSG)
‣ Spglib v.2 supports MSG
‣ Double representation [1] for spin system
X1
[1] L. Elcoro, et al., J. Appl. Cryst. 50, 1457-1477 (2017).
19
Summary
We have developed softwares to make it easier to use powerful symmetry analysis (MSG and
irreps) with minimum background
Magnetic space group (MSG)
‣ A FSG, XSG, and type of MSG are useful notions to classify and work with MSG
‣ Spglib v2 searches for magnetic symmetry operations and identify MSG from given cell
and speci
fi
ed action
Irreducible representation (irrep) of space group
‣ Irreps can be used for symmetry-adapted basis, block-diagonalization, and band
connectivity
‣ Spgrep calculates irreps and symmetry-adapted basis
20
How to compute irreps on the fly

More Related Content

What's hot

トピックモデルの基礎と応用
トピックモデルの基礎と応用トピックモデルの基礎と応用
トピックモデルの基礎と応用Tomonari Masada
 
実践多クラス分類 Kaggle Ottoから学んだこと
実践多クラス分類 Kaggle Ottoから学んだこと実践多クラス分類 Kaggle Ottoから学んだこと
実践多クラス分類 Kaggle Ottoから学んだことnishio
 
はじめてのパターン認識 第6章 後半
はじめてのパターン認識 第6章 後半はじめてのパターン認識 第6章 後半
はじめてのパターン認識 第6章 後半Prunus 1350
 
定理証明支援系Coqについて
定理証明支援系Coqについて定理証明支援系Coqについて
定理証明支援系CoqについてYoshihiro Mizoguchi
 
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language SupervisionDeep Learning JP
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)Preferred Networks
 
Webアプリケーション負荷試験実践入門
Webアプリケーション負荷試験実践入門Webアプリケーション負荷試験実践入門
Webアプリケーション負荷試験実践入門樽八 仲川
 
Deep Counterfactual Regret Minimization
Deep Counterfactual Regret MinimizationDeep Counterfactual Regret Minimization
Deep Counterfactual Regret MinimizationKenshi Abe
 
PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門Yosuke Onoue
 
グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知Yuya Takashina
 
強化学習 と ゲーム理論 (MARL)
強化学習 と ゲーム理論 (MARL)強化学習 と ゲーム理論 (MARL)
強化学習 と ゲーム理論 (MARL)HarukaKiyohara
 
プログラミングコンテストでの動的計画法
プログラミングコンテストでの動的計画法プログラミングコンテストでの動的計画法
プログラミングコンテストでの動的計画法Takuya Akiba
 
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?Ichigaku Takigawa
 
パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成Prunus 1350
 
最小カットを使って「燃やす埋める問題」を解く
最小カットを使って「燃やす埋める問題」を解く最小カットを使って「燃やす埋める問題」を解く
最小カットを使って「燃やす埋める問題」を解くshindannin
 

What's hot (20)

トピックモデルの基礎と応用
トピックモデルの基礎と応用トピックモデルの基礎と応用
トピックモデルの基礎と応用
 
実践多クラス分類 Kaggle Ottoから学んだこと
実践多クラス分類 Kaggle Ottoから学んだこと実践多クラス分類 Kaggle Ottoから学んだこと
実践多クラス分類 Kaggle Ottoから学んだこと
 
はじめてのパターン認識 第6章 後半
はじめてのパターン認識 第6章 後半はじめてのパターン認識 第6章 後半
はじめてのパターン認識 第6章 後半
 
明日使えないすごいビット演算
明日使えないすごいビット演算明日使えないすごいビット演算
明日使えないすごいビット演算
 
定理証明支援系Coqについて
定理証明支援系Coqについて定理証明支援系Coqについて
定理証明支援系Coqについて
 
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
[DL輪読会]Learning Transferable Visual Models From Natural Language Supervision
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
実用Brainf*ckプログラミング入門編
実用Brainf*ckプログラミング入門編実用Brainf*ckプログラミング入門編
実用Brainf*ckプログラミング入門編
 
Webアプリケーション負荷試験実践入門
Webアプリケーション負荷試験実践入門Webアプリケーション負荷試験実践入門
Webアプリケーション負荷試験実践入門
 
Deep Counterfactual Regret Minimization
Deep Counterfactual Regret MinimizationDeep Counterfactual Regret Minimization
Deep Counterfactual Regret Minimization
 
Coqチュートリアル
CoqチュートリアルCoqチュートリアル
Coqチュートリアル
 
線形計画法入門
線形計画法入門線形計画法入門
線形計画法入門
 
PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門PyOpenCLによるGPGPU入門
PyOpenCLによるGPGPU入門
 
グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知グラフィカル Lasso を用いた異常検知
グラフィカル Lasso を用いた異常検知
 
強化学習 と ゲーム理論 (MARL)
強化学習 と ゲーム理論 (MARL)強化学習 と ゲーム理論 (MARL)
強化学習 と ゲーム理論 (MARL)
 
プログラミングコンテストでの動的計画法
プログラミングコンテストでの動的計画法プログラミングコンテストでの動的計画法
プログラミングコンテストでの動的計画法
 
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
(2020.10) 分子のグラフ表現と機械学習: Graph Neural Networks (GNNs) とは?
 
パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成
 
C++ マルチスレッド 入門
C++ マルチスレッド 入門C++ マルチスレッド 入門
C++ マルチスレッド 入門
 
最小カットを使って「燃やす埋める問題」を解く
最小カットを使って「燃やす埋める問題」を解く最小カットを使って「燃やす埋める問題」を解く
最小カットを使って「燃やす埋める問題」を解く
 

Similar to Software Development for Space-group Analysis: Magnetic Space Group and Irreducible Representation

Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsAlexander Decker
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...Rene Kotze
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Numerical calculation of high-order QED contributions to the electron anomalo...
Numerical calculation of high-order QED contributions to the electron anomalo...Numerical calculation of high-order QED contributions to the electron anomalo...
Numerical calculation of high-order QED contributions to the electron anomalo...SergeyVolkov44
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Shizuoka Inst. Science and Tech.
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
IRJET- Common Fixed Point Results in Menger Spaces
IRJET-  	  Common Fixed Point Results in Menger SpacesIRJET-  	  Common Fixed Point Results in Menger Spaces
IRJET- Common Fixed Point Results in Menger SpacesIRJET Journal
 
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdfA Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdfssuserbaad54
 
D242228
D242228D242228
D242228irjes
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 
A Variable Control Structure Controller for the Wing Rock Phenomenon
A Variable Control Structure Controller for the Wing Rock Phenomenon A Variable Control Structure Controller for the Wing Rock Phenomenon
A Variable Control Structure Controller for the Wing Rock Phenomenon IJERA Editor
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangiansorajjournal
 
Analysis of multiple groove guide
Analysis of multiple groove guideAnalysis of multiple groove guide
Analysis of multiple groove guideYong Heui Cho
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 

Similar to Software Development for Space-group Analysis: Magnetic Space Group and Irreducible Representation (20)

Strong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappingsStrong convergence of an algorithm about strongly quasi nonexpansive mappings
Strong convergence of an algorithm about strongly quasi nonexpansive mappings
 
Polynomial Matrix Decompositions
Polynomial Matrix DecompositionsPolynomial Matrix Decompositions
Polynomial Matrix Decompositions
 
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
NITheP UKZN Seminar: Prof. Alexander Gorokhov (Samara State University, Russi...
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Numerical calculation of high-order QED contributions to the electron anomalo...
Numerical calculation of high-order QED contributions to the electron anomalo...Numerical calculation of high-order QED contributions to the electron anomalo...
Numerical calculation of high-order QED contributions to the electron anomalo...
 
Delta Like Robot
Delta Like RobotDelta Like Robot
Delta Like Robot
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
 
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
IRJET- Common Fixed Point Results in Menger Spaces
IRJET-  	  Common Fixed Point Results in Menger SpacesIRJET-  	  Common Fixed Point Results in Menger Spaces
IRJET- Common Fixed Point Results in Menger Spaces
 
計算材料学
計算材料学計算材料学
計算材料学
 
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdfA Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
 
D242228
D242228D242228
D242228
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
A Variable Control Structure Controller for the Wing Rock Phenomenon
A Variable Control Structure Controller for the Wing Rock Phenomenon A Variable Control Structure Controller for the Wing Rock Phenomenon
A Variable Control Structure Controller for the Wing Rock Phenomenon
 
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
 
Point symmetries of lagrangians
Point symmetries of lagrangiansPoint symmetries of lagrangians
Point symmetries of lagrangians
 
Analysis of multiple groove guide
Analysis of multiple groove guideAnalysis of multiple groove guide
Analysis of multiple groove guide
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 

Recently uploaded

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 

Recently uploaded (20)

Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 

Software Development for Space-group Analysis: Magnetic Space Group and Irreducible Representation

  • 1. Kohei Shinohara (@lan496) Software Development for Space-group Analysis Magnetic Space Group and Irreducible Representation
  • 2. 2 Outline Part 1: Magnetic space group (MSG) ‣ Magnetic symmetry operation ‣ De fi nition and classi fi cation of MSG ‣ Procedure to detect magnetic symmetry operations ‣ MSG support in Spglib v2 Part 2: Irreducible representations (irreps) of space group ‣ De fi nition and projection operator ‣ Example applications of irreps ‣ Symmetry-adapted tensor ‣ Block diagonalization via symmetry ‣ Band connectivity
  • 3. 3 Magnetic symmetry operation ‣ Symmetry operations act on point coordinates ‣ Time-reversal operations change signs of collinear spins ‣ Magnetic symmetry operations are products of symmetry operations and (non-)time-reversal operations ‣ Example: BCC(AFM) ‣ ‣ (R, v)x = Rx + v (R, v)m = m, 1′  m = − m (R, v)θ (θ ∈ {1,1′  }) (E, (1/2,1/2,1/2))1′  x1 = x2 (E, (1/2,1/2,1/2))1′  m1 = − m1 = m2 x1, m1 x2, m2
  • 4. 4 Magnetic Space Group (MSG) [1] D. B. Litvin, in International Tables for Crystallography, Vol. A, 6th ed., Chap. 3.6, pp. 852-865. [2] B. J. Campbell et al., Acta Cryst. A 78, 2, 99-106 (2022). : lattice : point coordinates : atomic types : magnetic moments A X T M ‣ Magnetic symmetry operations form a group (MSG) ‣ Space groups derived from MSG [1,2] Family space group (FSG) Ignore time-reversal parts Similar to point group for SG Maximal space subgroup (XSG) Remove anti-symmetry operations Similar to translation group for SG ℳ ℱ = {(R, v) ∣ ∃θ ∈ {1,1′  }, (R, v)θ ∈ ℳ} 𝒟 = {(R, v) ∣ (R, v)1 ∈ ℳ}
  • 5. 5 Classification of MSGs ‣ Type-I , ferromagnetic ‣ Type-II , non-magnetic ‣ Type-III , translational groups of and are identical ‣ Type-IV , point groups of and are identical ‣ Primitive cell for is double of that for ! ℳ = ℱ1 = 𝒟 1 ℳ = 𝒟 1 ⊔ 𝒟 1′  , ℱ = 𝒟 ℳ = 𝒟 1 ⊔ (ℱ 𝒟 )1′  𝒟 ℱ ℳ = 𝒟 1 ⊔ (ℱ 𝒟 )1′  𝒟 ℱ 𝒟 ℱ MSGs are represented by Magnetic Hall symbols: J. González-Platas et al., J. Appl. Crystallogr. 54, 338 (2021). x3, m3 x4, m4 AFM Rutile (type-III) (BNS 136.498) (No. 136) (No. 58) ℳ ≅ P4′  n2′  n ℱ ≅ P4n2n 𝒟 ≅ P22 ̂ n x1, m1 x2, m2 AFM BCC (type-IV) (BNS 221.97) (No. 229) (No. 221) ℳ ≅ P4231′  abc ℱ ≅ I423 𝒟 ≅ P423
  • 6. 6 Procedure to detect magnetic symmetry operations 1. Detect symmetry operations by ignoring magnetic moments, , … 2. Compute atomic permutation for each symmetry operation 3. Try to apply time-reversal parts for non-zero magnetic moments 4. Check if preserves the magnetic cell N.B. Type-II MSG has both and 𝒮 (A, X, T) (R, v) = ( C4, ( 1 2 1 2 1 2 )) (R, v) (R, v)x3 = x4 θ = 1,1′  (R, v)θm3 = m4 ⟹ θ = 1′  (R, v)θ (R, v)1 (R, v)1′  x3, m3 x4, m4 AFM Rutile (type-III)
  • 7. 7 Magnetic symmetry operation search in Spglib v2 ‣ Specify tensors (magnetic moment) with shape num_atom (collinear, tensor_rank=0) or 3*num_atom (non- collinear, tensor_rank=1) ‣ Return magnetic symmetry operations (rotation[i], translation[i], spin_flips[i]) ‣ Flags to control action (later slide): tensor_rank, with_time_reversal, is_axial ‣ Python API: get_magnetic_symmetry int spg_get_symmetry_with_site_tensors( int rotation[][3][3], double translation[][3], int equivalent_atoms[], double primitive_lattice[3][3], int *spin_flips, const int max_size, SPGCONST double lattice[3][3], SPGCONST double position[][3], const int types[], const double *tensors, const int tensor_rank, const int num_atom, const int with_time_reversal, const int is_axial, const double symprec)
  • 8. 8 MSG identification in Spglib v2 ‣ Search for transformation to MSG in a standardized setting [1] ‣ Transform cell to the standardized setting ‣ Python API: get_magnetic_symmetry_dataset ℳstd (P, p)−1 ℳ(P, p) = ℳstd [1] D. B. Litvin, Magnetic group tables (IUCr, 2014). SpglibMagneticDataset *spg_get_magnetic_dataset( SPGCONST double lattice[3][3], SPGCONST double position[][3], const int types[], const double *tensors, const int tensor_rank, const int num_atom, const int is_axial, const double symprec); typedef struct { /* Magnetic space-group type */ int uni_number; int msg_type; . . . /* Magnetic symmetry operations */ int n_operations; int (*rotations)[3][3]; double (*translations)[3]; int *time_reversals; /* Equivalent atoms */ . . . /* Standardized crystal structure */ double transformation_matrix[3][3]; double origin_shift[3]; int n_std_atoms; double std_lattice[3][3]; int *std_types; double (*std_positions)[3]; double *std_tensors; double std_rotation_matrix[3][3]; /* Intermediate datum */ . . . } SpglibMagneticDataset;
  • 9. 9 Access to MSG type information in Spglib v2 ‣ Access to MSG type information by serial number from 1 to 1651 ‣ uni_number: Serial number of UNI (or BNS) symbols ‣ litvin_number: Serial number in Litvinʼs Magnetic group tables [1] ‣ bns_number: BNS number e.g. “156.32” ‣ og_number: OG number e.g. “153.4.1270” ‣ number: ITAʼs serial number of space group for reference setting ‣ type: Type of MSG from 1 to 4 [1] D. B. Litvin, Magnetic group tables (IUCr, 2014). SpglibMagneticSpacegroupType spg_get_magnetic_spacegroup_type(const int uni_number); typedef struct { int uni_number; int litvin_number; char bns_number[8]; char og_number[12]; int number; int type; } SpglibMagneticSpacegroupType;
  • 10. 10 Flags to control action of MSG in Spglib v2 https://spglib.github.io/spglib/magnetic̲symmetry̲ fl ags.html ‣ Action of MSG depends on system and Hamiltonian ‣ Rank of magnetic moments tensor_rank=1: 3-dimensional vector tensor_rank=0: scalar ‣ Action of time-reversal operation with_time_reversal=1: with_time_reversal=0: ‣ Action of improper rotation is_axial=1: axial scalar or vector is_axial=0: polar scalar or vector 1′  m = − m 1′  m = m → e.g. collinear spin → e.g. velocity → e.g. non-collinear spin
  • 11. 11 Outline Part 1: Magnetic space group (MSG) ‣ Magnetic symmetry operation ‣ De fi nition and classi fi cation of MSG ‣ Procedure to detect magnetic symmetry operations ‣ MSG support in Spglib v2 Part 2: Irreducible representations (irreps) of space group ‣ De fi nition and projection operator ‣ Example applications of irreps ‣ Symmetry-adapted tensor ‣ Block diagonalization via symmetry ‣ Band connectivity
  • 12. Features ‣ Irreps of space group from spglibʼs cell and kpoints ‣ Symmetry-adapted basis forming given irreps ‣ Only ~2500 lines in total ‣ Minimal dependency (numpy and spglib) ‣ Permissive license (BSD-3) https://github.com/spglib/spgrep 12 Spgrep: Python package for space-group irreps generation
  • 13. 13 Irreducible representation (irrep) Practical problem statement ‣ Consider a vector space with basis ‣ Group element acts on basis vectors: ‣ Representation matrices should satisfy ‣ How fi nely can be block-diagonalized simultaneously? {|ϕi⟩} g ∈ G Γ(g)Γ(g′  ) = Γ(gg′  ) Γ(g) g|ϕj⟩ = ∑ i |ϕi⟩Γij(g) g(g′  |ϕj⟩) = g ∑ i |ϕi⟩Γij(g′  ) = ∑ k |ϕk⟩ ∑ i Γki(g)Γij(g′  ) = ∑ k |ϕk⟩Γkj(gg′  ) = (gg′  )|ϕj⟩ Γ(g) {|ϕi⟩} 6 dimensions U−1 Γ(g)U {|ϕ′  i⟩ = ∑j |ϕj⟩Uji⟩} 1+2+3 dimensions
  • 14. 14 Projection operator Typical procedure to use irreps 1. Fourier-transform basis like Bloch functions 2. Enumerate “all” unitary irreps of group [1,2] 3. Apply projection operator of each to → New basis is null or forms irrep 4. Stack non-zero coe ffi cients, g|ϕk j ⟩ = ∑ i |ϕk i ⟩Γk ij(g), (E, t)|ϕk j ⟩ = e−ik⋅t |ϕk j ⟩ Γkα G Γkα Γ Pkα ij := dkα |G| ∑ g∈G Γkα ij (g)*g, |ψkαjl i ⟩ := Pkα ij |ϕk l ⟩ = ∑ m |ϕk m⟩Ukαjl mi {|ψkαjl i ⟩}dkα i=1 Γkα U = (Ukαjl :,1 …Ukαjl :,dkα …) U−1 Γk (g)U = Γkα (g) O Γkα′  (g) O ⋱ [1] T. Maehara and K. Murota, SIAM J. Matrix Anal. Appl. 32, 2, pp.605-620 (2011). [2] N. Neto, Acta Cryst. A 29, 4, pp.464-472 (1973).
  • 15. 15 Example: symmetry-adapted tensor ‣ Symmetrize elastic constant (rank-2 tensor) ‣ Basis for symmetric tensor in Voigt order ‣ Action of rotation on basis ‣ Projection operator for to gives symmetry-adapted basis P = m3m ̂ R ∈ P Γ ⊗ Γ Γid [1] J. C. Thomas et al., J. Mech. Phys. Solids 107, 76-95 (2017). [2] M. El-Batanouny and F. Wooten, Symmetry and Condensed Matter Physics (Cambridge, 2008). C = 6 ∑ i,j=1 CijEi ⊗ Ej E1 = ( 1 0 0 0 0 0 0 0 0) , E2 = ( 0 0 0 0 1 0 0 0 0) , E3 = ( 0 0 0 0 0 0 0 0 1) , E4 = 1 2 ( 0 0 0 0 0 1 0 1 0) , E5 = 1 2 ( 0 0 1 0 0 0 1 0 0) , E6 = 1 2 ( 0 1 0 1 0 0 0 0 0) ̂ REj = REjR⊤ = 6 ∑ i=1 EiΓij( ̂ R) ̂ REj ⊗ Ej′  = ( ̂ REj) ⊗ ( ̂ REj′  ) = ∑ ii′  Ei ⊗ Ei′  Γij( ̂ R)Γi′  j′  ( ̂ R) Ẽ(1) = 1 3 (E1 ⊗ E1 + E2 ⊗ E2 + E3 ⊗ E3), Ẽ(2) = 1 3 (E4 ⊗ E4 + E5 ⊗ E5 + E6 ⊗ E6) Ẽ(3) = 1 6 (E2 ⊗ E3 + E3 ⊗ E1 + E1 ⊗ E2 + sym)
  • 16. 16 Example: block-diagonalizing dynamical matrix ‣ Consider to diagonalize harmonic lattice-vibration Hamiltonian ‣ Fourier-transform displacement (direction , atom in unit cell ) ‣ Representation matrix of space group and invariance [1] ‣ Enumerate unitary irreps of and apply projection operators uμ(lκ) μ κ l G Γkα G [1] A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1‒37 (1968). Hph = 1 2 ∑ q ∑ κμκ′  μ′  Φμμ′  (κκ′  ; q)uμ(κ; q)uμ′  (κ′  ; − q) u(κ; q) = Mκ N ∑ l u(lκ)eiq⋅r(l) (R, v)uμ(κ; q) = ∑ κ′  μ′  uμ′  (κ′  ; Rq)Γq κ′  μ′  ,κμ ((R, v)) Φ(Rq) = Γq ((R, v))Φ(q)Γq ((R, v))† (3 5 dimensions) Φ(q) (2+2+6+4+1 dimensions) UΦ(q)U†
  • 17. 17 Example: band connectivity ‣ Characters of irreps can be used to “sew” bands ‣ Each -vector has a di ff erent little group ‣ Pairs of irrep and eigenvalue, and , can be connected if includes [1] ‣ Currently implement for phonon, but application to wave functions is as well k (Γkα , λ) (Γk′  α′  , λ′  ) Γkα ↓ Gk′  Γk′  α′  [1] B. Bradlyn et al., Phys. Rev. B 97, 035138 (2018). phonondb/id-661/AlN χkα (g) = dα ∑ i=1 Γkα ii (g) (g ∈ Gk ) Gk = {(R, v) ∈ G ∣ Rk ≡ k} ⇔ 1 |Gk′  | ∑ g′  ∈Gk′  χkα (g′  )*χk′  α′  (g′  ) ≥ 1
  • 18. 18 Current limitation and future plan of spgrep ‣ No support of labeling of irreps (e.g. ) ‣ Need enormous look-up tables ‣ Bilbao Crystallographic Server provides ‣ Co-representation for magnetic space group (MSG) ‣ Spglib v.2 supports MSG ‣ Double representation [1] for spin system X1 [1] L. Elcoro, et al., J. Appl. Cryst. 50, 1457-1477 (2017).
  • 19. 19 Summary We have developed softwares to make it easier to use powerful symmetry analysis (MSG and irreps) with minimum background Magnetic space group (MSG) ‣ A FSG, XSG, and type of MSG are useful notions to classify and work with MSG ‣ Spglib v2 searches for magnetic symmetry operations and identify MSG from given cell and speci fi ed action Irreducible representation (irrep) of space group ‣ Irreps can be used for symmetry-adapted basis, block-diagonalization, and band connectivity ‣ Spgrep calculates irreps and symmetry-adapted basis
  • 20. 20 How to compute irreps on the fly