Successfully reported this slideshow.
Your SlideShare is downloading. ×

PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 36 Ad

PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)

Download to read offline

PFN福田圭祐による東大大学院「融合情報学特別講義Ⅲ」(2022年10月19日)の講義資料です。
・Introduction to Preferred Networks
・Our developments to date
・Our research & platform
・Simulation ✕ AI

PFN福田圭祐による東大大学院「融合情報学特別講義Ⅲ」(2022年10月19日)の講義資料です。
・Introduction to Preferred Networks
・Our developments to date
・Our research & platform
・Simulation ✕ AI

Advertisement
Advertisement

More Related Content

More from Preferred Networks (20)

Recently uploaded (20)

Advertisement

PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)

  1. 1. Keisuke Fukuda Preferred Networks, Inc. PFNにおける研究開発 深層学習からMN-3開発,そして社員の働き方 2022/10/19 融合情報学特別講義Ⅲ
  2. 2. 自己紹介 2 ● 福田圭祐 Keisuke Fukuda ○ 東京工業大学(Tokyo Tech) ○ Interests: ■ High Performance Computing(HPC) ● Perform large-scale parallel & distributed computing on supercomputers ■ Joined PFN in Apr. 2017 ■ Distributed / Paralell Deep learning, performance optimization
  3. 3. Introduction to Preferred Networks Making the real world computable
  4. 4. Our Vision 4 We make cars, robots, and other devices more intelligent by fusing software and hardware in a sophisticated manner. By making devices intelligent enough to adapt to continuously changing environments and conditions, our world becomes computable through real-time sensing of the physical world. We do not compete in familiar territory, but rather take on ambitious technological challenges. By leveraging the latest technologies, we want to advance the frontiers of knowledge and discover the world of the future. Making the real world computable. With our innovative and essential technologies, we venture into the unknown.
  5. 5. Company information 5 Manufacturing Logistics Transportation Bio & Healthcare Personal Robot Entertainment Founded March 2014 Directors CEO Toru Nishikawa CER Daisuke Okanohara CTO Ryosuke Okuta Located Tokyo, Japan (HQ) ​ Burlingame, CA., US (Preferred Networks America, Inc.)​ Number of Employees 270+ Engineers & Researchers (October, 2020)​
  6. 6. 2021, 2020 ● No.1 on Green500 list of the world’s most energy-efficient supercomputers 2019 ● Prime Minister’s Award, Nippon Venture Awards 2018 ● Grand Prize37th NIKKEI Product and Service Excellence Award ● Open Source Data Science Project Award, ODSC East 2018 2017 ● Japan-U.S. Innovation Awards「Emerging Leader Award」 ● FT ArcelorMittal Boldness in Business Awards ● METI Minister’s Award, Nippon Venture Award 2016 ● 1st Annual JEITA Venture Awards ● Forbes JAPAN’s CEO OF THE YEAR 2016 ● 「1st place - Most innovative startup」 Awards 6
  7. 7. We develop practical applications of cutting-edge technologies Preferred Networks (PFN) develops practical applications of deep learning and other cutting- edge technologies in order to solve real-world problems that are difficult to address with existing technologies. Our Focus 7
  8. 8. Our Capabilities 8 Deep Learning World class researchers focusing on deep learning Expertise Wide range of deep expertise from robotics to genomics to computational chemistry World class computational resources designed for deep learning application PrivateSuper Computer Software In-house developments of OSS and hyperparameter tuning library to accelerate software development
  9. 9. ● PFN collaborates with world-leading corporations and organizations to drive innovation in a wide range of fields. We aim to build long-term relationships with our partners to create new innovations that lead to creation of new businesses Our Business Cutting-edge technology x Computational resources Business challenges x High quality data Creation of new businesses Software Applications x Intellectual Property R&D projects Profit sharing Partnering Company
  10. 10. Our Values 10 Preferred Networks is a young, yet rapidly growing company Our Values are what make us different As PFN members, we question: what should we do and not do? who are we and what do we consider important? To answer these questions, we came up with the four statements as our code of conduct, or PFN Values
  11. 11. ● Employees: 300+ (270+ engineers & researchers) ● Top Management + Corporate Officers = 12 ● Each team consists of an Engineering Manager + members ○ Many members belong to multiple teams concurrently ○ Slack-based communications, most channels are open ● Working style under COVID-19 era ○ WFH (Work-from-home) by default ○ Slack / Zoom / Google Meet / Jamboard / Mural ● We are exploring a new workign style for post COVID-19 era How we work in PFN 11 Teams (EM + 3-10 ppl. each) Corporate Officers (9) Top Management (3)
  12. 12. Our developments to date
  13. 13. Industry automation powered by deep learning technologies 13 Autonomous learning for bin-picking robot. The robot gathers data by trial and error and learns the place where it is likely to pick the piece up by using deep learning (as of December 2015). https://youtu.be/ydh_AdWZflA
  14. 14. @ICRA 2017 voice Recognition + object picking 14 “Interactively Picking Real-World Objects with Unconstrained Spoken Language Instructions” arXiv:1710.06280 • ICRA is a top-tier conference on robotics • Best Paper Award on Human-Robot Interaction • Technologies: • Visual recognition • Natural language processing (NLP) • The robot can understand ambiguous words: • ”The Teddy bear” • ”The brown fluffy stuff” https://youtu.be/_Uyv1XIUqhk
  15. 15. Factory and plant operation control using deep learning 15 PFN is working with ENEOS (formerly JXTG Nippon Oil & Energy Corporation) on a joint research project regarding optimization and automation of oil refineries. An oil refinery is a very complex system consisting of hundreds of processes and thousands of sensors and actuators. Because of its massive production scale of petrochemical products, an improvement of a fraction of a percent of productivity delivers significant cost reductions. By leveraging PFN’s deep learning technology, the joint venture aims to automatically control and optimize large and complex plant equipment for more efficient use of energy resources. ENEOS’ Kawasaki Refinery. ML-based control model can be used to keep plant machine operation stable against unknown external disturbance DL-based Digital Twins for advanced automation and optimization
  16. 16. 16 https://matlantis.com
  17. 17. 17 https://petalica-paint.pixiv.dev/index_ja.html ロボット系エンジニアが、サイドプロジェクトとして開始→正式プロジェクトへ
  18. 18. Crypko™: High-quality Anime Character Generation and Design 18 Deep learning can revolutionize the entertainment industry PFN’s technology Crypko uses state- of-the-art generative models, a branch of techniques in deep learning, to generate a potentially infinite set of unique, high quality characters not contained in the training data. Furthermore, it can fuse several characters into new characters, inheriting their distinctive features Crypko’s character fusion. From the two characters on the top row, Crypko can generate characters on the bottom row that inherit distinctive features of the input characters For more information please visit our entertainment page: https://preferred.jp/en/projects/entertainment/
  19. 19. Playgram™ / Playgram typing™: Programming education for kids 19 Virtual, high-quality learning experience in Computer Science PFN has developed Playgram™, a programming education app primarily targeting students in elementary school and above. PFN has teamed up with Yaruki Switch Group (YSG), Japan’s leading education group with a diverse range of programs and over 1,700 schools, to build a programming course package using Playgram. Beginning August 2020, YSG will first pilot the package in three schools in the Tokyo area, both in classrooms and online. Developed by PFN’s software engineers at the forefront of artificial intelligence technologies, Playgram incorporates the K-12 Computer Science Framework, a U.S. guideline for computer science education. The app will be available in Japanese at launch For more infromation, please visit our Playgram website: https://playgram.jp/ Bridges the gap between visual and text-based coding Rich 3D interface that inspires creativity Adaptive learning system and user- friendly tutorials
  20. 20. Optuna™: Automation for Hyper-parameter Tuning 20 Optimize Your Optimization An open source hyperparameter optimization framework to automate hyperparameter search In deep learning, it is essential to tune hyperparameters since they control how an algorithm behaves. The precision of a model largely depends on tuning a large number of hyperparameters, including training iterations, neural network layers and channels, learning rate, batch size, and so on. Optuna, an open source technology developed at PFN, automates this trial-and-error process of optimizing the hyperparameters. It automatically finds optimal hyperparameter values that enable the algorithm to give excellent performance. Optuna can be used for any black-box optimization problems.
  21. 21. Consistent contributions to Research 21 Examples of recent PFN publications in top-tier conferences (in 2022) ● [J. Chem. Inf. Model.2022] “Molecular Design Method Using a Reversible Tree Representation of Chemical Compounds and Deep Reinforcement Learning” ● [BMVC2022] “Multi-View Neural Surface Reconstruction with Structured Light” ● [NeurIPS 2022] “Unsupervised Learning of Equivariant Structure from Sequences” ● [NeurIPS 2022] “Decomposing NeRF for Editing via Feature Field Distillation” ● [Lung Cancer 2022] “Machine Learning-based Exceptional Response Prediction of Nivolumab Monotherapy with Circulating MicroRNAs in Non-Small Cell Lung Cancer” ● [ICAIF 2022] “Theoretically Motivated Data Augmentation and Regularization for Portfolio Construction” ● [ICAIF 2022] “Efficient Learning of Nested Deep Hedging using Multiple Options” ● [ROMAN 2022] “F3 Hand: A Versatile Robot Hand Inspired by Human Thumb and Index Fingers” ● [Nature Communications 2022] “Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements” ● [Physical Review Research 2022] “Power Laws and Symmetries in a Minimal Model of Financial Market Economy”
  22. 22. Our research & platform
  23. 23. Total of 2,560 GPUs Total 200 PFLOPS Listed No.1 in Japan amongst private entity 1 PETA FLOPS = 1,000 trillion Floating-point Operations Per Second Our Infrastructure 23 MN-Core MN-Core Board x 4 CPU Intel Xeon 8260M 2way (48 physical cores) Memory 384GB DDR4 Storage Class Memory 3TB Intel Optane DC Persistent Memory Network MN-Core DirectConnect(112Gbps) x 2 Mellanox ConnectX-6(100GbE) x 2 On board(10GbE) x 2 MN-3 specs Deep learning processor MN-Core Supercomputer designed for deep learning application MN-1 MN-2 MN-3 For more information please visit: https://projects.preferred.jp/supercomputers/en/
  24. 24. The MN series: PFN’s in-house supercomputers 24  MN-1a (Sep. ’17〜) ━ 1024 NVIDIA Tesla P100 + IB FDR ━ Peak 19.1 Peta FLOPS (SP) ━ #227 in Top500 Nov. 2018  MN-1b (July. ’18〜) ━ 512 NVIDIA Tesla V100 + IB EDR ━ Peak 57.3 Peta (tensor) Flops  MN-2b (July. ’19〜) ━ 1024 NVIDIA Tesla V100 + IB EDR ━ 128 Peta (Tensor) Flops  MN-3 (Nov. 20〜) ━ We’ll later!
  25. 25. 0 10 20 30 40 50 60 70 Time [min] Training time of ResNet-50 (90 epochs) on ImageNet Achievement on MN-1a: ImageNet in 15 minutes 25 2018 July 2018 Nov 2017 Nov arXiv: 1711.04325 Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes 2018 Nov
  26. 26. Achievement on MN-1b: PFDet in OIC 2019 26
  27. 27. ● Google AI Open Images - Object Detection Track ○ Competition using Largest-class image dataset ○ 12 million bounding boxes, 1.7 million images ○ 454 competitiors ○ Approx. 500GB (annotated subset) ● Object detection: much harder than object recognition task Achievement on MN-1b: PFDet in OIC 2018 27
  28. 28. https://tech.nikkeibp.co.jp/atcl/nxt/column/18/01006/101000005/ 28
  29. 29. Simulation ✕ AI 29
  30. 30. ○ c.f. 「演繹から帰納へ〜新しいシステム開発パラダイム〜」丸山宏, PPL2018 招待講演 ○ 特別なものではなく、実装手法の1つとして広く使われるようになっていくのでは? AIはコンピューターサイエンスのコア技術になっていく AIが向いている場面 AIが不向きな場面 • データが大量(or 生成可能) • 誤差が許容される • 現象が複雑/原理が不明 • シミュレーションが困難/計算量多い • 法則・原理が一定 • 予測が目的 • データが少ない • 厳密さが必要 • 演繹的プログラミングが可能 • シミュレーションが容易/手法が確立 • 過去から未来が予測できない • メカニズムの理解が目的 ⇒困難なタスクは 計算パワーで解く ⇒計算パワーが無いと 戦えない Conventional Programming 従来のプログラミング 演繹的プログラミング (Deductive programming) Machine Learning 機械学習 帰納的プログラミング (Reductive programming)
  31. 31. Simulationとは: ● 現実世界の物理法則を数式でモデル化し、計算機上で計算によって再現・予測 する ● 流体、天体、気象、機械設計、材料化学、・・・ Simulationの課題 ● 複雑すぎる現象・Multiphysics(ex. 構造連成計算、気象) ● 計算量の爆発 Simulation 31
  32. 32. ● これまで深層学習の実用化はデータが容易に入手可能な分野(ウェブ、バーチ ャル)に限られていた。 ● 今後、実世界の問題に深層学習を導入していくためにはシミュレーション利用 が不可欠である ● データが21世紀の石油と言われる中で、そのデータ自身を作れるシミュレーシ ョンを揃えていくことが重要となる ● またシミュレーション自体も深層学習を利用することで劇的に高速化、多様化 を達成できる 今後シミュレーションが重要となる 32
  33. 33. SimulationとAI は相性が良い 33 Simulationの中でも難しいとされているものに対して、AIを 組み合わせて互いに補い合う AIが向いている場面 AIが不向きな場面 • データが大量(or 生成可能) • 誤差が許容される • 現象が複雑/原理が不明 • シミュレーションが困難/計算量多い • 法則・原理が一定 • 予測が目的 • データが少ない • 厳密さが必要 • 演繹的プログラミングが可能 • シミュレーションが容易/手法が確立 • 過去から未来が予測できない • メカニズムの理解が目的 Simulationが向いている場面 Simulationが不向きな場面 • 少ない物理法則から、モデル化可能 • 保存則などを厳密に維持可能 • メカニズムの理解・予測の両方 • 現象が複雑・原理が不明なものは難 • 計算量が爆発する Simulationが深層学習を助ける • 網羅的なデータを入手可能 • ラベルを作るのが難しい場合もラベル 付が可能 • 最適化、強化学習に必要なWhat-If分析 が可能 深層学習がSimulationを助ける • シミュレーションの高速化 • データからシミュレーションを学習す る • データ同化、パラメータ推定を助ける
  34. 34. 34 https://matlantis.com AI x Simulationの事例(1)
  35. 35. ● 2022年度夏季インターンシップの成果(東京大学・助田さん) ● 気象シミュレーションは、シミュレーションの中でも特に難しい分野 ○ 観測データが少ない(観測機器の制約) ○ 計算量が多い ○ 現象が複雑 ● このテーマでは、「計算量が多い」という課題に着目して、スパコンで実行されるシミュレーターを 省メモリで模倣計算することにチャレンジ 数値シミュレーションデータの低次元潜在空間における時間発展ダイナミクスの学習 35 AI x Simulationの事例(2) Preferred Networks Tech Blog “数値シミュレーションデータの低次元潜在空間における時間発展ダイナミクスの学習”
  36. 36. このあと続く Deep Learningのための専用プロセッサ「MN-Core」の開発と活用 金子 紘也 Hiroya Kaneko ● PFNにとっての計算能力の位置付け ● 代表的なDeep Learningの高速化手法 ● なぜ今プロセッサ開発なのか? ● MN-Coreの概要 ● 開発チームの働き方 ● 最近の成果

×