SlideShare a Scribd company logo
Figure 1.  Drawing of renal glomerulus
showing  afferent  arteriole  (AA),
efferent  arteriole  (EA),  glomerulur
tufts,  Bowman’s  space  (BS)  and  the
initial proximal tubule (PT).
Sodium transport in the kidney
I. David Weiner, M.D.
374‐6102
David.Weiner@medicine.ufl.edu
www.RenalLectures.com 
A major function of the kidney is regulating extracellular fluid composition .
Normal variation in the intake of substances such as water, salt (NaCl), potassium and
glucose, and in the generation of metabolic waste products, such
as urea, requires the ability to regulate the excretion of solutes.
Sweat and stool content of these solutes are low and relatively
constant.  Therefore other mechanisms are used to regulate the
body's content of these. 
In general, the primary mechanism through which the
body  regulates  its  content  of  water  soluble  compounds  is
through variations in urinary excretion.
The kidney, for most solutes, uses a two‐step mechanism
to regulate body fluid composition.  The first stage filters blood,
separating components that should never be excreted into the
urine from those that need to be excreted under either some or
all conditions.  The second step is to reabsorb the water and
electrolytes from this glomerular filtrate in the amounts needed
to maintain health.  
Examples of blood components that should never be in
the urine are cellular components (RBC, WBC and platelets),
albumin  and  other  proteins,  and  lipids.    Examples  of
components routinely present in the urine include water (H2O),
sodium (Na+
), potassium (K+
), glucose and urea.
Glomerular  filtration  (Figure  1)  separates  these
components (see other lectures).  Fluid that
enters  Bowman’s  space  and  then  into  the
lumen of the proximal tubule consists of water
(H2O),  and  the  majority  of  water‐soluble
minerals,  electrolytes  and  other  solutes
present in blood.
As noted above, water and electrolytes
are reabsorbed from glomerular filtrate in the
amounts needed to maintain health.  Table 1
shows  quantitative  considerations  of  renal
filtration and reabsorption of water and other
filtered minerals and molecules.  In general,
Substance Units Filtered Excrete
Reabsorbed
Amount %
Water L/day 180 1 179 99.4%
Na+
mEq/d 25,200 150 25,050 99.4%
K+
mEq/d 720 100 620 86.1%
Ca+2
mEq/d 540 10 530 98.1%
HCO3
‐
mEq/d 4,320 4 4,316 99.9%
Cl‐
mEq/d 18,000 150 17,850 99.2%
Glucose mmol/d 800 0 800 100.0%
Table 1.  Filtration and reabsorption of ions and other
molecules by the kidney.
Sodium transport in the kidney
Page 2 of 5
~
3 Na+
2 K+
[Na+] ~10-20
mEq/L
-70
mV
Figure 3.  Effect of basolateral Na+
‐
K+
‐ATPase  on  intracellular  sodium
concentration  and  membrane
potential.
Figure  4.    Sodium  reabsorption
along the nephron.  PT ‐ Proximal
tubule; TAL ‐ thick ascending limb of
the  loop  of  Henle;  DT  ‐  distal
connecting  tubule;  CCD  ‐  cortical
collecting  duct;  IMCD  ‐  inner
medullary collecting duct.
the kidneys adjust reabsorption so that excretion balances the
difference between intake, typically oral intake, and extra‐renal
excretion.  For example, if someone is dehydrated, GFR and thus the
filtered amount of water is constant, but renal water reabsorption
increases to decrease net urinary water excretion.  Conversely, if
someone  is  studying  and  drinking  lots  of  iced  tea,  which  is
predominantly H2O, the amount of H2O filtered at the glomerulus
does  not  change  substantially,  but  H2O  reabsorption  decreases
resulting  in  more  H2O  excretion  in  the  urine  and  resultant
maintenance of water homeostasis.  The sodium transporters used
to maintain sodium balance are the primary focus of this lecture.
The kidney generally, uses a multi‐step process to reabsorb
filtered  solutes.    The  first  step  is  bulk  reabsorption  of  large
quantities of solute.  Although some regulation occurs at this stage,
the  large  quantities  of  solute  reabsorbed  preclude  the  exact
regulation  necessary  for  long‐term  health.    The  second  step  is
intermediate quantity reabsorption associated with intermediate
level regulation, and the third and final step, which mediates  the
final regulation of the urine composition, has low rates of solute
transport but with high level regulation.  Typically, these three
steps occur in the proximal tubule, loop of Henle and the collecting
duct (please give me some artistic
license  to  simplify  these  functions
and their anatomic location).
Throughout  the  nephron,
sodium reabsorption is due to the
effects  of  basolateral  Na+
‐K+
‐
ATPase.    As  shown  in  Figure  3,  a
ubiquitous  basolateral  Na+
‐K+
‐
ATPase, present in all renal tubular
cells,  generates  both  intracellular
electronegativity  and  a  low  intra‐
cellular sodium concentration, both
of  which  provide  a  gradient  for
sodium entry into cells.
Figure  4  summarizes  the
relative roles of sodium reabsorption
along  the  nephron.    The  proximal
tubule is the primary site of bulk reabsorption, while the thick
ascending  limb  of  the  loop  of  Henle  reabsorbs  most  of  the
remaining sodium, and the distal tubule and the collecting duct
accounts for the remaining sodium reabsorption.
Figure  2.    Diagram  showing
intimate  contact  between
peritubular capillaries and nephron.
This enables solute reabsorbed by
renal epithelial cells to diffuse into
peritubular  capillaries  and  be
returned to systemic circulation via
renal vein.
Sodium transport in the kidney
Page 3 of 5
Na+
K+
2 Cl-
Na+
H+
Cl-
~
Na+
K+
Lumen Peritubular
Figure  6.    Sodium  reabsorption  in  the
thick  ascending  limb  of  the  loop  of
Henle.
Na+
H+
Glucose,
Phosphate,
Amino acids,
or lactate
Na+
Na+
K+
Lumen
(Urine)
Peritubular
(Blood)
Figure  5.    Sodium  reabsorption  in
the early proximal tubule.
Na+
Cl-
~
Na+
K+
Cl-
Lumen Peritubular
H2O
Figure 7.  Sodium reabsorption in
the distal convoluted tubule.
The specific mechanism of sodium reabsorption differs in different segments. 
The majority of sodium reabsorption occurs in the proximal tubule.  Sodium reabsorption
is linked to reabsorption of bicarbonate, glucose, phosphate, amino acids and chloride.  Figure
5 summarizes sodium reabsorption in the early regions of the proximal tubule.  The importance of
sodium‐linked  proton  secretion  will  be  discussed  in  the
lecture  on  acid‐base  transport.    Sodium‐linked  glucose,
phosphate, amino acid and lactate reabsorption are critical
to  reabsorbing  these  essential  solutes,  and  occurs
predominantly in the proximal tubule.
Little‐to‐no sodium is reabsorbed in the descending
thin limb or the ascending thin limb of the loop of Henle.
The thick ascending limb of the loop of Henle is the
next major region of sodium reabsorption.  Approximately
25% of filtered sodium
is  reabsorbed  here.
Figure 6 summarizes sodium reabsorption in this region.  The
primary mechanism of sodium reabsorption in this region is an
apical  Na+
‐K+
‐2Cl‐
  cotransporter.    Because  this  protein
transports equal numbers of cations and anions, it does not
move net charge. Instead the low intracellular sodium and
chloride concentrations “drive” the transport, and result in
potassium moving into the cell despite the high intracellular
potassium concentration.  This potassium recycles into the
luminal fluid through a potassium channel.  The movement of
potassium back into the luminal fluid causes the luminal fluid
to become positively charged.  This voltage is important for
reabsorption of calcium in this segment.  An apical Na+
/H+
exchanger is also present, but is quantitatively less important
in sodium reabsorption.  
The distal convoluted tubule is the next site for sodium
reabsorption.  Its sodium transport mechanism is shown in Figure 7.
Sodium is reabsorbed by an apical sodium‐chloride cotransporter
that transports equal amounts of sodium and chloride.  Because
water  does  not  cross  the  apical  membrane  in  this  segment
hypotonic  luminal  fluid  with  a  low  sodium  concentration  is
generated (the importance of this will be seen in the lecture on
water transport).
The  last  segment  involved  in  sodium  transport  is  the
collecting duct.  In this segment sodium is reabsorbed by a specific
cell, the principal cell.  Figure 8 summarizes sodium transport in the
collecting duct.  Sodium enters the cell via an apical protein, the
Sodium transport in the kidney
Page 4 of 5
Na+
K+
~
Na+
K+
Lumen Peritubular
Figure 8.  Sodium transport in the
collecting duct principal cell.
epithelial Na channel (ENaC), that transports sodium in the form of Na+
.  Na+
 moves into the cell
because of the low intracellular Na+
 concentration and  the intracellular electronegativity that are
generated by the basolateral Na+
‐K+
‐ATPase.
Because sodium enters the cell without an associated anion,
its movement out of the luminal fluid results in loss of positive
charge and the subsequent development of a net negative charge
in the luminal fluid.  Potassium can move out of the cell into the
luminal fluid partially as a result of luminal electronegativity and
partially because intracellular potassium concentrations are high
(due  to  basolateral  Na+
‐K+
‐ATPase).    Conditions  that  regulate
sodium transport in the collecting duct also regulate potassium
secretion.
Regulation of sodium transport
Because sodium balance determines the circulating plasma
volume,  any condition that alters plasma volume will alter sodium transport by the renal tubules.
These effects are mediated via hormones released by other cells.  In general, conditions associated
with plasma volume expansion inhibit
stimuli  that  increase  sodium
reabsorption,  whereas  the  opposite
occurs in response to plasma volume
contraction.    Table  2  summarizes
important  sodium  transport
regulators.
Pharmacologic inhibition of sodium
transport
Many  clinical  conditions  are
associated with relatively inadequate
sodium excretion by the kidney.  Examples include hypertension, heart failure, liver disease and
kidney disease.  Medications that inhibit renal sodium transport are very effective for treating
these conditions.  Effective inhibitors of proximal tubule sodium transport mechanisms are not
available.  
Inhibitors of the thick ascending limb of loop of Henle Na+
‐K+
‐2Cl‐
 cotransporter are termed
“loop diuretics” and are potent medications that increase sodium excretion.  
Distal  convoluted  tubule  sodium‐chloride  cotransport  inhibitors,  known  as  “thiazide
diuretics” because of their chemical structure, are the second most potent drugs for increasing
urinary sodium excretion.  
Both loop diuretics and thiazide diuretics increase sodium delivery to the collecting duct.
The  collecting  duct  does  not  have  adequate  sodium  transport  capacity,  so  the  net  effect  is
increased sodium excretion into the urine. However, the collecting duct will “attempt” to correct
Hormone Stimulus Site of action Effect
Angiotensin II Renin PT, TAL, CD 8
Aldosterone AII, 8[K+
] DT, CD 8
Sympathetic nerves 9BP, 9ECV PT, TAL 8
ANP 8BP, 8ECV CD 9
NO PT, CD 9
Table  2.    Hormonal  regulation  of  renal  Na+
  transport.
Abbreviations: BP, blood pressure; ECV, extracellular volume; PT,
proximal tubule; TAL, thick ascending limb of the loop of Henle;
DT, distal tubule; CD, collecting duct.
Sodium transport in the kidney
Page 5 of 5
this increase sodium excretion by increasing sodium reabsorption. Although this “attempt” is
insufficient to correct the sodium excretion, it does cause collecting duct potassium secretion to
increase, and can lead to potassium deficiency (this is covered in more detail in the potassium
lecture).
Inhibitors of collecting duct ENaC have less effect on net sodium transport because so little
sodium is reabsorbed in the collecting duct.  However, sodium reabsorption is critical for potassium
secretion,  and  the  collecting  duct  is  the  primary  site  regulating  renal  potassium  excretion.
Accordingly,  collecting  duct  sodium  transport  inhibitors  decrease  potassium  excretion.
Consequently, they are often termed “potassium‐sparing diuretics.”

More Related Content

What's hot

Embryology urogenital system
Embryology    urogenital systemEmbryology    urogenital system
Embryology urogenital system
MBBS IMS MSU
 
36. kidney 2-08-09
36. kidney 2-08-0936. kidney 2-08-09
36. kidney 2-08-09
Nasir Koko
 

What's hot (20)

GASTRIC FUNCTION TESTS
GASTRIC FUNCTION TESTS GASTRIC FUNCTION TESTS
GASTRIC FUNCTION TESTS
 
Blood indices
Blood indicesBlood indices
Blood indices
 
Embryology urogenital system
Embryology    urogenital systemEmbryology    urogenital system
Embryology urogenital system
 
Enterohepatic circulation and Hepatic Portal circulation
Enterohepatic circulation and Hepatic Portal circulationEnterohepatic circulation and Hepatic Portal circulation
Enterohepatic circulation and Hepatic Portal circulation
 
Human Urinary system: Anatomy and Physiology
Human Urinary system: Anatomy and PhysiologyHuman Urinary system: Anatomy and Physiology
Human Urinary system: Anatomy and Physiology
 
histologic structure of female genital system
histologic structure of female genital systemhistologic structure of female genital system
histologic structure of female genital system
 
renal function tests by Dr siva kumar
renal function tests by Dr siva kumarrenal function tests by Dr siva kumar
renal function tests by Dr siva kumar
 
Gross anatomy and Histology of urinary system.
Gross anatomy and Histology of urinary system.Gross anatomy and Histology of urinary system.
Gross anatomy and Histology of urinary system.
 
Physiology of Urine Formation
Physiology of Urine Formation Physiology of Urine Formation
Physiology of Urine Formation
 
Sickle cell anaemia
Sickle cell anaemiaSickle cell anaemia
Sickle cell anaemia
 
Renal function test
Renal function testRenal function test
Renal function test
 
LIVER PATHOLOGY
LIVER PATHOLOGYLIVER PATHOLOGY
LIVER PATHOLOGY
 
Histology of the Respiratory System
Histology of the Respiratory SystemHistology of the Respiratory System
Histology of the Respiratory System
 
Urine analysis
Urine analysisUrine analysis
Urine analysis
 
Renal function tests
Renal function testsRenal function tests
Renal function tests
 
36. kidney 2-08-09
36. kidney 2-08-0936. kidney 2-08-09
36. kidney 2-08-09
 
Physiology of the kidneys
Physiology of the kidneysPhysiology of the kidneys
Physiology of the kidneys
 
Lec 40
Lec 40Lec 40
Lec 40
 
RENAL FUNCTION TESTS (RFT)
RENAL FUNCTION TESTS (RFT)RENAL FUNCTION TESTS (RFT)
RENAL FUNCTION TESTS (RFT)
 
Lecture urinary system histology
Lecture urinary system histologyLecture urinary system histology
Lecture urinary system histology
 

Similar to Sodium Transport Mechanism in Regulating ECF Fluid Osmolarity.

11.3 the kidney
11.3 the kidney11.3 the kidney
11.3 the kidney
cartlidge
 
42072060 fisiologi-ginjal
42072060 fisiologi-ginjal42072060 fisiologi-ginjal
42072060 fisiologi-ginjal
shafhandustur
 
Excretion Topic 11.3
Excretion Topic 11.3Excretion Topic 11.3
Excretion Topic 11.3
Bob Smullen
 
renaltubuletransportmechanisms.pdf
renaltubuletransportmechanisms.pdfrenaltubuletransportmechanisms.pdf
renaltubuletransportmechanisms.pdf
KovacicZanetti
 

Similar to Sodium Transport Mechanism in Regulating ECF Fluid Osmolarity. (20)

Renal physiology introduction.
Renal physiology introduction.Renal physiology introduction.
Renal physiology introduction.
 
11.3 the kidney
11.3 the kidney11.3 the kidney
11.3 the kidney
 
Renal physiology
Renal physiologyRenal physiology
Renal physiology
 
fisiologi-ginjal
fisiologi-ginjalfisiologi-ginjal
fisiologi-ginjal
 
42072060 fisiologi-ginjal
42072060 fisiologi-ginjal42072060 fisiologi-ginjal
42072060 fisiologi-ginjal
 
Excretion Topic 11.3
Excretion Topic 11.3Excretion Topic 11.3
Excretion Topic 11.3
 
Lecture 3.pdfdrhsdysehsryryrdyryryryrdyr
Lecture 3.pdfdrhsdysehsryryrdyryryryrdyrLecture 3.pdfdrhsdysehsryryrdyryryryrdyr
Lecture 3.pdfdrhsdysehsryryrdyryryryrdyr
 
PHYSIOLOGY OF CONNECTING TUBULE AND COLLECTING DUCT
PHYSIOLOGY OF CONNECTING TUBULE AND COLLECTING DUCTPHYSIOLOGY OF CONNECTING TUBULE AND COLLECTING DUCT
PHYSIOLOGY OF CONNECTING TUBULE AND COLLECTING DUCT
 
The role of kidney in the regulation of
The role of kidney in the regulation of The role of kidney in the regulation of
The role of kidney in the regulation of
 
kidney
kidneykidney
kidney
 
renaltubuletransportmechanisms.pdf
renaltubuletransportmechanisms.pdfrenaltubuletransportmechanisms.pdf
renaltubuletransportmechanisms.pdf
 
Renal tubule transport mechanisms
Renal tubule transport mechanismsRenal tubule transport mechanisms
Renal tubule transport mechanisms
 
mbbs ims msu
mbbs ims msumbbs ims msu
mbbs ims msu
 
Urinary system
Urinary systemUrinary system
Urinary system
 
Tubular handling of water
Tubular handling of waterTubular handling of water
Tubular handling of water
 
mbbs ims msu
mbbs ims msumbbs ims msu
mbbs ims msu
 
Lecture 4
Lecture 4Lecture 4
Lecture 4
 
A p fluidandeletrolytebalance.bcc share
A p fluidandeletrolytebalance.bcc shareA p fluidandeletrolytebalance.bcc share
A p fluidandeletrolytebalance.bcc share
 
A p fluidandeletrolytebalance.bcc share
A p fluidandeletrolytebalance.bcc shareA p fluidandeletrolytebalance.bcc share
A p fluidandeletrolytebalance.bcc share
 
Renal physiology-1
Renal physiology-1Renal physiology-1
Renal physiology-1
 

More from meducationdotnet

More from meducationdotnet (20)

No Title
No TitleNo Title
No Title
 
Spondylarthropathy
SpondylarthropathySpondylarthropathy
Spondylarthropathy
 
Diagnosing Lung cancer
Diagnosing Lung cancerDiagnosing Lung cancer
Diagnosing Lung cancer
 
Eczema Herpeticum
Eczema HerpeticumEczema Herpeticum
Eczema Herpeticum
 
The Vagus Nerve
The Vagus NerveThe Vagus Nerve
The Vagus Nerve
 
Water and sanitation and their impact on health
Water and sanitation and their impact on healthWater and sanitation and their impact on health
Water and sanitation and their impact on health
 
The ethics of electives
The ethics of electivesThe ethics of electives
The ethics of electives
 
Intro to Global Health
Intro to Global HealthIntro to Global Health
Intro to Global Health
 
WTO and Health
WTO and HealthWTO and Health
WTO and Health
 
Globalisation and Health
Globalisation and HealthGlobalisation and Health
Globalisation and Health
 
Health Care Worker Migration
Health Care Worker MigrationHealth Care Worker Migration
Health Care Worker Migration
 
International Institutions
International InstitutionsInternational Institutions
International Institutions
 
Haemochromotosis brief overview
Haemochromotosis brief overviewHaemochromotosis brief overview
Haemochromotosis brief overview
 
Ascities overview
Ascities overviewAscities overview
Ascities overview
 
Overview of the Liver
Overview of the LiverOverview of the Liver
Overview of the Liver
 
Overview of Antidepressants
Overview of AntidepressantsOverview of Antidepressants
Overview of Antidepressants
 
Gout Presentation
Gout PresentationGout Presentation
Gout Presentation
 
Review of orthopaedic services: Prepared for the Auditor General for Scotland...
Review of orthopaedic services: Prepared for the Auditor General for Scotland...Review of orthopaedic services: Prepared for the Auditor General for Scotland...
Review of orthopaedic services: Prepared for the Auditor General for Scotland...
 
Sugammadex - a revolution in anaesthesia?
Sugammadex - a revolution in anaesthesia?Sugammadex - a revolution in anaesthesia?
Sugammadex - a revolution in anaesthesia?
 
Ophthamology Revision
Ophthamology RevisionOphthamology Revision
Ophthamology Revision
 

Sodium Transport Mechanism in Regulating ECF Fluid Osmolarity.

  • 1. Figure 1.  Drawing of renal glomerulus showing  afferent  arteriole  (AA), efferent  arteriole  (EA),  glomerulur tufts,  Bowman’s  space  (BS)  and  the initial proximal tubule (PT). Sodium transport in the kidney I. David Weiner, M.D. 374‐6102 David.Weiner@medicine.ufl.edu www.RenalLectures.com  A major function of the kidney is regulating extracellular fluid composition . Normal variation in the intake of substances such as water, salt (NaCl), potassium and glucose, and in the generation of metabolic waste products, such as urea, requires the ability to regulate the excretion of solutes. Sweat and stool content of these solutes are low and relatively constant.  Therefore other mechanisms are used to regulate the body's content of these.  In general, the primary mechanism through which the body  regulates  its  content  of  water  soluble  compounds  is through variations in urinary excretion. The kidney, for most solutes, uses a two‐step mechanism to regulate body fluid composition.  The first stage filters blood, separating components that should never be excreted into the urine from those that need to be excreted under either some or all conditions.  The second step is to reabsorb the water and electrolytes from this glomerular filtrate in the amounts needed to maintain health.   Examples of blood components that should never be in the urine are cellular components (RBC, WBC and platelets), albumin  and  other  proteins,  and  lipids.    Examples  of components routinely present in the urine include water (H2O), sodium (Na+ ), potassium (K+ ), glucose and urea. Glomerular  filtration  (Figure  1)  separates  these components (see other lectures).  Fluid that enters  Bowman’s  space  and  then  into  the lumen of the proximal tubule consists of water (H2O),  and  the  majority  of  water‐soluble minerals,  electrolytes  and  other  solutes present in blood. As noted above, water and electrolytes are reabsorbed from glomerular filtrate in the amounts needed to maintain health.  Table 1 shows  quantitative  considerations  of  renal filtration and reabsorption of water and other filtered minerals and molecules.  In general, Substance Units Filtered Excrete Reabsorbed Amount % Water L/day 180 1 179 99.4% Na+ mEq/d 25,200 150 25,050 99.4% K+ mEq/d 720 100 620 86.1% Ca+2 mEq/d 540 10 530 98.1% HCO3 ‐ mEq/d 4,320 4 4,316 99.9% Cl‐ mEq/d 18,000 150 17,850 99.2% Glucose mmol/d 800 0 800 100.0% Table 1.  Filtration and reabsorption of ions and other molecules by the kidney.
  • 2. Sodium transport in the kidney Page 2 of 5 ~ 3 Na+ 2 K+ [Na+] ~10-20 mEq/L -70 mV Figure 3.  Effect of basolateral Na+ ‐ K+ ‐ATPase  on  intracellular  sodium concentration  and  membrane potential. Figure  4.    Sodium  reabsorption along the nephron.  PT ‐ Proximal tubule; TAL ‐ thick ascending limb of the  loop  of  Henle;  DT  ‐  distal connecting  tubule;  CCD  ‐  cortical collecting  duct;  IMCD  ‐  inner medullary collecting duct. the kidneys adjust reabsorption so that excretion balances the difference between intake, typically oral intake, and extra‐renal excretion.  For example, if someone is dehydrated, GFR and thus the filtered amount of water is constant, but renal water reabsorption increases to decrease net urinary water excretion.  Conversely, if someone  is  studying  and  drinking  lots  of  iced  tea,  which  is predominantly H2O, the amount of H2O filtered at the glomerulus does  not  change  substantially,  but  H2O  reabsorption  decreases resulting  in  more  H2O  excretion  in  the  urine  and  resultant maintenance of water homeostasis.  The sodium transporters used to maintain sodium balance are the primary focus of this lecture. The kidney generally, uses a multi‐step process to reabsorb filtered  solutes.    The  first  step  is  bulk  reabsorption  of  large quantities of solute.  Although some regulation occurs at this stage, the  large  quantities  of  solute  reabsorbed  preclude  the  exact regulation  necessary  for  long‐term  health.    The  second  step  is intermediate quantity reabsorption associated with intermediate level regulation, and the third and final step, which mediates  the final regulation of the urine composition, has low rates of solute transport but with high level regulation.  Typically, these three steps occur in the proximal tubule, loop of Henle and the collecting duct (please give me some artistic license  to  simplify  these  functions and their anatomic location). Throughout  the  nephron, sodium reabsorption is due to the effects  of  basolateral  Na+ ‐K+ ‐ ATPase.    As  shown  in  Figure  3,  a ubiquitous  basolateral  Na+ ‐K+ ‐ ATPase, present in all renal tubular cells,  generates  both  intracellular electronegativity  and  a  low  intra‐ cellular sodium concentration, both of  which  provide  a  gradient  for sodium entry into cells. Figure  4  summarizes  the relative roles of sodium reabsorption along  the  nephron.    The  proximal tubule is the primary site of bulk reabsorption, while the thick ascending  limb  of  the  loop  of  Henle  reabsorbs  most  of  the remaining sodium, and the distal tubule and the collecting duct accounts for the remaining sodium reabsorption. Figure  2.    Diagram  showing intimate  contact  between peritubular capillaries and nephron. This enables solute reabsorbed by renal epithelial cells to diffuse into peritubular  capillaries  and  be returned to systemic circulation via renal vein.
  • 3. Sodium transport in the kidney Page 3 of 5 Na+ K+ 2 Cl- Na+ H+ Cl- ~ Na+ K+ Lumen Peritubular Figure  6.    Sodium  reabsorption  in  the thick  ascending  limb  of  the  loop  of Henle. Na+ H+ Glucose, Phosphate, Amino acids, or lactate Na+ Na+ K+ Lumen (Urine) Peritubular (Blood) Figure  5.    Sodium  reabsorption  in the early proximal tubule. Na+ Cl- ~ Na+ K+ Cl- Lumen Peritubular H2O Figure 7.  Sodium reabsorption in the distal convoluted tubule. The specific mechanism of sodium reabsorption differs in different segments.  The majority of sodium reabsorption occurs in the proximal tubule.  Sodium reabsorption is linked to reabsorption of bicarbonate, glucose, phosphate, amino acids and chloride.  Figure 5 summarizes sodium reabsorption in the early regions of the proximal tubule.  The importance of sodium‐linked  proton  secretion  will  be  discussed  in  the lecture  on  acid‐base  transport.    Sodium‐linked  glucose, phosphate, amino acid and lactate reabsorption are critical to  reabsorbing  these  essential  solutes,  and  occurs predominantly in the proximal tubule. Little‐to‐no sodium is reabsorbed in the descending thin limb or the ascending thin limb of the loop of Henle. The thick ascending limb of the loop of Henle is the next major region of sodium reabsorption.  Approximately 25% of filtered sodium is  reabsorbed  here. Figure 6 summarizes sodium reabsorption in this region.  The primary mechanism of sodium reabsorption in this region is an apical  Na+ ‐K+ ‐2Cl‐   cotransporter.    Because  this  protein transports equal numbers of cations and anions, it does not move net charge. Instead the low intracellular sodium and chloride concentrations “drive” the transport, and result in potassium moving into the cell despite the high intracellular potassium concentration.  This potassium recycles into the luminal fluid through a potassium channel.  The movement of potassium back into the luminal fluid causes the luminal fluid to become positively charged.  This voltage is important for reabsorption of calcium in this segment.  An apical Na+ /H+ exchanger is also present, but is quantitatively less important in sodium reabsorption.   The distal convoluted tubule is the next site for sodium reabsorption.  Its sodium transport mechanism is shown in Figure 7. Sodium is reabsorbed by an apical sodium‐chloride cotransporter that transports equal amounts of sodium and chloride.  Because water  does  not  cross  the  apical  membrane  in  this  segment hypotonic  luminal  fluid  with  a  low  sodium  concentration  is generated (the importance of this will be seen in the lecture on water transport). The  last  segment  involved  in  sodium  transport  is  the collecting duct.  In this segment sodium is reabsorbed by a specific cell, the principal cell.  Figure 8 summarizes sodium transport in the collecting duct.  Sodium enters the cell via an apical protein, the
  • 4. Sodium transport in the kidney Page 4 of 5 Na+ K+ ~ Na+ K+ Lumen Peritubular Figure 8.  Sodium transport in the collecting duct principal cell. epithelial Na channel (ENaC), that transports sodium in the form of Na+ .  Na+  moves into the cell because of the low intracellular Na+  concentration and  the intracellular electronegativity that are generated by the basolateral Na+ ‐K+ ‐ATPase. Because sodium enters the cell without an associated anion, its movement out of the luminal fluid results in loss of positive charge and the subsequent development of a net negative charge in the luminal fluid.  Potassium can move out of the cell into the luminal fluid partially as a result of luminal electronegativity and partially because intracellular potassium concentrations are high (due  to  basolateral  Na+ ‐K+ ‐ATPase).    Conditions  that  regulate sodium transport in the collecting duct also regulate potassium secretion. Regulation of sodium transport Because sodium balance determines the circulating plasma volume,  any condition that alters plasma volume will alter sodium transport by the renal tubules. These effects are mediated via hormones released by other cells.  In general, conditions associated with plasma volume expansion inhibit stimuli  that  increase  sodium reabsorption,  whereas  the  opposite occurs in response to plasma volume contraction.    Table  2  summarizes important  sodium  transport regulators. Pharmacologic inhibition of sodium transport Many  clinical  conditions  are associated with relatively inadequate sodium excretion by the kidney.  Examples include hypertension, heart failure, liver disease and kidney disease.  Medications that inhibit renal sodium transport are very effective for treating these conditions.  Effective inhibitors of proximal tubule sodium transport mechanisms are not available.   Inhibitors of the thick ascending limb of loop of Henle Na+ ‐K+ ‐2Cl‐  cotransporter are termed “loop diuretics” and are potent medications that increase sodium excretion.   Distal  convoluted  tubule  sodium‐chloride  cotransport  inhibitors,  known  as  “thiazide diuretics” because of their chemical structure, are the second most potent drugs for increasing urinary sodium excretion.   Both loop diuretics and thiazide diuretics increase sodium delivery to the collecting duct. The  collecting  duct  does  not  have  adequate  sodium  transport  capacity,  so  the  net  effect  is increased sodium excretion into the urine. However, the collecting duct will “attempt” to correct Hormone Stimulus Site of action Effect Angiotensin II Renin PT, TAL, CD 8 Aldosterone AII, 8[K+ ] DT, CD 8 Sympathetic nerves 9BP, 9ECV PT, TAL 8 ANP 8BP, 8ECV CD 9 NO PT, CD 9 Table  2.    Hormonal  regulation  of  renal  Na+   transport. Abbreviations: BP, blood pressure; ECV, extracellular volume; PT, proximal tubule; TAL, thick ascending limb of the loop of Henle; DT, distal tubule; CD, collecting duct.
  • 5. Sodium transport in the kidney Page 5 of 5 this increase sodium excretion by increasing sodium reabsorption. Although this “attempt” is insufficient to correct the sodium excretion, it does cause collecting duct potassium secretion to increase, and can lead to potassium deficiency (this is covered in more detail in the potassium lecture). Inhibitors of collecting duct ENaC have less effect on net sodium transport because so little sodium is reabsorbed in the collecting duct.  However, sodium reabsorption is critical for potassium secretion,  and  the  collecting  duct  is  the  primary  site  regulating  renal  potassium  excretion. Accordingly,  collecting  duct  sodium  transport  inhibitors  decrease  potassium  excretion. Consequently, they are often termed “potassium‐sparing diuretics.”