Valentina Corbetta: valentina.corbetta@mail.polimi.it
Giada Casagrande: giada.casagrande@mail.polimi.it
Filippo Carloni: filippo.carloni@mail.polimi.it
16th May 2018
XOHW18 Meeting @NECSTLab
State of Art
FastBRaIn
ICA
The Independent Component Analysis (ICA) is a computational method
for separating a multivariate signal into additive subcomponents.
There are different approaches to implement ICA:
Infomax maximum likelihood
FastICA maximizes nongaussianity
JADE joint diagonalization
EVD second order correlation
2
Execution time: related to a Pentium 4, 1.6-GHz, 512 GB, Windows XP computer using MATLAB version 7.0.
Nicolle Correa, Tu ̈lay Adali, and Vince D Calhoun. Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
Magnetic resonance imaging, 25(5):684–94, jun 2007.
Algorithms
Spatial
Maps
Accuracy
Time
Courses
Accuracy
Parameters
Settings
Execution
Time [s]
Infomax 70
FastICA 38
JADE 62
EVD 3
ICA Algorithms
3
4
5
Related Works
Execution Time
User Friendliness
Related Works
6
User Friendliness
Execution Time
FSL[1]
Execution Time: 20 min
[1]https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
Related Works
User Friendliness
Execution Time
Gift:
Execution Time: 8 min
7
FSL[1]
Execution Time: 20 min
[1]https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
Related Works
User Friendliness
Execution Time
Gift:
Execution Time: 8 min
8
FSL[1]
Execution Time: 20 min
[1]https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
FastBRaIn
FastBRaIn
Thank you for your attention
FastBrainatNECST
FastBRaIn_NECST
Valentina Corbetta: valentina.corbetta@mail.polimi.it
Giada Casagrande: giada.casagrande@mail.polimi.it
Filippo Carloni: filippo.carloni@mail.polimi.it

SoA_project

  • 1.
    Valentina Corbetta: valentina.corbetta@mail.polimi.it GiadaCasagrande: giada.casagrande@mail.polimi.it Filippo Carloni: filippo.carloni@mail.polimi.it 16th May 2018 XOHW18 Meeting @NECSTLab State of Art FastBRaIn
  • 2.
    ICA The Independent ComponentAnalysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. There are different approaches to implement ICA: Infomax maximum likelihood FastICA maximizes nongaussianity JADE joint diagonalization EVD second order correlation 2
  • 3.
    Execution time: relatedto a Pentium 4, 1.6-GHz, 512 GB, Windows XP computer using MATLAB version 7.0. Nicolle Correa, Tu ̈lay Adali, and Vince D Calhoun. Performance of blind source separation algorithms for fMRI analysis using a group ICA method. Magnetic resonance imaging, 25(5):684–94, jun 2007. Algorithms Spatial Maps Accuracy Time Courses Accuracy Parameters Settings Execution Time [s] Infomax 70 FastICA 38 JADE 62 EVD 3 ICA Algorithms 3
  • 4.
  • 5.
  • 6.
    Related Works 6 User Friendliness ExecutionTime FSL[1] Execution Time: 20 min [1]https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
  • 7.
    Related Works User Friendliness ExecutionTime Gift: Execution Time: 8 min 7 FSL[1] Execution Time: 20 min [1]https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
  • 8.
    Related Works User Friendliness ExecutionTime Gift: Execution Time: 8 min 8 FSL[1] Execution Time: 20 min [1]https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT FastBRaIn
  • 9.
    FastBRaIn Thank you foryour attention FastBrainatNECST FastBRaIn_NECST Valentina Corbetta: valentina.corbetta@mail.polimi.it Giada Casagrande: giada.casagrande@mail.polimi.it Filippo Carloni: filippo.carloni@mail.polimi.it

Editor's Notes

  • #4 FastICA  the best overall performance Iterative algorithm Maximize non-Gaussianity of estimated sources Easy to use: requires initialization and setting of a limited number of parameters Independent components estimated individually
  • #6 FSL is a comprehensive library of analysis tools for fMRI, MRI and DTI. It runs on Apple and PCs Gift is a MATLAB toolbox. It implements different algorithms for ICA applied to the analysis of fMRI