SlideShare a Scribd company logo
Advisor Co-supervisor Candidate
Professor Luana Bottini Professor Alberto Boschetto Hesham Ibrahim
Surface roughness of AlSi10Mg parts
manufactured by Selective laser melting
Faculty of Civil and Industrial Engineering
Department of Mechanical and Aerospace Engineering
25/01/2020Titolo Presentazione Pagina 2
Selective Laser Melting
Surface roughness problems
25/01/2020Titolo Presentazione Pagina 3
25/01/2020Titolo Presentazione Pagina 4
AIM
Improvement of the surface roughness through
process parameters tuning
25/01/2020Titolo Presentazione Pagina 5
Process
parameters
powder
• Powder size disturbtion and
shape
• Powder flowability
• Laser powder interaction
laser
• Laser power
• Types of laser
• Laser spot
• Laser mode
• Energy desity
• Volumetric energy
density
Process
• Scan spacing
• Scan speed
•Layer thickness
•Scan strategy
•Building strategy
• Part orientation
•Atmospheric control
Definitions
3- Hatch distance
2- contour offset
1- Upskin
Design of Experiment
DOE
Taguchi Full Factorial
25/01/2020Titolo Presentazione Pagina 7
Contour
4 Factors
4 Levels
1 Factor
2 levels
Upskin
3 Factors
4 Levels
1 Factor
2 levels
Upskin
3 Factors
3 Levels
Contour
3 Factors
3 Levels
All combinations are available
Reduce the number of runs
Taguchi method
25/01/2020Titolo Presentazione Pagina 8
Number of levels
Designs 2 4
L8 (2**4 4**1) 1-4 1
L16 (2**12 4**1) 2-12 1
L16 (2**9 4**2) 1-9 2
L16 (2**6 4**3) 1-6 3
L16 (2**3 4**4) 1-3 4
L32 (2**1 4**9) 1 2-9
Commonly used orthogonal arrays
25/01/2020Titolo Presentazione Pagina 9
experiments
Taguchi
Full
Factorial
Taguchi chosen process parameters
# Factors levels # Factors Levels
The contour
1
-
The contour
offset in mm
0.00 and
0.02
For the first contour For the second contour
2
-
the laser power
in watt
80, 150,
250 and
350
4
-
the laser power
in watt
80,150,250
and 350
3
-
scan speed for
the first
exposure in
mm/s
400, 700,
1000 and
1300
5
-
the scan speed for
the second
exposure in mm/s
400,700,100
0 and 1300
The UPSKIN
6
-
Number of
layers
1 and 3
7
-
Laser power In
watt
180,240,3
00 and
360
8
-
Scan speed In
mm/s
600,800,1
000 and
1200
9
-
Hatch distance 0.18 0.21
0.24 0.27
FF chosen process parameters
# Factors Levels
Upskin
1 Laser power 240,300 and 360
2 Scan speed 400,800 and
1200
3 Hatch distance 0.18,0.21 and
0.24
Contour
4 Laser power 150,250 and 350
5 Scan speed 400,800 and
1200
6 Contour offset 0,0.02 and 0.04
25/01/2020Titolo Presentazione Pagina 10
experiments
Taguchi Full Factorial
Taguchi table
Number
of runs
Contour
offset for
first and
second
contour
(C0)
Laser
power
for first
contour
(Pc1)
Scan
speed for
first
contour
(Vc1)
Laser
power
for
second
contour
(Pc2)
Scan
speed for
second
contour
(Vc2)
Number
of layers
for
upskin
thickness
(nL)
Laser
power
for
upskin
(Pu)
Scan
speed for
upskin
(Vu)
Hatch
distance
for
upskin
(Hd)
BeB 01 0 80 400 80 400 1 180 600 0.18
BeB 02 0 80 700 150 700 1 180 800 0.21
BeB 03 0 80 1000 250 1000 1 180 1000 0.24
BeB 04 0 80 1300 350 1300 1 180 1200 0.27
BeB 05 0 150 400 80 700 1 240 600 0.18
BeB 06 0 150 700 150 400 1 240 800 0.21
BeB 07 0 150 1000 250 1300 1 240 1000 0.24
BeB 08 0 150 1300 350 1000 1 240 1200 0.27
BeB 09 0 250 400 150 1000 1 300 600 0.21
BeB 10 0 250 700 80 1300 1 300 800 0.18
BeB 11 0 250 1000 350 400 1 300 1000 0.27
BeB 12 0 250 1300 250 700 1 300 1200 0.24
BeB 13 0 350 400 150 1300 1 360 600 0.21
BeB 14 0 350 700 80 1000 1 360 800 0.18
BeB 15 0 350 1000 350 700 1 360 1000 0.27
BeB 16 0 350 1300 250 400 1 360 1200 0.24
BeB 17 0.02 80 400 350 400 3 180 600 0.27
BeB 18 0.02 80 700 250 700 3 180 800 0.24
BeB 19 0.02 80 1000 150 1000 3 180 1000 0.21
BeB 20 0.02 80 1300 80 1300 3 180 1200 0.18
BeB 21 0.02 150 400 350 700 3 240 600 0.27
BeB 22 0.02 150 700 250 400 3 240 800 0.24
BeB 23 0.02 150 1000 150 1300 3 240 1000 0.21
BeB 24 0.02 150 1300 80 1000 3 240 1200 0.18
BeB 25 0.02 250 400 250 1000 3 300 600 0.24
BeB 26 0.02 250 700 350 1300 3 300 800 0.27
BeB 27 0.02 250 1000 80 400 3 300 1000 0.18
BeB 28 0.02 250 1300 150 700 3 300 1200 0.21
BeB 29 0.02 350 400 250 1300 3 360 600 0.24
BeB 30 0.02 350 700 350 1000 3 360 800 0.27
BeB 31 0.02 350 1000 80 700 3 360 1000 0.18
BeB 32 0.02 350 1300 150 400 3 360 1200 0.21
Full Factorial Table
Number of
runs
Laser
power for
upskin
(Pu) W
Scan
speed for
upskin
(Vu)
Hatch
distance
for upskin
(Hd)
Laser
power for
contour
(Pc)
Scan
speed for
contour
(Vc)
Contour
offset for
contour
(Co)
AL 01 240 400 0.18 150 400 0
AL 02 240 400 0.21 150 400 0.02
AL 03 240 400 0.24 150 400 0.04
AL 04 240 800 0.18 150 800 0
AL 05 240 800 0.21 150 800 0.02
AL 06 240 800 0.24 150 800 0.04
AL 07 240 1200 0.18 150 1200 0
AL 08 240 1200 0.21 150 1200 0.02
AL 09 240 1200 0.24 150 1200 0.04
AL 10 300 400 0.18 250 400 0
AL 11 300 400 0.21 250 400 0.02
AL 12 300 400 0.24 250 400 0.04
AL 13 300 800 0.18 250 800 0
AL 14 300 800 0.21 250 800 0.02
AL 15 300 800 0.24 250 800 0.04
AL 16 300 1200 0.18 250 1200 0
AL 17 300 1200 0.21 250 1200 0.02
AL 18 300 1200 0.24 250 1200 0.04
AL 19 360 400 0.18 350 400 0
AL 20 360 400 0.21 350 400 0.02
AL 21 360 400 0.24 350 400 0.04
AL 22 360 800 0.18 350 800 0
AL 23 360 800 0.21 350 800 0.02
AL 24 360 800 0.24 350 800 0.04
AL 25 360 1200 0.18 350 1200 0
AL 26 360 1200 0.21 350 1200 0.02
AL 27 360 1200 0.24 350 1200 0.04
25/01/2020Titolo Presentazione Pagina 11
EOS M 290
Specimen
25/01/2020Titolo Presentazione Pagina 12
25/01/2020Titolo Presentazione Pagina 14
• Mitutoyo SJ-410 profilometer
• SPLINE PROFILE FILTER.
• ISO 16610-22, 2015
Measure
25/01/2020Titolo Presentazione Pagina 15
Data analysis for the measured surface
roughness
25/01/2020Titolo Presentazione Pagina 16
Source DF Adj SS Adj MS F-Value P-Value
Model 7 71.488 10.213 4.91 0.004
Linear 3 20.432 6.811 3.27 0.049
Pu 1 14.575 14.575 7.00 0.018
Vu 1 1.229 1.229 0.59 0.453
Hd 1 4.628 4.628 2.22 0.155
2-Way
Interactions
3 37.707 12.569 6.04 0.006
Pu*Vu 1 20.871 20.871 10.03 0.006
Pu*Hd 1 3.057 3.057 1.47 0.243
Vu*Hd 1 13.779 13.779 6.62 0.020
3-Way
Interactions
1 13.349 13.349 6.42 0.022
Pu*Vu*Hd 1 13.349 13.349 6.42 0.022
Error 16 33.291 2.081
Total 23 104.779
Roughness =
-58.7 + 0.2597 Pu + 0.0631 Vu + 243 Hd - 0.000256 Pu*Vu - 1.027 Pu*Hd
- 0.248 Vu*Hd + 0.001036 Pu*Vu*Hd
Full Factorial
upskin
FF Taguchi
3.5μm 4.06μm
Titolo Presentazione Pagina 17
Hd 0.18
Hold Values
052
300
4
6
8
052 005
3 05
100
750
2 051
00
8
01
ssenhguoR
uV
uP
urface Plot of RS o ghness vs Vu, Puu
Hd 0.21
Hold Values
2 05
03 0
4
5
6
2 05 500
053
100
075
1250
00
6
7
ssenhguoR
uV
uP
urface Plot of RS o ghness vs Vu, Puu
Hd 0.24
Hold Values
052
003
0.4
8.4
052 005
053
2 051
1000
7 05
8.4
6.5
ssenhguoR
uV
uP
urface Plot of RS o ghness vs Vu, Puu
The Lowest
Ra
Laser
power
Scan
speed
VED Spe. Mean Ra
At Hd 0.18,
0.21 and 0.24
mm
240
Watt
400
mm/s
111 J/mm^3
95.2 J/mm^3
83.3 J/mm^3
AL1,
AL2,
AL3
3.73 µm
3.52 µm
3.54 µm
Another Low
Ra point
Laser
power
Scan
speed
VED Spe. Mean Ra
Only using Hd
0.18 mm
360
Watt
1200
mm/s
55.5 J/mm^3
Al
25
4.2 µm
Hd 0.18
Hold Values
Pu
Vu
350325300275250
1200
1100
1000
900
800
700
600
500
400
>
–
–
–
< 5
5 6
6 7
7 8
8
Roughness
Contour Plot of Roughness vs Vu, Pu
In upskin and 90 degree
Increasing
energy
Decrease
roughness
Taguchi Upskin
25/01/2020Titolo Presentazione Pagina 18
Term Coef SE Coef T P
Constant 12.5953 0.2124 59.300 0.000
nL 1 1.0024 0.2124 4.720 0.000
Pu(Watt) 180 8.6256 0.3679 23.446 0.000
Pu(Watt) 240 -0.4361 0.3679 -1.186 0.251
Pu(Watt) 300 -3.4839 0.3679 -9.470 0.000
Vu(mm/s) 600 -3.9655 0.3679 -10.779 0.000
Vu(mm/s) 800 -1.9324 0.3679 -5.253 0.000
Vu(mm/s) 1000 1.3242 0.3679 3.600 0.002
Hd(mm) 0.18 -3.5308 0.3679 -9.597 0.000
Hd(mm) 0.21 -0.0807 0.3679 -0.219 0.829
Hd(mm) 0.24 1.6199 0.3679 4.403 0.000
nL*Pu(Watt) 1 180 -1.5965 0.3679 -4.340 0.000
nL*Pu(Watt) 1 240 0.3171 0.3679 0.862 0.400
nL*Pu(Watt) 1 300 0.8971 0.3679 2.438 0.025
S R-Sq R-Sq(adj)
1.2015 98.20% 96.91%
Source DF Seq SS Adj SS Adj MS F P
nL 1 32.16 32.16 32.156 22.27 0.000
Pu(Watt) 3 870.98 870.98
290.32
6
201.1
0
0.000
Vu(mm/s) 3 337.05 337.05
112.35
1
77.82 0.000
Hd(mm) 3 152.51 152.51 50.837 35.21 0.000
nL*Pu(Watt) 3 28.80 28.80 9.601 6.65 0.003
Residual Error 18 25.99 25.99 1.444
Total 31 1447.48
25/01/2020Titolo Presentazione Pagina 19
Spe. name Ra range VED
Range of
variation
BeB29
BeB4
3.383 μm
till
31.982 μm
Lowest
surface
roughness
BeB29 3.383 μm
to
4.422 μm
Mean Ra 83.3
J/mm^3
4.063 μm
Highest
roughness
limit &
longest
variation
BeB4 21.464 μm
to
31.982
μm,
Mean Ra 18.5
J/mm^3
26.83 μm
Full Factorial
For 90 degree
25/01/2020Titolo Presentazione Pagina 20
Source DF Adj SS Adj MS F-Value P-Value
Model 7 2798.62 399.80 132.13 0.000
Linear 3 1439.72 479.91 158.60 0.000
Pc 1 1378.62 1378.62 455.61 0.000
Vc 1 2.23 2.23 0.74 0.403
Co 1 58.86 58.86 19.45 0.000
2-Way
Interactions
3 1353.58 451.19 149.11 0.000
Pc*Vc 1 966.85 966.85 319.53 0.000
Pc*Co 1 252.66 252.66 83.50 0.000
Vc*Co 1 134.08 134.08 44.31 0.000
3-Way
Interactions
1 5.31 5.31 1.76 0.204
Pc*Vc*Co 1 5.31 5.31 1.76 0.204
Error 16 48.41 3.03
Total 23 2847.03
S R-sq R-sq(adj) R-sq(pred)
1.73950 98.30% 97.56% 96.17%
Ra(90) = 85.19 - 0.2446 Pc - 0.04776 Vc - 838 Co + 0.000170 Pc*Vc
+ 2.093 Pc*Co + 0.443 Vc*Co - 0.000588 Pc*Vc*Co
In 90 the laser power and the scan speed vary in
opposite way of the upskin but the same result
FF Taguchi
3.9 μm 4.3 μm
25/01/2020Titolo Presentazione Pagina 21
Co 0
Hold Values
081
240
300
01
20
03
081 500
0
360
01 0
750
2501
00
03
40
09
cV
cP
cP,cVsv09fotolPecafruS
Co 0.02
Hold Values
0
10
20
81 0
024
300
005
0
63 0
1 00
750
1250
00
03
09
cV
cP
cP,cVsv09fotolPecafruS
Co 0.04
Hold Values
6
21
81
081
240
003
500
0
063
001
057
2501
00
81
42
09
cV
cP
cP,cVsv09fotolPecafruS
Lowest
surface
roughness
Laser
powe
r
Scan
speed
Instant
energy
Spe. Mean Ra
At contour
offset 0.00
0.02 0.04
350
Watt
400 mm/s 0.875 Al19
Al20
Al21
4.34 µm
4.30 µm
3.90 µm
Low surface
roughness
Laser
powe
r
Scan
speed
Instant
energy
Spe. Mean Ra
Only at
contour offset
0.00
350
Watt
1200
mm/s
0.29 Al25 13.857
µm
Co 0
Hold Values
Pc
Vc
350300250200150
1200
1100
1000
900
800
700
600
500
400
>
–
–
–
–
–
–
< 5
5 10
10 15
15 20
20 25
25 30
30 35
35
90
Contour Plot of 90 vs Vc, Pc
25/01/2020Titolo Presentazione Pagina 22
Term Coef SE Coef T P
Constant 15.5383 0.9442 16.457 0.000
C0 0.00 -0.2335 0.9442 -0.247 0.809
Pc1 80 2.2923 1.6353 1.402 0.186
Pc1 150 2.9428 1.6353 1.800 0.097
Pc1 250 -0.4255 1.6353 -0.260 0.799
Vc1 400 -3.9457 1.6353 -2.413 0.033
Vc1 700 0.7384 1.6353 0.452 0.660
Vc1 1000 1.0447 1.6353 0.639 0.535
Pc2 80 2.9595 1.6353 1.810 0.095
Pc2 150 7.1668 1.6353 4.382 0.001
Pc2 250 -2.1430 1.6353 -1.310 0.215
Vc2 400 2.8047 1.6353 1.715 0.112
Vc2 700 3.0039 1.6353 1.837 0.091
Vc2 1000 -2.9273 1.6353 -1.790 0.099
C0*Pc1 0.00 80 2.4929 1.6353 1.524 0.153
C0*Pc1 0.00 150 5.8357 1.6353 3.569 0.004
C0*Pc1 0.00 250 -3.6247 1.6353 -2.216 0.047
C0*Vc2 0.00 400 0.2400 1.6353 0.147 0.886
C0*Vc2 0.00 700 1.1963 1.6353 0.732 0.478
C0*Vc2 0.00 1000 -1.1620 1.6353 -0.711 0.491
Source DF Seq SS Adj SS Adj MS F P
C0 1 1.74 1.74 1.745 0.06 0.809
Pc1 3 297.84 297.84 99.278 3.48 0.050
Vc1 3 175.05 175.05 58.350 2.05 0.161
Pc2 3 1027.56 1027.56 342.521 12.01 0.001
Vc2 3 270.09 270.09 90.030 3.16 0.064
C0*Pc1 3 604.29 604.29 201.429 7.06 0.005
C0*Vc2 3 23.31 23.31 7.771 0.27 0.844
Residual
Error
12 342.32 342.32 28.526
Total 31 2742.20
Taguchi
on 90 degree
25/01/2020Titolo Presentazione Pagina 23
Spe.
Name
Ra range Instant energy T.E
Range
of
variatio
n
BeB17
BeB6
3.924 μm
40.689
μm
Lowest BeB17
from
3.924 μm
till 4.674
μm
Mean Ra 0.875 on 1st
contour
0.2 on 2nd
contour
1.075 j/mm^3
4.312 μm
Highest BeB6
31.352
μm
to
40.6 μm
Mean Ra 0.21 on 1st
contour
0.375 on 2nd
contour
0.585 J/m^3
34.45 μm
Full Factorial
on 45 degree
25/01/2020Titolo Presentazione Pagina 24
Source DF Adj SS Adj MS F-Value P-Value
Model 7 43.696 6.2423 1.66 0.189
Linear 3 25.165 8.3883 2.24 0.124
Pc 1 18.739 18.7390 4.99 0.040
Vc 1 2.010 2.0097 0.54 0.475
Co 1 4.416 4.4161 1.18 0.294
2-Way
Interactions
3 14.265 4.7550 1.27 0.319
Pc*Vc 1 8.154 8.1538 2.17 0.160
Pc*Co 1 6.059 6.0591 1.61 0.222
Vc*Co 1 0.052 0.0520 0.01 0.908
3-Way
Interactions
1 4.266 4.2664 1.14 0.302
Pc*Vc*Co 1 4.266 4.2664 1.14 0.302
Error 16 60.045 3.7528
Total 23 103.741
Ra(45)=
15.67 + 0.0171 Pc + 0.00185 Vc - 33 Co - 0.000004 Pc*Vc
+ 0.341 Pc*Co + 0.252 Vc*Co - 0.001054 Pc*Vc*Co
FF Taguchi
18.7μm 18.48μm
25/01/2020Titolo Presentazione Pagina 25
Co 0
Hold Values
180
240
300
91
20
21
180
0521
0001
750
005
0
360
21
22
54
cV
cP
cP,cVsv54fotolPecafruS
Co 0.01
Hold Values
81 0
042
003
91
02
21
81 0
52 01
01 00
057
05 0
0
063
22
54
cV
cP
cP,cVsv54fotolPecafruS
Co 0.02
Hold Values
018
240
300
20
21
22
018 500
0
360
1 025
0001
057
22
32
54
cV
cP
cP,cVsv54fotolPecafruS
The lowest
surface
roughness
Laser
power
Scan
Speed
Instant
energy
Spe Mean Ra
At Co 0.0,
0.01 and
0.02
150 Watt 400
mm/s
0.375
J/mm
Al1
Al2
18.7 µm
19.8 µm
low surface
roughness
Laser
power
Scan
Speed
Instant
energy
Spe Mean Ra
Only
At
Co
0.02
350 Watt 1200
mm/s
0.29
J/mm
Al26 21.087
µm
Co
0.00
150 W 1200 0.125 Al7 19.721µm
250 W 400 0.625 Al10 19.396µm
250 W 1200 0.208 Al16 19.814µm
Co 0.02
Hold Values
Pc
Vc
350300250200150
1200
1100
1000
900
800
700
600
500
400
>
–
–
–
–
–
< 20.0
20.0 20.5
20.5 21.0
21.0 21.5
21.5 22.0
22.0 22.5
22.5
45
Contour Plot of 45 vs Vc, Pc
25/01/2020Titolo Presentazione Pagina 26
Term Coef SE Coef T P
Constant 23.0783 0.6852 33.679 0.000
C0 0.00 -0.2457 0.6852 -0.359 0.726
Pc1 80 1.0956 1.1869 0.923 0.374
Pc1 150 0.4204 1.1869 0.354 0.729
Pc1 250 -1.9099 1.1869 -1.609 0.134
Vc1 400 -1.9398 1.1869 -1.634 0.128
Vc1 700 0.7120 1.1869 0.600 0.560
Vc1 1000 -0.4529 1.1869 -0.382 0.709
Pc2 80 0.6696 1.1869 0.564 0.583
Pc2 150 -1.3300 1.1869 -1.121 0.284
Pc2 250 -0.4888 1.1869 -0.412 0.688
Vc2 400 1.2398 1.1869 1.045 0.317
Vc2 700 0.3399 1.1869 0.286 0.779
Vc2 1000 -1.5001 1.1869 -1.264 0.230
C0*Pc1 0.00 80 -0.5326 1.1869 -0.449 0.662
C0*Pc1 0.00 150 -0.2631 1.1869 -0.222 0.828
C0*Pc1 0.00 250 -0.8824 1.1869 -0.743 0.472
C0*Vc2 0.00 400 -0.3468 1.1869 -0.292 0.775
C0*Vc2 0.00 700 1.0840 1.1869 0.913 0.379
C0*Vc2 0.00 1000 -1.0940 1.1869 -0.922 0.375
Source DF Seq SS Adj SS Adj MS F P
C0 1 1.932 1.932 1.932 0.13 0.726
Pc1 3 41.441 41.441 13.814 0.92 0.461
Vc1 3 58.397 58.397 19.466 1.30 0.321
Pc2 3 30.213 30.213 10.071 0.67 0.586
Vc2 3 31.274 31.274 10.425 0.69 0.573
C0*Pc1 3 31.582 31.582 10.527 0.70 0.570
C0*Vc2 3 20.955 20.955 6.985 0.46 0.712
Residual
Error
12 180.306 180.306 15.025
Total 31 396.099
Taguchi
on 45 degree
25/01/2020Titolo Presentazione Pagina 27
Spe.
name
Ra Range Instant energy
Variation
Range
BeB7
BeB12.
17.352 μm
till
29.249 μm
Lowest
Ra
BeB7
17.352 μm
to
19.127 μm
Mean Ra 0.15 on 1st
contour
0.19 on 2nd
contour
0.34 J/mm^3
18.48 μm
Highest
Ra &
Long
variation
BeB12
20.701 μm
to
29.249 μm
Mean Ra 0.19 on 1st
contour
0.357 on 2nd
contour
0.4111
J/mm^325.465 μm
Full Factorial
135 degree
25/01/2020Titolo Presentazione Pagina 28
Source DF Adj SS Adj MS F-Value P-Value
Model 7 328.549 46.936 2.05 0.111
Linear 3 174.712 58.237 2.55 0.092
Pc 1 143.879 143.879 6.30 0.023
Vc 1 0.031 0.031 0.00 0.971
Co 1 30.802 30.802 1.35 0.263
2-Way
Interactions
3 151.036 50.345 2.20 0.127
Pc*Vc 1 88.639 88.639 3.88 0.066
Pc*Co 1 1.332 1.332 0.06 0.812
Vc*Co 1 61.066 61.066 2.67 0.122
3-Way
Interactions
1 2.801 2.801 0.12 0.731
Pc*Vc*Co 1 2.801 2.801 0.12 0.731
Error 16 365.635 22.852
Total 23 694.184
Ra135 = 22.8 + 0.0415 Pc + 0.0305 Vc + 662 Co - 0.000074 Pc*Vc - 0.92 Pc*Co -
0.612 Vc*Co + 0.00085 Pc*Vc*Co
Taguchi Full Factorial
37.6 μm 41 μm
25/01/2020Titolo Presentazione Pagina 29
Co 0
Hold Values
081
240
003
48.0
49.5
.15 0
081 5 00
0
063
010
750
21 05
00
.15 0
.52 5
531
cV
cP
cP,cVsv531fotolPecafruS
Co 0.01
Hold Values
081
240
300
45.0
5.74
0.05
081 500
0
063
01 0
057
5021
00
0.05
52.5
531
cV
cP
cP,cVsv531fotolPecafruS
Co 0.02
Hold Values
018
240
003
24
54
48
018 500
0
360
001
750
1250
00
48
51
531
cV
cP
cP,cVsv531fotolPecafruS
Lowest
surface
roughness
Laser
power
Scan
speed
Instant
energy
Spe. Mean
Ra
At Co 0.01
and 0.02
350
Watt
1200
mm/s
0.29 Al26
Al27
42.28µm
41.57µm
Low surface
roughness
Laser
power
Scan
speed
Instant
energy
Spe. Mean
Ra
0.02 150 400 0.375 Al2 43.44µm
0.02 250 400 0.625 Al11 47.39µm
0.02 350 400 0.875 Al20 43.54µm
Co 0.02
Hold Values
Pc
Vc
350300250200150
1200
1100
1000
900
800
700
600
500
400
>
–
–
–
< 44
44 46
46 48
48 50
50
135
Contour Plot of 135 vs Vc, Pc
25/01/2020Titolo Presentazione Pagina 30
Term Coef SE Coef T P
Constant 46.5644 0.4268 109.098 0.000
C0 0.00 -2.8867 0.4268 -6.763 0.000
Pc1 80 -0.2502 0.7393 -0.338 0.741
Pc1 150 0.0250 0.7393 0.034 0.974
Pc1 250 2.3331 0.7393 3.156 0.008
Vc1 400 0.1316 0.7393 0.178 0.862
Vc1 700 0.5873 0.7393 0.794 0.442
Vc1 1000 1.1132 0.7393 1.506 0.158
Pc2 80 0.8801 0.7393 1.190 0.257
Pc2 150 -0.8304 0.7393 -1.123 0.283
Pc2 250 0.7340 0.7393 0.993 0.340
Vc2 400 0.4696 0.7393 0.635 0.537
Vc2 700 1.3096 0.7393 1.771 0.102
Vc2 1000 -0.8318 0.7393 -1.125 0.283
C0*Pc1 0.00
80
-0.1339 0.7393 -0.181 0.859
C0*Pc1 0.00
150
-0.0069 0.7393 -0.009 0.993
C0*Pc1 0.00
250
-0.8784 0.7393 -1.188 0.258
C0*Vc2 0.00
400
-0.3444 0.7393 -0.466 0.650
C0*Vc2 0.00
700
0.6572 0.7393 0.889 0.392
C0*Vc2 0.00
1000
0.0291 0.7393 0.039 0.969
Source DF Seq SS Adj SS Adj MS F P
C0 1 266.657 266.657 266.657 45.74 0.000
Pc1 3 79.595 79.595 26.532 4.55 0.024
Vc1 3 39.662 39.662 13.221 2.27 0.133
Pc2 3 20.937 20.937 6.979 1.20 0.352
Vc2 3 28.200 28.200 9.400 1.61 0.238
C0*Pc1 3 14.626 14.626 4.875 0.84 0.499
C0*Vc2 3 5.346 5.346 1.782 0.31 0.821
Residual
Error
12 69.954 69.954 5.829
Total 31 524.976
Taguchi
on 135 degree
25/01/2020Titolo Presentazione Pagina 31
Spe.
name
Ra Range Instant energy
Variation
Range
BeB4
BeB24
34.778 μm
60.994 μm
Lowest Ra BeB4
From
34.778 μm
to
39.576 μm
Mean Ra 0.06 on 1st
contour
0.27 on 2nd
contour
0.213
37.617
Highest Ra &
Long variation
BeB24
from
43.015 μm
to
60.994 μm
Mean Ra 0.12 on 1st
contour
0.08 on 2nd
contour
0.20
50.9
Conclusion
• In this thesis I planned and executed an experimental campaign aiming
to improve the surface roughness of AlSi10Mg SLM parts
• Two different design of experiments have been employed: Taguchi
method and full factorial
• The Taguchi method, which reduces the number of tests, provided
results limited to only Main effects analysis
• The full factorial method allowed to measure the significance of the test
factors and provided some models for the prediction of the outcomes
• The best improvements were reached at horizontal and vertical surfaces
with a reduction of more than 50% and 80% respectively
• The roughness reduction on the inclined surfaces is limited
• Further developments will regard: new experimentations focusing on a
small region around the found best conditions and the under-skin
damages and porosity investigations.
25/01/2020Titolo Presentazione Pagina 32
Thanks For Attention
25/01/2020Titolo Presentazione Pagina 33

More Related Content

What's hot

SPICE MODEL of DTA143ZSA in SPICE PARK
SPICE MODEL of DTA143ZSA in SPICE PARKSPICE MODEL of DTA143ZSA in SPICE PARK
SPICE MODEL of DTA143ZSA in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of DTA143ZKA in SPICE PARK
SPICE MODEL of DTA143ZKA in SPICE PARKSPICE MODEL of DTA143ZKA in SPICE PARK
SPICE MODEL of DTA143ZKA in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of DTA143ZE in SPICE PARK
SPICE MODEL of DTA143ZE in SPICE PARKSPICE MODEL of DTA143ZE in SPICE PARK
SPICE MODEL of DTA143ZE in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of DTA143ZUA in SPICE PARK
SPICE MODEL of DTA143ZUA in SPICE PARKSPICE MODEL of DTA143ZUA in SPICE PARK
SPICE MODEL of DTA143ZUA in SPICE PARK
Tsuyoshi Horigome
 
Carbon footprint of Pultruded products used in Automotive applications, Samer...
Carbon footprint of Pultruded products used in Automotive applications, Samer...Carbon footprint of Pultruded products used in Automotive applications, Samer...
Carbon footprint of Pultruded products used in Automotive applications, Samer...Samer Ziadeh
 
Copper mould tube-- http://www.sinosteelengineering.com
Copper mould tube-- http://www.sinosteelengineering.comCopper mould tube-- http://www.sinosteelengineering.com
Copper mould tube-- http://www.sinosteelengineering.com
JamesY7
 
80747511 tabel-profil
80747511 tabel-profil80747511 tabel-profil
80747511 tabel-profilJunaida Wally
 
SPICE MODEL of DTD143ES in SPICE PARK
SPICE MODEL of DTD143ES in SPICE PARKSPICE MODEL of DTD143ES in SPICE PARK
SPICE MODEL of DTD143ES in SPICE PARK
Tsuyoshi Horigome
 
SPICE MODEL of DTD143EK in SPICE PARK
SPICE MODEL of DTD143EK in SPICE PARKSPICE MODEL of DTD143EK in SPICE PARK
SPICE MODEL of DTD143EK in SPICE PARK
Tsuyoshi Horigome
 
Process parameters optimization for surface roughness in edm for aisi d2 steel
Process parameters optimization for surface roughness in edm for aisi d2 steelProcess parameters optimization for surface roughness in edm for aisi d2 steel
Process parameters optimization for surface roughness in edm for aisi d2 steelIAEME Publication
 
Traction tread-safety-gratings
Traction tread-safety-gratingsTraction tread-safety-gratings
Traction tread-safety-gratings
Jack Cui
 
Sheet Metal Forming (MIT 2.008x Lecture Slides)
Sheet Metal Forming (MIT 2.008x Lecture Slides)Sheet Metal Forming (MIT 2.008x Lecture Slides)
Sheet Metal Forming (MIT 2.008x Lecture Slides)
A. John Hart
 
Catalogo cadenas 2
Catalogo cadenas 2Catalogo cadenas 2
Catalogo cadenas 2
Diego Tovar Chia
 
Volvo ec60 c compact excavator service repair manual
Volvo ec60 c compact excavator service repair manualVolvo ec60 c compact excavator service repair manual
Volvo ec60 c compact excavator service repair manual
fhsjejfksemm
 
Decorative perforated-panel
Decorative perforated-panelDecorative perforated-panel
Decorative perforated-panel
Jack Cui
 

What's hot (15)

SPICE MODEL of DTA143ZSA in SPICE PARK
SPICE MODEL of DTA143ZSA in SPICE PARKSPICE MODEL of DTA143ZSA in SPICE PARK
SPICE MODEL of DTA143ZSA in SPICE PARK
 
SPICE MODEL of DTA143ZKA in SPICE PARK
SPICE MODEL of DTA143ZKA in SPICE PARKSPICE MODEL of DTA143ZKA in SPICE PARK
SPICE MODEL of DTA143ZKA in SPICE PARK
 
SPICE MODEL of DTA143ZE in SPICE PARK
SPICE MODEL of DTA143ZE in SPICE PARKSPICE MODEL of DTA143ZE in SPICE PARK
SPICE MODEL of DTA143ZE in SPICE PARK
 
SPICE MODEL of DTA143ZUA in SPICE PARK
SPICE MODEL of DTA143ZUA in SPICE PARKSPICE MODEL of DTA143ZUA in SPICE PARK
SPICE MODEL of DTA143ZUA in SPICE PARK
 
Carbon footprint of Pultruded products used in Automotive applications, Samer...
Carbon footprint of Pultruded products used in Automotive applications, Samer...Carbon footprint of Pultruded products used in Automotive applications, Samer...
Carbon footprint of Pultruded products used in Automotive applications, Samer...
 
Copper mould tube-- http://www.sinosteelengineering.com
Copper mould tube-- http://www.sinosteelengineering.comCopper mould tube-- http://www.sinosteelengineering.com
Copper mould tube-- http://www.sinosteelengineering.com
 
80747511 tabel-profil
80747511 tabel-profil80747511 tabel-profil
80747511 tabel-profil
 
SPICE MODEL of DTD143ES in SPICE PARK
SPICE MODEL of DTD143ES in SPICE PARKSPICE MODEL of DTD143ES in SPICE PARK
SPICE MODEL of DTD143ES in SPICE PARK
 
SPICE MODEL of DTD143EK in SPICE PARK
SPICE MODEL of DTD143EK in SPICE PARKSPICE MODEL of DTD143EK in SPICE PARK
SPICE MODEL of DTD143EK in SPICE PARK
 
Process parameters optimization for surface roughness in edm for aisi d2 steel
Process parameters optimization for surface roughness in edm for aisi d2 steelProcess parameters optimization for surface roughness in edm for aisi d2 steel
Process parameters optimization for surface roughness in edm for aisi d2 steel
 
Traction tread-safety-gratings
Traction tread-safety-gratingsTraction tread-safety-gratings
Traction tread-safety-gratings
 
Sheet Metal Forming (MIT 2.008x Lecture Slides)
Sheet Metal Forming (MIT 2.008x Lecture Slides)Sheet Metal Forming (MIT 2.008x Lecture Slides)
Sheet Metal Forming (MIT 2.008x Lecture Slides)
 
Catalogo cadenas 2
Catalogo cadenas 2Catalogo cadenas 2
Catalogo cadenas 2
 
Volvo ec60 c compact excavator service repair manual
Volvo ec60 c compact excavator service repair manualVolvo ec60 c compact excavator service repair manual
Volvo ec60 c compact excavator service repair manual
 
Decorative perforated-panel
Decorative perforated-panelDecorative perforated-panel
Decorative perforated-panel
 

Similar to SLM project presentation

EDrive Actuators L-TAC LS
EDrive Actuators L-TAC LS EDrive Actuators L-TAC LS
EDrive Actuators L-TAC LS
Electromate
 
Sample for small_shed_of_steel_structur
Sample for small_shed_of_steel_structurSample for small_shed_of_steel_structur
Sample for small_shed_of_steel_structur
AymanBadr16
 
Elmag200
Elmag200Elmag200
Optimization of process parameters of WEDM for machining of monel r-405 mater...
Optimization of process parameters of WEDM for machining of monel r-405 mater...Optimization of process parameters of WEDM for machining of monel r-405 mater...
Optimization of process parameters of WEDM for machining of monel r-405 mater...
Pinkraj Gangwar
 
Npm s200 specsheet
Npm s200 specsheetNpm s200 specsheet
Npm s200 specsheet
Electromate
 
Npm s250 specsheet
Npm s250 specsheetNpm s250 specsheet
Npm s250 specsheet
Electromate
 
Npm s320 specsheet
Npm s320 specsheetNpm s320 specsheet
Npm s320 specsheet
Electromate
 
Iai isdbcr ispdbcr_esd_specsheet
Iai isdbcr ispdbcr_esd_specsheetIai isdbcr ispdbcr_esd_specsheet
Iai isdbcr ispdbcr_esd_specsheet
Electromate
 
Tabel baja standard
Tabel baja standardTabel baja standard
Tabel baja standard
Rudi Putra Reog
 
E1267
E1267E1267
E1267
mohamadans
 
Original N-Channel MOSFET HY4008B HY4008 4008 80V 200A TO-263 New
Original N-Channel MOSFET HY4008B HY4008 4008 80V 200A TO-263 NewOriginal N-Channel MOSFET HY4008B HY4008 4008 80V 200A TO-263 New
Original N-Channel MOSFET HY4008B HY4008 4008 80V 200A TO-263 New
AUTHELECTRONIC
 
TabelBaja1.pdf
TabelBaja1.pdfTabelBaja1.pdf
TabelBaja1.pdf
imron62
 
Synergizing mixture do e with cfd for ash slurry optimization
Synergizing mixture do e with cfd for ash slurry optimizationSynergizing mixture do e with cfd for ash slurry optimization
Synergizing mixture do e with cfd for ash slurry optimization
Dr. Bikram Jit Singh
 
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRODESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
civilEngineering9966
 
Rosenberg's OEM Fans for transformer cooling.
Rosenberg's OEM Fans for transformer cooling.Rosenberg's OEM Fans for transformer cooling.
Rosenberg's OEM Fans for transformer cooling.
Rosenberg Canada
 
Ls bang gia ls ap dung 20 04-2019
Ls bang gia ls ap dung 20 04-2019Ls bang gia ls ap dung 20 04-2019
Ls bang gia ls ap dung 20 04-2019
Dien Ha The
 
Kollmorgen pmb specsheet
Kollmorgen  pmb specsheetKollmorgen  pmb specsheet
Kollmorgen pmb specsheet
Electromate
 
Paint Line Process Improvement Project-Hanging Capacity
Paint Line Process Improvement Project-Hanging CapacityPaint Line Process Improvement Project-Hanging Capacity
Paint Line Process Improvement Project-Hanging CapacityDavid Thacker, MBA
 
08.2010 fsae hybrid 3rd presentation gen-3 geared bldc motors, planetary tr...
08.2010 fsae hybrid 3rd presentation   gen-3 geared bldc motors, planetary tr...08.2010 fsae hybrid 3rd presentation   gen-3 geared bldc motors, planetary tr...
08.2010 fsae hybrid 3rd presentation gen-3 geared bldc motors, planetary tr...
Tobias Overdiek
 

Similar to SLM project presentation (20)

EDrive Actuators L-TAC LS
EDrive Actuators L-TAC LS EDrive Actuators L-TAC LS
EDrive Actuators L-TAC LS
 
Sample for small_shed_of_steel_structur
Sample for small_shed_of_steel_structurSample for small_shed_of_steel_structur
Sample for small_shed_of_steel_structur
 
Elmag200
Elmag200Elmag200
Elmag200
 
Optimization of process parameters of WEDM for machining of monel r-405 mater...
Optimization of process parameters of WEDM for machining of monel r-405 mater...Optimization of process parameters of WEDM for machining of monel r-405 mater...
Optimization of process parameters of WEDM for machining of monel r-405 mater...
 
Npm s200 specsheet
Npm s200 specsheetNpm s200 specsheet
Npm s200 specsheet
 
Npm s250 specsheet
Npm s250 specsheetNpm s250 specsheet
Npm s250 specsheet
 
Avf250 v1.1.8en
Avf250 v1.1.8enAvf250 v1.1.8en
Avf250 v1.1.8en
 
Npm s320 specsheet
Npm s320 specsheetNpm s320 specsheet
Npm s320 specsheet
 
Iai isdbcr ispdbcr_esd_specsheet
Iai isdbcr ispdbcr_esd_specsheetIai isdbcr ispdbcr_esd_specsheet
Iai isdbcr ispdbcr_esd_specsheet
 
Tabel baja standard
Tabel baja standardTabel baja standard
Tabel baja standard
 
E1267
E1267E1267
E1267
 
Original N-Channel MOSFET HY4008B HY4008 4008 80V 200A TO-263 New
Original N-Channel MOSFET HY4008B HY4008 4008 80V 200A TO-263 NewOriginal N-Channel MOSFET HY4008B HY4008 4008 80V 200A TO-263 New
Original N-Channel MOSFET HY4008B HY4008 4008 80V 200A TO-263 New
 
TabelBaja1.pdf
TabelBaja1.pdfTabelBaja1.pdf
TabelBaja1.pdf
 
Synergizing mixture do e with cfd for ash slurry optimization
Synergizing mixture do e with cfd for ash slurry optimizationSynergizing mixture do e with cfd for ash slurry optimization
Synergizing mixture do e with cfd for ash slurry optimization
 
DESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRODESIGN BUILDING BY STAD PRO
DESIGN BUILDING BY STAD PRO
 
Rosenberg's OEM Fans for transformer cooling.
Rosenberg's OEM Fans for transformer cooling.Rosenberg's OEM Fans for transformer cooling.
Rosenberg's OEM Fans for transformer cooling.
 
Ls bang gia ls ap dung 20 04-2019
Ls bang gia ls ap dung 20 04-2019Ls bang gia ls ap dung 20 04-2019
Ls bang gia ls ap dung 20 04-2019
 
Kollmorgen pmb specsheet
Kollmorgen  pmb specsheetKollmorgen  pmb specsheet
Kollmorgen pmb specsheet
 
Paint Line Process Improvement Project-Hanging Capacity
Paint Line Process Improvement Project-Hanging CapacityPaint Line Process Improvement Project-Hanging Capacity
Paint Line Process Improvement Project-Hanging Capacity
 
08.2010 fsae hybrid 3rd presentation gen-3 geared bldc motors, planetary tr...
08.2010 fsae hybrid 3rd presentation   gen-3 geared bldc motors, planetary tr...08.2010 fsae hybrid 3rd presentation   gen-3 geared bldc motors, planetary tr...
08.2010 fsae hybrid 3rd presentation gen-3 geared bldc motors, planetary tr...
 

Recently uploaded

digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
drwaing
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
itech2017
 
An Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering TechniquesAn Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering Techniques
ambekarshweta25
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
ClaraZara1
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
ChristineTorrepenida1
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
zwunae
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Online aptitude test management system project report.pdf
Online aptitude test management system project report.pdfOnline aptitude test management system project report.pdf
Online aptitude test management system project report.pdf
Kamal Acharya
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
aqil azizi
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 

Recently uploaded (20)

digital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdfdigital fundamental by Thomas L.floydl.pdf
digital fundamental by Thomas L.floydl.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABSDESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
DESIGN AND ANALYSIS OF A CAR SHOWROOM USING E TABS
 
An Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering TechniquesAn Approach to Detecting Writing Styles Based on Clustering Techniques
An Approach to Detecting Writing Styles Based on Clustering Techniques
 
6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)6th International Conference on Machine Learning & Applications (CMLA 2024)
6th International Conference on Machine Learning & Applications (CMLA 2024)
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 
Unbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptxUnbalanced Three Phase Systems and circuits.pptx
Unbalanced Three Phase Systems and circuits.pptx
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Online aptitude test management system project report.pdf
Online aptitude test management system project report.pdfOnline aptitude test management system project report.pdf
Online aptitude test management system project report.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdfTutorial for 16S rRNA Gene Analysis with QIIME2.pdf
Tutorial for 16S rRNA Gene Analysis with QIIME2.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 

SLM project presentation

  • 1. Advisor Co-supervisor Candidate Professor Luana Bottini Professor Alberto Boschetto Hesham Ibrahim Surface roughness of AlSi10Mg parts manufactured by Selective laser melting Faculty of Civil and Industrial Engineering Department of Mechanical and Aerospace Engineering
  • 2. 25/01/2020Titolo Presentazione Pagina 2 Selective Laser Melting
  • 4. 25/01/2020Titolo Presentazione Pagina 4 AIM Improvement of the surface roughness through process parameters tuning
  • 5. 25/01/2020Titolo Presentazione Pagina 5 Process parameters powder • Powder size disturbtion and shape • Powder flowability • Laser powder interaction laser • Laser power • Types of laser • Laser spot • Laser mode • Energy desity • Volumetric energy density Process • Scan spacing • Scan speed •Layer thickness •Scan strategy •Building strategy • Part orientation •Atmospheric control
  • 6. Definitions 3- Hatch distance 2- contour offset 1- Upskin
  • 7. Design of Experiment DOE Taguchi Full Factorial 25/01/2020Titolo Presentazione Pagina 7 Contour 4 Factors 4 Levels 1 Factor 2 levels Upskin 3 Factors 4 Levels 1 Factor 2 levels Upskin 3 Factors 3 Levels Contour 3 Factors 3 Levels All combinations are available Reduce the number of runs
  • 8. Taguchi method 25/01/2020Titolo Presentazione Pagina 8 Number of levels Designs 2 4 L8 (2**4 4**1) 1-4 1 L16 (2**12 4**1) 2-12 1 L16 (2**9 4**2) 1-9 2 L16 (2**6 4**3) 1-6 3 L16 (2**3 4**4) 1-3 4 L32 (2**1 4**9) 1 2-9 Commonly used orthogonal arrays
  • 9. 25/01/2020Titolo Presentazione Pagina 9 experiments Taguchi Full Factorial Taguchi chosen process parameters # Factors levels # Factors Levels The contour 1 - The contour offset in mm 0.00 and 0.02 For the first contour For the second contour 2 - the laser power in watt 80, 150, 250 and 350 4 - the laser power in watt 80,150,250 and 350 3 - scan speed for the first exposure in mm/s 400, 700, 1000 and 1300 5 - the scan speed for the second exposure in mm/s 400,700,100 0 and 1300 The UPSKIN 6 - Number of layers 1 and 3 7 - Laser power In watt 180,240,3 00 and 360 8 - Scan speed In mm/s 600,800,1 000 and 1200 9 - Hatch distance 0.18 0.21 0.24 0.27 FF chosen process parameters # Factors Levels Upskin 1 Laser power 240,300 and 360 2 Scan speed 400,800 and 1200 3 Hatch distance 0.18,0.21 and 0.24 Contour 4 Laser power 150,250 and 350 5 Scan speed 400,800 and 1200 6 Contour offset 0,0.02 and 0.04
  • 10. 25/01/2020Titolo Presentazione Pagina 10 experiments Taguchi Full Factorial Taguchi table Number of runs Contour offset for first and second contour (C0) Laser power for first contour (Pc1) Scan speed for first contour (Vc1) Laser power for second contour (Pc2) Scan speed for second contour (Vc2) Number of layers for upskin thickness (nL) Laser power for upskin (Pu) Scan speed for upskin (Vu) Hatch distance for upskin (Hd) BeB 01 0 80 400 80 400 1 180 600 0.18 BeB 02 0 80 700 150 700 1 180 800 0.21 BeB 03 0 80 1000 250 1000 1 180 1000 0.24 BeB 04 0 80 1300 350 1300 1 180 1200 0.27 BeB 05 0 150 400 80 700 1 240 600 0.18 BeB 06 0 150 700 150 400 1 240 800 0.21 BeB 07 0 150 1000 250 1300 1 240 1000 0.24 BeB 08 0 150 1300 350 1000 1 240 1200 0.27 BeB 09 0 250 400 150 1000 1 300 600 0.21 BeB 10 0 250 700 80 1300 1 300 800 0.18 BeB 11 0 250 1000 350 400 1 300 1000 0.27 BeB 12 0 250 1300 250 700 1 300 1200 0.24 BeB 13 0 350 400 150 1300 1 360 600 0.21 BeB 14 0 350 700 80 1000 1 360 800 0.18 BeB 15 0 350 1000 350 700 1 360 1000 0.27 BeB 16 0 350 1300 250 400 1 360 1200 0.24 BeB 17 0.02 80 400 350 400 3 180 600 0.27 BeB 18 0.02 80 700 250 700 3 180 800 0.24 BeB 19 0.02 80 1000 150 1000 3 180 1000 0.21 BeB 20 0.02 80 1300 80 1300 3 180 1200 0.18 BeB 21 0.02 150 400 350 700 3 240 600 0.27 BeB 22 0.02 150 700 250 400 3 240 800 0.24 BeB 23 0.02 150 1000 150 1300 3 240 1000 0.21 BeB 24 0.02 150 1300 80 1000 3 240 1200 0.18 BeB 25 0.02 250 400 250 1000 3 300 600 0.24 BeB 26 0.02 250 700 350 1300 3 300 800 0.27 BeB 27 0.02 250 1000 80 400 3 300 1000 0.18 BeB 28 0.02 250 1300 150 700 3 300 1200 0.21 BeB 29 0.02 350 400 250 1300 3 360 600 0.24 BeB 30 0.02 350 700 350 1000 3 360 800 0.27 BeB 31 0.02 350 1000 80 700 3 360 1000 0.18 BeB 32 0.02 350 1300 150 400 3 360 1200 0.21 Full Factorial Table Number of runs Laser power for upskin (Pu) W Scan speed for upskin (Vu) Hatch distance for upskin (Hd) Laser power for contour (Pc) Scan speed for contour (Vc) Contour offset for contour (Co) AL 01 240 400 0.18 150 400 0 AL 02 240 400 0.21 150 400 0.02 AL 03 240 400 0.24 150 400 0.04 AL 04 240 800 0.18 150 800 0 AL 05 240 800 0.21 150 800 0.02 AL 06 240 800 0.24 150 800 0.04 AL 07 240 1200 0.18 150 1200 0 AL 08 240 1200 0.21 150 1200 0.02 AL 09 240 1200 0.24 150 1200 0.04 AL 10 300 400 0.18 250 400 0 AL 11 300 400 0.21 250 400 0.02 AL 12 300 400 0.24 250 400 0.04 AL 13 300 800 0.18 250 800 0 AL 14 300 800 0.21 250 800 0.02 AL 15 300 800 0.24 250 800 0.04 AL 16 300 1200 0.18 250 1200 0 AL 17 300 1200 0.21 250 1200 0.02 AL 18 300 1200 0.24 250 1200 0.04 AL 19 360 400 0.18 350 400 0 AL 20 360 400 0.21 350 400 0.02 AL 21 360 400 0.24 350 400 0.04 AL 22 360 800 0.18 350 800 0 AL 23 360 800 0.21 350 800 0.02 AL 24 360 800 0.24 350 800 0.04 AL 25 360 1200 0.18 350 1200 0 AL 26 360 1200 0.21 350 1200 0.02 AL 27 360 1200 0.24 350 1200 0.04
  • 13.
  • 14. 25/01/2020Titolo Presentazione Pagina 14 • Mitutoyo SJ-410 profilometer • SPLINE PROFILE FILTER. • ISO 16610-22, 2015 Measure
  • 15. 25/01/2020Titolo Presentazione Pagina 15 Data analysis for the measured surface roughness
  • 16. 25/01/2020Titolo Presentazione Pagina 16 Source DF Adj SS Adj MS F-Value P-Value Model 7 71.488 10.213 4.91 0.004 Linear 3 20.432 6.811 3.27 0.049 Pu 1 14.575 14.575 7.00 0.018 Vu 1 1.229 1.229 0.59 0.453 Hd 1 4.628 4.628 2.22 0.155 2-Way Interactions 3 37.707 12.569 6.04 0.006 Pu*Vu 1 20.871 20.871 10.03 0.006 Pu*Hd 1 3.057 3.057 1.47 0.243 Vu*Hd 1 13.779 13.779 6.62 0.020 3-Way Interactions 1 13.349 13.349 6.42 0.022 Pu*Vu*Hd 1 13.349 13.349 6.42 0.022 Error 16 33.291 2.081 Total 23 104.779 Roughness = -58.7 + 0.2597 Pu + 0.0631 Vu + 243 Hd - 0.000256 Pu*Vu - 1.027 Pu*Hd - 0.248 Vu*Hd + 0.001036 Pu*Vu*Hd Full Factorial upskin FF Taguchi 3.5μm 4.06μm
  • 17. Titolo Presentazione Pagina 17 Hd 0.18 Hold Values 052 300 4 6 8 052 005 3 05 100 750 2 051 00 8 01 ssenhguoR uV uP urface Plot of RS o ghness vs Vu, Puu Hd 0.21 Hold Values 2 05 03 0 4 5 6 2 05 500 053 100 075 1250 00 6 7 ssenhguoR uV uP urface Plot of RS o ghness vs Vu, Puu Hd 0.24 Hold Values 052 003 0.4 8.4 052 005 053 2 051 1000 7 05 8.4 6.5 ssenhguoR uV uP urface Plot of RS o ghness vs Vu, Puu The Lowest Ra Laser power Scan speed VED Spe. Mean Ra At Hd 0.18, 0.21 and 0.24 mm 240 Watt 400 mm/s 111 J/mm^3 95.2 J/mm^3 83.3 J/mm^3 AL1, AL2, AL3 3.73 µm 3.52 µm 3.54 µm Another Low Ra point Laser power Scan speed VED Spe. Mean Ra Only using Hd 0.18 mm 360 Watt 1200 mm/s 55.5 J/mm^3 Al 25 4.2 µm Hd 0.18 Hold Values Pu Vu 350325300275250 1200 1100 1000 900 800 700 600 500 400 > – – – < 5 5 6 6 7 7 8 8 Roughness Contour Plot of Roughness vs Vu, Pu In upskin and 90 degree Increasing energy Decrease roughness
  • 18. Taguchi Upskin 25/01/2020Titolo Presentazione Pagina 18 Term Coef SE Coef T P Constant 12.5953 0.2124 59.300 0.000 nL 1 1.0024 0.2124 4.720 0.000 Pu(Watt) 180 8.6256 0.3679 23.446 0.000 Pu(Watt) 240 -0.4361 0.3679 -1.186 0.251 Pu(Watt) 300 -3.4839 0.3679 -9.470 0.000 Vu(mm/s) 600 -3.9655 0.3679 -10.779 0.000 Vu(mm/s) 800 -1.9324 0.3679 -5.253 0.000 Vu(mm/s) 1000 1.3242 0.3679 3.600 0.002 Hd(mm) 0.18 -3.5308 0.3679 -9.597 0.000 Hd(mm) 0.21 -0.0807 0.3679 -0.219 0.829 Hd(mm) 0.24 1.6199 0.3679 4.403 0.000 nL*Pu(Watt) 1 180 -1.5965 0.3679 -4.340 0.000 nL*Pu(Watt) 1 240 0.3171 0.3679 0.862 0.400 nL*Pu(Watt) 1 300 0.8971 0.3679 2.438 0.025 S R-Sq R-Sq(adj) 1.2015 98.20% 96.91% Source DF Seq SS Adj SS Adj MS F P nL 1 32.16 32.16 32.156 22.27 0.000 Pu(Watt) 3 870.98 870.98 290.32 6 201.1 0 0.000 Vu(mm/s) 3 337.05 337.05 112.35 1 77.82 0.000 Hd(mm) 3 152.51 152.51 50.837 35.21 0.000 nL*Pu(Watt) 3 28.80 28.80 9.601 6.65 0.003 Residual Error 18 25.99 25.99 1.444 Total 31 1447.48
  • 19. 25/01/2020Titolo Presentazione Pagina 19 Spe. name Ra range VED Range of variation BeB29 BeB4 3.383 μm till 31.982 μm Lowest surface roughness BeB29 3.383 μm to 4.422 μm Mean Ra 83.3 J/mm^3 4.063 μm Highest roughness limit & longest variation BeB4 21.464 μm to 31.982 μm, Mean Ra 18.5 J/mm^3 26.83 μm
  • 20. Full Factorial For 90 degree 25/01/2020Titolo Presentazione Pagina 20 Source DF Adj SS Adj MS F-Value P-Value Model 7 2798.62 399.80 132.13 0.000 Linear 3 1439.72 479.91 158.60 0.000 Pc 1 1378.62 1378.62 455.61 0.000 Vc 1 2.23 2.23 0.74 0.403 Co 1 58.86 58.86 19.45 0.000 2-Way Interactions 3 1353.58 451.19 149.11 0.000 Pc*Vc 1 966.85 966.85 319.53 0.000 Pc*Co 1 252.66 252.66 83.50 0.000 Vc*Co 1 134.08 134.08 44.31 0.000 3-Way Interactions 1 5.31 5.31 1.76 0.204 Pc*Vc*Co 1 5.31 5.31 1.76 0.204 Error 16 48.41 3.03 Total 23 2847.03 S R-sq R-sq(adj) R-sq(pred) 1.73950 98.30% 97.56% 96.17% Ra(90) = 85.19 - 0.2446 Pc - 0.04776 Vc - 838 Co + 0.000170 Pc*Vc + 2.093 Pc*Co + 0.443 Vc*Co - 0.000588 Pc*Vc*Co In 90 the laser power and the scan speed vary in opposite way of the upskin but the same result FF Taguchi 3.9 μm 4.3 μm
  • 21. 25/01/2020Titolo Presentazione Pagina 21 Co 0 Hold Values 081 240 300 01 20 03 081 500 0 360 01 0 750 2501 00 03 40 09 cV cP cP,cVsv09fotolPecafruS Co 0.02 Hold Values 0 10 20 81 0 024 300 005 0 63 0 1 00 750 1250 00 03 09 cV cP cP,cVsv09fotolPecafruS Co 0.04 Hold Values 6 21 81 081 240 003 500 0 063 001 057 2501 00 81 42 09 cV cP cP,cVsv09fotolPecafruS Lowest surface roughness Laser powe r Scan speed Instant energy Spe. Mean Ra At contour offset 0.00 0.02 0.04 350 Watt 400 mm/s 0.875 Al19 Al20 Al21 4.34 µm 4.30 µm 3.90 µm Low surface roughness Laser powe r Scan speed Instant energy Spe. Mean Ra Only at contour offset 0.00 350 Watt 1200 mm/s 0.29 Al25 13.857 µm Co 0 Hold Values Pc Vc 350300250200150 1200 1100 1000 900 800 700 600 500 400 > – – – – – – < 5 5 10 10 15 15 20 20 25 25 30 30 35 35 90 Contour Plot of 90 vs Vc, Pc
  • 22. 25/01/2020Titolo Presentazione Pagina 22 Term Coef SE Coef T P Constant 15.5383 0.9442 16.457 0.000 C0 0.00 -0.2335 0.9442 -0.247 0.809 Pc1 80 2.2923 1.6353 1.402 0.186 Pc1 150 2.9428 1.6353 1.800 0.097 Pc1 250 -0.4255 1.6353 -0.260 0.799 Vc1 400 -3.9457 1.6353 -2.413 0.033 Vc1 700 0.7384 1.6353 0.452 0.660 Vc1 1000 1.0447 1.6353 0.639 0.535 Pc2 80 2.9595 1.6353 1.810 0.095 Pc2 150 7.1668 1.6353 4.382 0.001 Pc2 250 -2.1430 1.6353 -1.310 0.215 Vc2 400 2.8047 1.6353 1.715 0.112 Vc2 700 3.0039 1.6353 1.837 0.091 Vc2 1000 -2.9273 1.6353 -1.790 0.099 C0*Pc1 0.00 80 2.4929 1.6353 1.524 0.153 C0*Pc1 0.00 150 5.8357 1.6353 3.569 0.004 C0*Pc1 0.00 250 -3.6247 1.6353 -2.216 0.047 C0*Vc2 0.00 400 0.2400 1.6353 0.147 0.886 C0*Vc2 0.00 700 1.1963 1.6353 0.732 0.478 C0*Vc2 0.00 1000 -1.1620 1.6353 -0.711 0.491 Source DF Seq SS Adj SS Adj MS F P C0 1 1.74 1.74 1.745 0.06 0.809 Pc1 3 297.84 297.84 99.278 3.48 0.050 Vc1 3 175.05 175.05 58.350 2.05 0.161 Pc2 3 1027.56 1027.56 342.521 12.01 0.001 Vc2 3 270.09 270.09 90.030 3.16 0.064 C0*Pc1 3 604.29 604.29 201.429 7.06 0.005 C0*Vc2 3 23.31 23.31 7.771 0.27 0.844 Residual Error 12 342.32 342.32 28.526 Total 31 2742.20 Taguchi on 90 degree
  • 23. 25/01/2020Titolo Presentazione Pagina 23 Spe. Name Ra range Instant energy T.E Range of variatio n BeB17 BeB6 3.924 μm 40.689 μm Lowest BeB17 from 3.924 μm till 4.674 μm Mean Ra 0.875 on 1st contour 0.2 on 2nd contour 1.075 j/mm^3 4.312 μm Highest BeB6 31.352 μm to 40.6 μm Mean Ra 0.21 on 1st contour 0.375 on 2nd contour 0.585 J/m^3 34.45 μm
  • 24. Full Factorial on 45 degree 25/01/2020Titolo Presentazione Pagina 24 Source DF Adj SS Adj MS F-Value P-Value Model 7 43.696 6.2423 1.66 0.189 Linear 3 25.165 8.3883 2.24 0.124 Pc 1 18.739 18.7390 4.99 0.040 Vc 1 2.010 2.0097 0.54 0.475 Co 1 4.416 4.4161 1.18 0.294 2-Way Interactions 3 14.265 4.7550 1.27 0.319 Pc*Vc 1 8.154 8.1538 2.17 0.160 Pc*Co 1 6.059 6.0591 1.61 0.222 Vc*Co 1 0.052 0.0520 0.01 0.908 3-Way Interactions 1 4.266 4.2664 1.14 0.302 Pc*Vc*Co 1 4.266 4.2664 1.14 0.302 Error 16 60.045 3.7528 Total 23 103.741 Ra(45)= 15.67 + 0.0171 Pc + 0.00185 Vc - 33 Co - 0.000004 Pc*Vc + 0.341 Pc*Co + 0.252 Vc*Co - 0.001054 Pc*Vc*Co FF Taguchi 18.7μm 18.48μm
  • 25. 25/01/2020Titolo Presentazione Pagina 25 Co 0 Hold Values 180 240 300 91 20 21 180 0521 0001 750 005 0 360 21 22 54 cV cP cP,cVsv54fotolPecafruS Co 0.01 Hold Values 81 0 042 003 91 02 21 81 0 52 01 01 00 057 05 0 0 063 22 54 cV cP cP,cVsv54fotolPecafruS Co 0.02 Hold Values 018 240 300 20 21 22 018 500 0 360 1 025 0001 057 22 32 54 cV cP cP,cVsv54fotolPecafruS The lowest surface roughness Laser power Scan Speed Instant energy Spe Mean Ra At Co 0.0, 0.01 and 0.02 150 Watt 400 mm/s 0.375 J/mm Al1 Al2 18.7 µm 19.8 µm low surface roughness Laser power Scan Speed Instant energy Spe Mean Ra Only At Co 0.02 350 Watt 1200 mm/s 0.29 J/mm Al26 21.087 µm Co 0.00 150 W 1200 0.125 Al7 19.721µm 250 W 400 0.625 Al10 19.396µm 250 W 1200 0.208 Al16 19.814µm Co 0.02 Hold Values Pc Vc 350300250200150 1200 1100 1000 900 800 700 600 500 400 > – – – – – < 20.0 20.0 20.5 20.5 21.0 21.0 21.5 21.5 22.0 22.0 22.5 22.5 45 Contour Plot of 45 vs Vc, Pc
  • 26. 25/01/2020Titolo Presentazione Pagina 26 Term Coef SE Coef T P Constant 23.0783 0.6852 33.679 0.000 C0 0.00 -0.2457 0.6852 -0.359 0.726 Pc1 80 1.0956 1.1869 0.923 0.374 Pc1 150 0.4204 1.1869 0.354 0.729 Pc1 250 -1.9099 1.1869 -1.609 0.134 Vc1 400 -1.9398 1.1869 -1.634 0.128 Vc1 700 0.7120 1.1869 0.600 0.560 Vc1 1000 -0.4529 1.1869 -0.382 0.709 Pc2 80 0.6696 1.1869 0.564 0.583 Pc2 150 -1.3300 1.1869 -1.121 0.284 Pc2 250 -0.4888 1.1869 -0.412 0.688 Vc2 400 1.2398 1.1869 1.045 0.317 Vc2 700 0.3399 1.1869 0.286 0.779 Vc2 1000 -1.5001 1.1869 -1.264 0.230 C0*Pc1 0.00 80 -0.5326 1.1869 -0.449 0.662 C0*Pc1 0.00 150 -0.2631 1.1869 -0.222 0.828 C0*Pc1 0.00 250 -0.8824 1.1869 -0.743 0.472 C0*Vc2 0.00 400 -0.3468 1.1869 -0.292 0.775 C0*Vc2 0.00 700 1.0840 1.1869 0.913 0.379 C0*Vc2 0.00 1000 -1.0940 1.1869 -0.922 0.375 Source DF Seq SS Adj SS Adj MS F P C0 1 1.932 1.932 1.932 0.13 0.726 Pc1 3 41.441 41.441 13.814 0.92 0.461 Vc1 3 58.397 58.397 19.466 1.30 0.321 Pc2 3 30.213 30.213 10.071 0.67 0.586 Vc2 3 31.274 31.274 10.425 0.69 0.573 C0*Pc1 3 31.582 31.582 10.527 0.70 0.570 C0*Vc2 3 20.955 20.955 6.985 0.46 0.712 Residual Error 12 180.306 180.306 15.025 Total 31 396.099 Taguchi on 45 degree
  • 27. 25/01/2020Titolo Presentazione Pagina 27 Spe. name Ra Range Instant energy Variation Range BeB7 BeB12. 17.352 μm till 29.249 μm Lowest Ra BeB7 17.352 μm to 19.127 μm Mean Ra 0.15 on 1st contour 0.19 on 2nd contour 0.34 J/mm^3 18.48 μm Highest Ra & Long variation BeB12 20.701 μm to 29.249 μm Mean Ra 0.19 on 1st contour 0.357 on 2nd contour 0.4111 J/mm^325.465 μm
  • 28. Full Factorial 135 degree 25/01/2020Titolo Presentazione Pagina 28 Source DF Adj SS Adj MS F-Value P-Value Model 7 328.549 46.936 2.05 0.111 Linear 3 174.712 58.237 2.55 0.092 Pc 1 143.879 143.879 6.30 0.023 Vc 1 0.031 0.031 0.00 0.971 Co 1 30.802 30.802 1.35 0.263 2-Way Interactions 3 151.036 50.345 2.20 0.127 Pc*Vc 1 88.639 88.639 3.88 0.066 Pc*Co 1 1.332 1.332 0.06 0.812 Vc*Co 1 61.066 61.066 2.67 0.122 3-Way Interactions 1 2.801 2.801 0.12 0.731 Pc*Vc*Co 1 2.801 2.801 0.12 0.731 Error 16 365.635 22.852 Total 23 694.184 Ra135 = 22.8 + 0.0415 Pc + 0.0305 Vc + 662 Co - 0.000074 Pc*Vc - 0.92 Pc*Co - 0.612 Vc*Co + 0.00085 Pc*Vc*Co Taguchi Full Factorial 37.6 μm 41 μm
  • 29. 25/01/2020Titolo Presentazione Pagina 29 Co 0 Hold Values 081 240 003 48.0 49.5 .15 0 081 5 00 0 063 010 750 21 05 00 .15 0 .52 5 531 cV cP cP,cVsv531fotolPecafruS Co 0.01 Hold Values 081 240 300 45.0 5.74 0.05 081 500 0 063 01 0 057 5021 00 0.05 52.5 531 cV cP cP,cVsv531fotolPecafruS Co 0.02 Hold Values 018 240 003 24 54 48 018 500 0 360 001 750 1250 00 48 51 531 cV cP cP,cVsv531fotolPecafruS Lowest surface roughness Laser power Scan speed Instant energy Spe. Mean Ra At Co 0.01 and 0.02 350 Watt 1200 mm/s 0.29 Al26 Al27 42.28µm 41.57µm Low surface roughness Laser power Scan speed Instant energy Spe. Mean Ra 0.02 150 400 0.375 Al2 43.44µm 0.02 250 400 0.625 Al11 47.39µm 0.02 350 400 0.875 Al20 43.54µm Co 0.02 Hold Values Pc Vc 350300250200150 1200 1100 1000 900 800 700 600 500 400 > – – – < 44 44 46 46 48 48 50 50 135 Contour Plot of 135 vs Vc, Pc
  • 30. 25/01/2020Titolo Presentazione Pagina 30 Term Coef SE Coef T P Constant 46.5644 0.4268 109.098 0.000 C0 0.00 -2.8867 0.4268 -6.763 0.000 Pc1 80 -0.2502 0.7393 -0.338 0.741 Pc1 150 0.0250 0.7393 0.034 0.974 Pc1 250 2.3331 0.7393 3.156 0.008 Vc1 400 0.1316 0.7393 0.178 0.862 Vc1 700 0.5873 0.7393 0.794 0.442 Vc1 1000 1.1132 0.7393 1.506 0.158 Pc2 80 0.8801 0.7393 1.190 0.257 Pc2 150 -0.8304 0.7393 -1.123 0.283 Pc2 250 0.7340 0.7393 0.993 0.340 Vc2 400 0.4696 0.7393 0.635 0.537 Vc2 700 1.3096 0.7393 1.771 0.102 Vc2 1000 -0.8318 0.7393 -1.125 0.283 C0*Pc1 0.00 80 -0.1339 0.7393 -0.181 0.859 C0*Pc1 0.00 150 -0.0069 0.7393 -0.009 0.993 C0*Pc1 0.00 250 -0.8784 0.7393 -1.188 0.258 C0*Vc2 0.00 400 -0.3444 0.7393 -0.466 0.650 C0*Vc2 0.00 700 0.6572 0.7393 0.889 0.392 C0*Vc2 0.00 1000 0.0291 0.7393 0.039 0.969 Source DF Seq SS Adj SS Adj MS F P C0 1 266.657 266.657 266.657 45.74 0.000 Pc1 3 79.595 79.595 26.532 4.55 0.024 Vc1 3 39.662 39.662 13.221 2.27 0.133 Pc2 3 20.937 20.937 6.979 1.20 0.352 Vc2 3 28.200 28.200 9.400 1.61 0.238 C0*Pc1 3 14.626 14.626 4.875 0.84 0.499 C0*Vc2 3 5.346 5.346 1.782 0.31 0.821 Residual Error 12 69.954 69.954 5.829 Total 31 524.976 Taguchi on 135 degree
  • 31. 25/01/2020Titolo Presentazione Pagina 31 Spe. name Ra Range Instant energy Variation Range BeB4 BeB24 34.778 μm 60.994 μm Lowest Ra BeB4 From 34.778 μm to 39.576 μm Mean Ra 0.06 on 1st contour 0.27 on 2nd contour 0.213 37.617 Highest Ra & Long variation BeB24 from 43.015 μm to 60.994 μm Mean Ra 0.12 on 1st contour 0.08 on 2nd contour 0.20 50.9
  • 32. Conclusion • In this thesis I planned and executed an experimental campaign aiming to improve the surface roughness of AlSi10Mg SLM parts • Two different design of experiments have been employed: Taguchi method and full factorial • The Taguchi method, which reduces the number of tests, provided results limited to only Main effects analysis • The full factorial method allowed to measure the significance of the test factors and provided some models for the prediction of the outcomes • The best improvements were reached at horizontal and vertical surfaces with a reduction of more than 50% and 80% respectively • The roughness reduction on the inclined surfaces is limited • Further developments will regard: new experimentations focusing on a small region around the found best conditions and the under-skin damages and porosity investigations. 25/01/2020Titolo Presentazione Pagina 32
  • 33. Thanks For Attention 25/01/2020Titolo Presentazione Pagina 33