SlideShare a Scribd company logo
1 of 17
Download to read offline
Dr Patrick Geoghegan
Book: H. Versteeg and W. Malalasekera An Introduction to
Computational Fluid Dynamics: The Finite Volume Method
FEA/CFD for
Biomedical
Engineering
Week 11: CFD
RANS
• Reynolds-averaged Navier-Stokes Equations (RANS)
– Mean flow is resolved, the effect of turbulence on the mean flow
incorporated without resolving the turbulence
Alternatives for modelling turbulence? RANS!
u′
u
time, t
velocity,
u
Velocity fluctuation
Mean Velocity
• Solve for mean flow
• Effect of turbulence on
mean flow taken into
account
• Derivation of Reynolds-averaged Navier-Stokes Equations (RANS)
– Split the velocity into mean and fluctuating components, plug into Navier-
Stokes Equations and then apply time averaging to the resultant
equations
Alternatives for modelling turbulence? RANS!
u
u
t
u ′
+
=
)
(
u′
u
time, t
velocity,
u
𝑢𝑢𝑢 2 =
1
∆𝑡𝑡
�
0
∆𝑡𝑡
𝑢𝑢𝑢 2
𝑑𝑑𝑑𝑑
• Conservation of Mass (Continuity Equation)
• Conservation of Momentum
• Conservation of internal energy
• State Equations
Original Navier – Stokes equations
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝛻𝛻 � 𝜌𝜌𝐮𝐮 = 0
𝜕𝜕 𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐮𝐮 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑆𝑆𝐸𝐸
𝑝𝑝 = 𝑝𝑝 𝜌𝜌, 𝑇𝑇 𝑖𝑖 = 𝑖𝑖 𝜌𝜌, 𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝐮𝐮 = 0
or
We won derive this here
• Conservation of Mass
• Reynolds Equations
Reynolds-averaged Navier-Stokes Equations (RANS)
𝜕𝜕 𝜌𝜌�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌�
𝑢𝑢𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔�
𝑢𝑢 + −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌 ̅
𝑣𝑣𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ̅
𝑣𝑣 + −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕 𝜌𝜌�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌�
𝑤𝑤𝐮𝐮 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝐮𝐮 = 0
Viscous Stresses Convective transfer of momentum due
to turbulence
Reynolds Stresses = Normal Stresses + Shear Stresses
In turbulent flow, Reynolds stresses dominate viscous stresses except very close to walls where turbulent
fluctuations go to zero
• Original Scalar Transport Equation for an arbitrary scalar Φ (energy,
mass fraction, etc)
• RANS Scalar Transport Equation for an arbitrary scalar Φ (energy,
mass fraction, etc)
Reynolds-averaged Navier-Stokes Equations (RANS)
𝜕𝜕 𝜌𝜌𝛷𝛷
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝛤𝛤
𝛷𝛷𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Φ + −
𝜕𝜕𝜌𝜌𝑢𝑢′Φ
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′Φ
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑤𝑤′Φ
𝜕𝜕𝜕𝜕
+ 𝑆𝑆Φ
Convective transfer of Φ due to
turbulent eddies
𝜕𝜕 𝜌𝜌𝛷𝛷
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝛤𝛤
𝛷𝛷𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Φ + 𝑆𝑆Φ
Rate of
accum. of
Φ in fluid
element
Net rate of
flow of Φ
into fluid
element
(Convection)
Rate of change
of Φ due to
diffusion
Rate of change
of Φ due to
sources
+ +
=
Model effect of turbulent fluctuations Reynolds Stresses
on mean flow
We are solving for U, V, W, and P
• For reference the expanded form of the RANS equations
Reynolds-averaged Navier-Stokes Equations (RANS)
𝜌𝜌
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜌𝜌
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜌𝜌
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
τxx τxy τxz
τyy τyz
τzz
• Solve equations for mean properties of flow (u, v, w, F)
• By applying time averaging, we lose details of the turbulent fluctuations
• But for engineering purposes, we usually only interested in mean
properties of the flow anyway
• With the Navier-Stokes Equations, we had 5 equations (4 transport
equations and one state-equation) and 5 unknowns (u, v, w, ρ, p)
• With the Reynolds-averaged Navier-Stokes Equations are now 6 extra
unknowns (the Reynolds stresses)
• Turbulence modelling is about developing equations to model the
Reynolds stresses
Reynolds-averaged Navier-Stokes Equations (RANS)
• Turbulent kinetic energy is a measure of the energy in the fluctuations
of the flow, not the mean flow
• Procedure for deriving the transport equation for turbulent kinetic
energy
1) Multiply the momentum equations of the Navier-Stokes equations by the
appropriate fluctuating velocity component (x-component momentum
equation multiplied by u’ etc)
2) Add the three resultant equations to form one equation
3) Repeat 1) and 2) for the Reynolds-averaged Navier-Stokes equations
4) Subtract the two resultant equations
Turbulent Kinetic Energy Equation, k
𝑘𝑘 =
1
2
𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2
Turbulent Kinetic Energy Equation, k
𝑘𝑘 =
3
2
𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
2
Units =
𝑚𝑚2
𝑠𝑠2
𝑘𝑘 =
1
2
𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2 Or
𝐼𝐼 =
𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
𝑢𝑢
× 100%
Remember
It is often assumed the fluctuations are the same in all directions so often
𝑘𝑘 =
1
2
𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
2
+ 𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
2
+ 𝑤𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟
2
This can all be used to calculate the turbulence kinetic energy
Turbulent Kinetic Energy Equation, k
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌
1
2
𝑢𝑢𝑖𝑖
′
. 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖
′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
Rate of
Change of
turbulent
kinetic
energy (k)
Rate of
Change of k
by
convection
Transport
of k by
pressure
Transport
of k by
viscous
stresses
Transport
of k by
Reynolds
Stresses
Rate of
dissipation
of k
Rate of
production
of k
• Rate of dissipation of k or viscous dissipation
• Work done by smallest eddies against viscous
stresses
• Always negative, destroys turbulent kinetic energy
• Divide by density to get dissipation rate (ε) (m2/s3)
Turbulent Kinetic Energy Equation, k
Rate of
dissipation
of k
𝜀𝜀 = 2𝜈𝜈𝑠𝑠𝑖𝑖𝑖𝑖
′𝑠𝑠𝑖𝑖𝑖𝑖′
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌
1
2
𝑢𝑢𝑖𝑖
′
. 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖
′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
• Rate of production of k
• Represents conversion of kinetic energy from the
mean flow into turbulent kinetic energy (that is
production of turbulent kinetic energy)
• Always positive
Turbulent Kinetic Energy Equation, k
Rate of
production
of k
𝜕𝜕 𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌
1
2
𝑢𝑢𝑖𝑖
′
. 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖
′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
• Terms in the equation mathematically
represent phenomena observed to occur
in nature energy cascade
(1)Largest eddies extract energy from the
mean flow by a mechanism of vortex
stretching
(2)This energy is passed down to smaller
eddies existing within the larger eddies,
also by a mechanism of vortex
stretching, and so onwards to smaller
and smaller eddies
(3)At the smallest eddy-scales, energy is
finally dissipated as heat by friction
Turbulent Kinetic Energy Equation, k
• Lets revisit this
Reynolds-averaged Navier-Stokes Equations (RANS)
𝜌𝜌
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
�
𝑢𝑢
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜌𝜌
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
̅
𝑣𝑣
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
𝜌𝜌
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝜌𝜌 �
𝑢𝑢
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ ̅
𝑣𝑣
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
+ �
𝑤𝑤
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
+ 𝜇𝜇
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑥𝑥2
+
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑦𝑦2
+
𝜕𝜕2
�
𝑤𝑤
𝜕𝜕𝑧𝑧2
+ −
𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤
𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝑀𝑀𝑀𝑀
τxx τxy τxz
τyy τyz
τzz
Reynolds Stresses
• Basis for most turbulence models is Boussinesq’s eddy viscosity
concept
– By analogy to the viscous stresses in original NS equations, the turbulent
stresses are proportional to mean-velocity gradients
Eddy viscosity (𝜇𝜇𝑡𝑡) is the proportionality “constant”
Turbulence Modelling 𝑘𝑘 =
1
2
𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2
𝜏𝜏𝑥𝑥𝑥𝑥 = −𝑝𝑝′𝑢𝑢′𝑢𝑢′ = 2𝜇𝜇𝑡𝑡
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
−
2
3
𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮
𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝′𝑣𝑣′𝑣𝑣′ = 2𝜇𝜇𝑡𝑡
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
−
2
3
𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮
𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑤𝑤′𝑤𝑤′ = 2𝜇𝜇𝑡𝑡
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
−
2
3
𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮
?
𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝′𝑢𝑢′𝑣𝑣′ = 𝜇𝜇𝑡𝑡
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑢𝑢′𝑤𝑤′ = 𝜇𝜇𝑡𝑡
𝜕𝜕�
𝑢𝑢
𝜕𝜕𝜕𝜕
+
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑣𝑣′𝑤𝑤′ = 𝜇𝜇𝑡𝑡
𝜕𝜕 ̅
𝑣𝑣
𝜕𝜕𝜕𝜕
+
𝜕𝜕�
𝑤𝑤
𝜕𝜕𝜕𝜕
Added to ensure
consistency in definitions

More Related Content

What's hot

00 reactive flows - governing equations
00 reactive flows - governing equations00 reactive flows - governing equations
00 reactive flows - governing equationsMohammad Jadidi
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicstirath prajapati
 
00 reactive flows - species transport
00 reactive flows - species transport00 reactive flows - species transport
00 reactive flows - species transportMohammad Jadidi
 
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)Rajibul Alam
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equationnaveensapare
 
Modeling of turbulent flow
Modeling of turbulent flowModeling of turbulent flow
Modeling of turbulent flowTuong Do
 
Applications of CFD in Chemical Engineering
Applications of CFD in Chemical EngineeringApplications of CFD in Chemical Engineering
Applications of CFD in Chemical EngineeringiMentor Education
 
Fundamentals of Computational Fluid Dynamics
Fundamentals of Computational Fluid DynamicsFundamentals of Computational Fluid Dynamics
Fundamentals of Computational Fluid DynamicsPankaj Koli
 
Gas dynamics ppt.pptx
Gas dynamics ppt.pptxGas dynamics ppt.pptx
Gas dynamics ppt.pptxhemal_2911
 
Hydraulic machines
Hydraulic machinesHydraulic machines
Hydraulic machinesBhargav Sai
 
CFD Concepts.ppt
CFD Concepts.pptCFD Concepts.ppt
CFD Concepts.pptbeline1
 
Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws R A Shah
 
multiphase flow modeling and simulation ,Pouriya Niknam , UNIFI
multiphase flow modeling and  simulation ,Pouriya Niknam , UNIFImultiphase flow modeling and  simulation ,Pouriya Niknam , UNIFI
multiphase flow modeling and simulation ,Pouriya Niknam , UNIFIPouriya Niknam
 
Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)Hashim Hasnain Hadi
 

What's hot (20)

00 reactive flows - governing equations
00 reactive flows - governing equations00 reactive flows - governing equations
00 reactive flows - governing equations
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanics
 
00 reactive flows - species transport
00 reactive flows - species transport00 reactive flows - species transport
00 reactive flows - species transport
 
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
 
Navier stokes equation
Navier stokes equationNavier stokes equation
Navier stokes equation
 
Cfx12 09 turbulence
Cfx12 09 turbulenceCfx12 09 turbulence
Cfx12 09 turbulence
 
Modeling of turbulent flow
Modeling of turbulent flowModeling of turbulent flow
Modeling of turbulent flow
 
Applications of CFD in Chemical Engineering
Applications of CFD in Chemical EngineeringApplications of CFD in Chemical Engineering
Applications of CFD in Chemical Engineering
 
Compressible Fluid
Compressible FluidCompressible Fluid
Compressible Fluid
 
Fundamentals of Computational Fluid Dynamics
Fundamentals of Computational Fluid DynamicsFundamentals of Computational Fluid Dynamics
Fundamentals of Computational Fluid Dynamics
 
Fvm fdm-fvm
Fvm fdm-fvmFvm fdm-fvm
Fvm fdm-fvm
 
Gas dynamics ppt.pptx
Gas dynamics ppt.pptxGas dynamics ppt.pptx
Gas dynamics ppt.pptx
 
DEGREE OF FREEDOM OF A KINEMATIC MECHANISM
DEGREE OF FREEDOM  OF A KINEMATIC MECHANISMDEGREE OF FREEDOM  OF A KINEMATIC MECHANISM
DEGREE OF FREEDOM OF A KINEMATIC MECHANISM
 
Hydraulic machines
Hydraulic machinesHydraulic machines
Hydraulic machines
 
CFD Concepts.ppt
CFD Concepts.pptCFD Concepts.ppt
CFD Concepts.ppt
 
Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws
 
multiphase flow modeling and simulation ,Pouriya Niknam , UNIFI
multiphase flow modeling and  simulation ,Pouriya Niknam , UNIFImultiphase flow modeling and  simulation ,Pouriya Niknam , UNIFI
multiphase flow modeling and simulation ,Pouriya Niknam , UNIFI
 
Computational Fluid Dynamics
Computational Fluid DynamicsComputational Fluid Dynamics
Computational Fluid Dynamics
 
Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)Introduction to Computational Fluid Dynamics (CFD)
Introduction to Computational Fluid Dynamics (CFD)
 
Multiphase model
Multiphase modelMultiphase model
Multiphase model
 

Similar to RANS Equations Explained

Turbulent flows and equations
Turbulent flows and equationsTurbulent flows and equations
Turbulent flows and equationsOm Prakash Singh
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdfcfisicaster
 
Gas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxGas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxrabeamatouk
 
Intro totransportphenomenanew
Intro totransportphenomenanewIntro totransportphenomenanew
Intro totransportphenomenanewilovepurin
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptxChintanModi26
 
Gas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxGas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxNamLe218588
 
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxViscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxMuhammad Dzaky Fawwaz
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserTony Yen
 
Study of turbulent flow downstream from a
Study of turbulent flow downstream from aStudy of turbulent flow downstream from a
Study of turbulent flow downstream from aIAEME Publication
 
Study of turbulent flow downstream from a linear source of heat
Study of turbulent flow downstream from a linear source of heatStudy of turbulent flow downstream from a linear source of heat
Study of turbulent flow downstream from a linear source of heatIAEME Publication
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxKeith Vaugh
 
heat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderheat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderRabiaMalik723138
 
Hyperbolic Parabolic & Elliptic systems.pdf
Hyperbolic Parabolic & Elliptic systems.pdfHyperbolic Parabolic & Elliptic systems.pdf
Hyperbolic Parabolic & Elliptic systems.pdfNarayana Swamy G
 

Similar to RANS Equations Explained (20)

Turbulent flows and equations
Turbulent flows and equationsTurbulent flows and equations
Turbulent flows and equations
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
 
Gas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxGas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptx
 
Intro totransportphenomenanew
Intro totransportphenomenanewIntro totransportphenomenanew
Intro totransportphenomenanew
 
WavesLinear.pdf
WavesLinear.pdfWavesLinear.pdf
WavesLinear.pdf
 
Fluid flow Equations.pptx
Fluid flow Equations.pptxFluid flow Equations.pptx
Fluid flow Equations.pptx
 
Gas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptxGas Dynamics, Lecture 1.pptx
Gas Dynamics, Lecture 1.pptx
 
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptxViscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
Viscous-Laminar-Flows-Lesson-1-External-Flows-Handout (1) (1).pptx
 
8015082
80150828015082
8015082
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 
Study of turbulent flow downstream from a
Study of turbulent flow downstream from aStudy of turbulent flow downstream from a
Study of turbulent flow downstream from a
 
Study of turbulent flow downstream from a linear source of heat
Study of turbulent flow downstream from a linear source of heatStudy of turbulent flow downstream from a linear source of heat
Study of turbulent flow downstream from a linear source of heat
 
T1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptxT1 - Essential Fluids - 2023.pptx
T1 - Essential Fluids - 2023.pptx
 
heat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderheat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinder
 
Turbulence
TurbulenceTurbulence
Turbulence
 
Av 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background MaterialAv 738- Adaptive Filtering - Background Material
Av 738- Adaptive Filtering - Background Material
 
Linear non linear
Linear non linearLinear non linear
Linear non linear
 
Hyperbolic Parabolic & Elliptic systems.pdf
Hyperbolic Parabolic & Elliptic systems.pdfHyperbolic Parabolic & Elliptic systems.pdf
Hyperbolic Parabolic & Elliptic systems.pdf
 
Vortex Modeling
Vortex ModelingVortex Modeling
Vortex Modeling
 
Unit41.pptx
Unit41.pptxUnit41.pptx
Unit41.pptx
 

More from SajawalNawaz5

What is FEA and CFD(2).pdf
What is FEA and CFD(2).pdfWhat is FEA and CFD(2).pdf
What is FEA and CFD(2).pdfSajawalNawaz5
 
Part 3 Practical CFD(1).pdf
Part 3 Practical CFD(1).pdfPart 3 Practical CFD(1).pdf
Part 3 Practical CFD(1).pdfSajawalNawaz5
 
Part 3 Residuals.pdf
Part 3 Residuals.pdfPart 3 Residuals.pdf
Part 3 Residuals.pdfSajawalNawaz5
 
Part 2_Fundamentals Recap(1).pdf
Part 2_Fundamentals Recap(1).pdfPart 2_Fundamentals Recap(1).pdf
Part 2_Fundamentals Recap(1).pdfSajawalNawaz5
 
Part 1_Recap and background.pdf
Part 1_Recap and background.pdfPart 1_Recap and background.pdf
Part 1_Recap and background.pdfSajawalNawaz5
 
Part 1 Last weeks summary.pdf
Part 1 Last weeks summary.pdfPart 1 Last weeks summary.pdf
Part 1 Last weeks summary.pdfSajawalNawaz5
 
Part 2 Boundary Conditions.pdf
Part 2 Boundary Conditions.pdfPart 2 Boundary Conditions.pdf
Part 2 Boundary Conditions.pdfSajawalNawaz5
 
FEA and CFD process part 2(2).pdf
FEA and CFD process part 2(2).pdfFEA and CFD process part 2(2).pdf
FEA and CFD process part 2(2).pdfSajawalNawaz5
 
Part 2 Members Under Axial Loading(1).pdf
Part 2 Members Under Axial Loading(1).pdfPart 2 Members Under Axial Loading(1).pdf
Part 2 Members Under Axial Loading(1).pdfSajawalNawaz5
 
Part 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdfPart 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdfSajawalNawaz5
 
Part 2 Momentum Pt 3(1).pdf
Part 2 Momentum Pt 3(1).pdfPart 2 Momentum Pt 3(1).pdf
Part 2 Momentum Pt 3(1).pdfSajawalNawaz5
 
Part 1_Methods for mechanically analysing a solid structure(1).pdf
Part 1_Methods for mechanically analysing a solid structure(1).pdfPart 1_Methods for mechanically analysing a solid structure(1).pdf
Part 1_Methods for mechanically analysing a solid structure(1).pdfSajawalNawaz5
 
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdf
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdfPart 1 Biofluids Summary and CFD basics Pt 1(1).pdf
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdfSajawalNawaz5
 
Part 2 CFD basics Pt 2(1).pdf
Part 2  CFD basics Pt 2(1).pdfPart 2  CFD basics Pt 2(1).pdf
Part 2 CFD basics Pt 2(1).pdfSajawalNawaz5
 
Part 1 Recap and Minimum potential Energy(1).pdf
Part 1 Recap and Minimum potential Energy(1).pdfPart 1 Recap and Minimum potential Energy(1).pdf
Part 1 Recap and Minimum potential Energy(1).pdfSajawalNawaz5
 
Part 1 Momentum Pt 2(1).pdf
Part 1 Momentum Pt 2(1).pdfPart 1 Momentum Pt 2(1).pdf
Part 1 Momentum Pt 2(1).pdfSajawalNawaz5
 

More from SajawalNawaz5 (19)

What is FEA and CFD(2).pdf
What is FEA and CFD(2).pdfWhat is FEA and CFD(2).pdf
What is FEA and CFD(2).pdf
 
Part 3 Practical CFD(1).pdf
Part 3 Practical CFD(1).pdfPart 3 Practical CFD(1).pdf
Part 3 Practical CFD(1).pdf
 
Part 3 Residuals.pdf
Part 3 Residuals.pdfPart 3 Residuals.pdf
Part 3 Residuals.pdf
 
Part 3 Beams(1).pdf
Part 3 Beams(1).pdfPart 3 Beams(1).pdf
Part 3 Beams(1).pdf
 
Part 2_Fundamentals Recap(1).pdf
Part 2_Fundamentals Recap(1).pdfPart 2_Fundamentals Recap(1).pdf
Part 2_Fundamentals Recap(1).pdf
 
Part 2 Revision.pdf
Part 2 Revision.pdfPart 2 Revision.pdf
Part 2 Revision.pdf
 
Part 1_Recap and background.pdf
Part 1_Recap and background.pdfPart 1_Recap and background.pdf
Part 1_Recap and background.pdf
 
Part 1 Last weeks summary.pdf
Part 1 Last weeks summary.pdfPart 1 Last weeks summary.pdf
Part 1 Last weeks summary.pdf
 
Part 2 Boundary Conditions.pdf
Part 2 Boundary Conditions.pdfPart 2 Boundary Conditions.pdf
Part 2 Boundary Conditions.pdf
 
FEA and CFD process part 2(2).pdf
FEA and CFD process part 2(2).pdfFEA and CFD process part 2(2).pdf
FEA and CFD process part 2(2).pdf
 
Part 1_Blood.pdf
Part 1_Blood.pdfPart 1_Blood.pdf
Part 1_Blood.pdf
 
Part 2 Members Under Axial Loading(1).pdf
Part 2 Members Under Axial Loading(1).pdfPart 2 Members Under Axial Loading(1).pdf
Part 2 Members Under Axial Loading(1).pdf
 
Part 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdfPart 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdf
 
Part 2 Momentum Pt 3(1).pdf
Part 2 Momentum Pt 3(1).pdfPart 2 Momentum Pt 3(1).pdf
Part 2 Momentum Pt 3(1).pdf
 
Part 1_Methods for mechanically analysing a solid structure(1).pdf
Part 1_Methods for mechanically analysing a solid structure(1).pdfPart 1_Methods for mechanically analysing a solid structure(1).pdf
Part 1_Methods for mechanically analysing a solid structure(1).pdf
 
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdf
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdfPart 1 Biofluids Summary and CFD basics Pt 1(1).pdf
Part 1 Biofluids Summary and CFD basics Pt 1(1).pdf
 
Part 2 CFD basics Pt 2(1).pdf
Part 2  CFD basics Pt 2(1).pdfPart 2  CFD basics Pt 2(1).pdf
Part 2 CFD basics Pt 2(1).pdf
 
Part 1 Recap and Minimum potential Energy(1).pdf
Part 1 Recap and Minimum potential Energy(1).pdfPart 1 Recap and Minimum potential Energy(1).pdf
Part 1 Recap and Minimum potential Energy(1).pdf
 
Part 1 Momentum Pt 2(1).pdf
Part 1 Momentum Pt 2(1).pdfPart 1 Momentum Pt 2(1).pdf
Part 1 Momentum Pt 2(1).pdf
 

Recently uploaded

Mandi House Call Girls : ☎ 8527673949, Low rate Call Girls
Mandi House Call Girls : ☎ 8527673949, Low rate Call GirlsMandi House Call Girls : ☎ 8527673949, Low rate Call Girls
Mandi House Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
Strip Zagor Extra 322 - Dva ortaka.pdf
Strip   Zagor Extra 322 - Dva ortaka.pdfStrip   Zagor Extra 322 - Dva ortaka.pdf
Strip Zagor Extra 322 - Dva ortaka.pdfStripovizijacom
 
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi NcrSapana Sha
 
FULL ENJOY - 9953040155 Call Girls in Karol Bagh | Delhi
FULL ENJOY - 9953040155 Call Girls in Karol Bagh | DelhiFULL ENJOY - 9953040155 Call Girls in Karol Bagh | Delhi
FULL ENJOY - 9953040155 Call Girls in Karol Bagh | DelhiMalviyaNagarCallGirl
 
Karachi Escorts | +923070433345 | Escort Service in Karachi
Karachi Escorts | +923070433345 | Escort Service in KarachiKarachi Escorts | +923070433345 | Escort Service in Karachi
Karachi Escorts | +923070433345 | Escort Service in KarachiAyesha Khan
 
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call GirlsGovindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiFULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiMalviyaNagarCallGirl
 
MinSheng Gaofeng Estate commercial storyboard
MinSheng Gaofeng Estate commercial storyboardMinSheng Gaofeng Estate commercial storyboard
MinSheng Gaofeng Estate commercial storyboardjessica288382
 
SHIVNA SAHITYIKI APRIL JUNE 2024 Magazine
SHIVNA SAHITYIKI APRIL JUNE 2024 MagazineSHIVNA SAHITYIKI APRIL JUNE 2024 Magazine
SHIVNA SAHITYIKI APRIL JUNE 2024 MagazineShivna Prakashan
 
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiMalviyaNagarCallGirl
 
Zagor VČ OP 055 - Oluja nad Haitijem.pdf
Zagor VČ OP 055 - Oluja nad Haitijem.pdfZagor VČ OP 055 - Oluja nad Haitijem.pdf
Zagor VČ OP 055 - Oluja nad Haitijem.pdfStripovizijacom
 
FULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
FULL ENJOY - 9953040155 Call Girls in Shahdara | DelhiFULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
FULL ENJOY - 9953040155 Call Girls in Shahdara | DelhiMalviyaNagarCallGirl
 
Call Girl Service in Karachi +923081633338 Karachi Call Girls
Call Girl Service in Karachi +923081633338 Karachi Call GirlsCall Girl Service in Karachi +923081633338 Karachi Call Girls
Call Girl Service in Karachi +923081633338 Karachi Call GirlsAyesha Khan
 
Retail Store Scavanger Hunt - Foundation College Park
Retail Store Scavanger Hunt - Foundation College ParkRetail Store Scavanger Hunt - Foundation College Park
Retail Store Scavanger Hunt - Foundation College Parkjosebenzaquen
 
Call Girls in Islamabad | 03274100048 | Call Girl Service
Call Girls in Islamabad | 03274100048 | Call Girl ServiceCall Girls in Islamabad | 03274100048 | Call Girl Service
Call Girls in Islamabad | 03274100048 | Call Girl ServiceAyesha Khan
 
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | DelhiMalviyaNagarCallGirl
 
Roadrunner Lodge, Motel/Residence, Tucumcari NM
Roadrunner Lodge, Motel/Residence, Tucumcari NMRoadrunner Lodge, Motel/Residence, Tucumcari NM
Roadrunner Lodge, Motel/Residence, Tucumcari NMroute66connected
 
Turn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel JohnsonTurn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel Johnsonthephillipta
 
Faridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Faridabad Call Girls : ☎ 8527673949, Low rate Call GirlsFaridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Faridabad Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
 
San Jon Motel, Motel/Residence, San Jon NM
San Jon Motel, Motel/Residence, San Jon NMSan Jon Motel, Motel/Residence, San Jon NM
San Jon Motel, Motel/Residence, San Jon NMroute66connected
 

Recently uploaded (20)

Mandi House Call Girls : ☎ 8527673949, Low rate Call Girls
Mandi House Call Girls : ☎ 8527673949, Low rate Call GirlsMandi House Call Girls : ☎ 8527673949, Low rate Call Girls
Mandi House Call Girls : ☎ 8527673949, Low rate Call Girls
 
Strip Zagor Extra 322 - Dva ortaka.pdf
Strip   Zagor Extra 322 - Dva ortaka.pdfStrip   Zagor Extra 322 - Dva ortaka.pdf
Strip Zagor Extra 322 - Dva ortaka.pdf
 
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
 
FULL ENJOY - 9953040155 Call Girls in Karol Bagh | Delhi
FULL ENJOY - 9953040155 Call Girls in Karol Bagh | DelhiFULL ENJOY - 9953040155 Call Girls in Karol Bagh | Delhi
FULL ENJOY - 9953040155 Call Girls in Karol Bagh | Delhi
 
Karachi Escorts | +923070433345 | Escort Service in Karachi
Karachi Escorts | +923070433345 | Escort Service in KarachiKarachi Escorts | +923070433345 | Escort Service in Karachi
Karachi Escorts | +923070433345 | Escort Service in Karachi
 
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call GirlsGovindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
 
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiFULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
 
MinSheng Gaofeng Estate commercial storyboard
MinSheng Gaofeng Estate commercial storyboardMinSheng Gaofeng Estate commercial storyboard
MinSheng Gaofeng Estate commercial storyboard
 
SHIVNA SAHITYIKI APRIL JUNE 2024 Magazine
SHIVNA SAHITYIKI APRIL JUNE 2024 MagazineSHIVNA SAHITYIKI APRIL JUNE 2024 Magazine
SHIVNA SAHITYIKI APRIL JUNE 2024 Magazine
 
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
 
Zagor VČ OP 055 - Oluja nad Haitijem.pdf
Zagor VČ OP 055 - Oluja nad Haitijem.pdfZagor VČ OP 055 - Oluja nad Haitijem.pdf
Zagor VČ OP 055 - Oluja nad Haitijem.pdf
 
FULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
FULL ENJOY - 9953040155 Call Girls in Shahdara | DelhiFULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
FULL ENJOY - 9953040155 Call Girls in Shahdara | Delhi
 
Call Girl Service in Karachi +923081633338 Karachi Call Girls
Call Girl Service in Karachi +923081633338 Karachi Call GirlsCall Girl Service in Karachi +923081633338 Karachi Call Girls
Call Girl Service in Karachi +923081633338 Karachi Call Girls
 
Retail Store Scavanger Hunt - Foundation College Park
Retail Store Scavanger Hunt - Foundation College ParkRetail Store Scavanger Hunt - Foundation College Park
Retail Store Scavanger Hunt - Foundation College Park
 
Call Girls in Islamabad | 03274100048 | Call Girl Service
Call Girls in Islamabad | 03274100048 | Call Girl ServiceCall Girls in Islamabad | 03274100048 | Call Girl Service
Call Girls in Islamabad | 03274100048 | Call Girl Service
 
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
 
Roadrunner Lodge, Motel/Residence, Tucumcari NM
Roadrunner Lodge, Motel/Residence, Tucumcari NMRoadrunner Lodge, Motel/Residence, Tucumcari NM
Roadrunner Lodge, Motel/Residence, Tucumcari NM
 
Turn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel JohnsonTurn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel Johnson
 
Faridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Faridabad Call Girls : ☎ 8527673949, Low rate Call GirlsFaridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Faridabad Call Girls : ☎ 8527673949, Low rate Call Girls
 
San Jon Motel, Motel/Residence, San Jon NM
San Jon Motel, Motel/Residence, San Jon NMSan Jon Motel, Motel/Residence, San Jon NM
San Jon Motel, Motel/Residence, San Jon NM
 

RANS Equations Explained

  • 1. Dr Patrick Geoghegan Book: H. Versteeg and W. Malalasekera An Introduction to Computational Fluid Dynamics: The Finite Volume Method FEA/CFD for Biomedical Engineering Week 11: CFD
  • 3. • Reynolds-averaged Navier-Stokes Equations (RANS) – Mean flow is resolved, the effect of turbulence on the mean flow incorporated without resolving the turbulence Alternatives for modelling turbulence? RANS! u′ u time, t velocity, u Velocity fluctuation Mean Velocity • Solve for mean flow • Effect of turbulence on mean flow taken into account
  • 4. • Derivation of Reynolds-averaged Navier-Stokes Equations (RANS) – Split the velocity into mean and fluctuating components, plug into Navier- Stokes Equations and then apply time averaging to the resultant equations Alternatives for modelling turbulence? RANS! u u t u ′ + = ) ( u′ u time, t velocity, u 𝑢𝑢𝑢 2 = 1 ∆𝑡𝑡 � 0 ∆𝑡𝑡 𝑢𝑢𝑢 2 𝑑𝑑𝑑𝑑
  • 5. • Conservation of Mass (Continuity Equation) • Conservation of Momentum • Conservation of internal energy • State Equations Original Navier – Stokes equations 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝛻𝛻 � 𝜌𝜌𝐮𝐮 = 0 𝜕𝜕 𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = −𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐮𝐮 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑆𝑆𝐸𝐸 𝑝𝑝 = 𝑝𝑝 𝜌𝜌, 𝑇𝑇 𝑖𝑖 = 𝑖𝑖 𝜌𝜌, 𝑇𝑇 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝐮𝐮 = 0 or We won derive this here
  • 6. • Conservation of Mass • Reynolds Equations Reynolds-averaged Navier-Stokes Equations (RANS) 𝜕𝜕 𝜌𝜌� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌� 𝑢𝑢𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� 𝑢𝑢 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌 ̅ 𝑣𝑣𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ̅ 𝑣𝑣 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕 𝜌𝜌� 𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌� 𝑤𝑤𝐮𝐮 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝐮𝐮 = 0 Viscous Stresses Convective transfer of momentum due to turbulence Reynolds Stresses = Normal Stresses + Shear Stresses In turbulent flow, Reynolds stresses dominate viscous stresses except very close to walls where turbulent fluctuations go to zero
  • 7. • Original Scalar Transport Equation for an arbitrary scalar Φ (energy, mass fraction, etc) • RANS Scalar Transport Equation for an arbitrary scalar Φ (energy, mass fraction, etc) Reynolds-averaged Navier-Stokes Equations (RANS) 𝜕𝜕 𝜌𝜌𝛷𝛷 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝛤𝛤 𝛷𝛷𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Φ + − 𝜕𝜕𝜌𝜌𝑢𝑢′Φ 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′Φ 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑤𝑤′Φ 𝜕𝜕𝜕𝜕 + 𝑆𝑆Φ Convective transfer of Φ due to turbulent eddies 𝜕𝜕 𝜌𝜌𝛷𝛷 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝛤𝛤 𝛷𝛷𝜇𝜇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Φ + 𝑆𝑆Φ Rate of accum. of Φ in fluid element Net rate of flow of Φ into fluid element (Convection) Rate of change of Φ due to diffusion Rate of change of Φ due to sources + + =
  • 8. Model effect of turbulent fluctuations Reynolds Stresses on mean flow We are solving for U, V, W, and P • For reference the expanded form of the RANS equations Reynolds-averaged Navier-Stokes Equations (RANS) 𝜌𝜌 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜌𝜌 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜌𝜌 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 τxx τxy τxz τyy τyz τzz
  • 9. • Solve equations for mean properties of flow (u, v, w, F) • By applying time averaging, we lose details of the turbulent fluctuations • But for engineering purposes, we usually only interested in mean properties of the flow anyway • With the Navier-Stokes Equations, we had 5 equations (4 transport equations and one state-equation) and 5 unknowns (u, v, w, ρ, p) • With the Reynolds-averaged Navier-Stokes Equations are now 6 extra unknowns (the Reynolds stresses) • Turbulence modelling is about developing equations to model the Reynolds stresses Reynolds-averaged Navier-Stokes Equations (RANS)
  • 10. • Turbulent kinetic energy is a measure of the energy in the fluctuations of the flow, not the mean flow • Procedure for deriving the transport equation for turbulent kinetic energy 1) Multiply the momentum equations of the Navier-Stokes equations by the appropriate fluctuating velocity component (x-component momentum equation multiplied by u’ etc) 2) Add the three resultant equations to form one equation 3) Repeat 1) and 2) for the Reynolds-averaged Navier-Stokes equations 4) Subtract the two resultant equations Turbulent Kinetic Energy Equation, k 𝑘𝑘 = 1 2 𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2
  • 11. Turbulent Kinetic Energy Equation, k 𝑘𝑘 = 3 2 𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 2 Units = 𝑚𝑚2 𝑠𝑠2 𝑘𝑘 = 1 2 𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2 Or 𝐼𝐼 = 𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 𝑢𝑢 × 100% Remember It is often assumed the fluctuations are the same in all directions so often 𝑘𝑘 = 1 2 𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 2 + 𝑣𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 2 + 𝑤𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 2 This can all be used to calculate the turbulence kinetic energy
  • 12. Turbulent Kinetic Energy Equation, k 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌 1 2 𝑢𝑢𝑖𝑖 ′ . 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖 ′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖 Rate of Change of turbulent kinetic energy (k) Rate of Change of k by convection Transport of k by pressure Transport of k by viscous stresses Transport of k by Reynolds Stresses Rate of dissipation of k Rate of production of k
  • 13. • Rate of dissipation of k or viscous dissipation • Work done by smallest eddies against viscous stresses • Always negative, destroys turbulent kinetic energy • Divide by density to get dissipation rate (ε) (m2/s3) Turbulent Kinetic Energy Equation, k Rate of dissipation of k 𝜀𝜀 = 2𝜈𝜈𝑠𝑠𝑖𝑖𝑖𝑖 ′𝑠𝑠𝑖𝑖𝑖𝑖′ 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌 1 2 𝑢𝑢𝑖𝑖 ′ . 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖 ′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
  • 14. • Rate of production of k • Represents conversion of kinetic energy from the mean flow into turbulent kinetic energy (that is production of turbulent kinetic energy) • Always positive Turbulent Kinetic Energy Equation, k Rate of production of k 𝜕𝜕 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑑𝑑𝑑𝑑𝑑𝑑 𝜌𝜌𝜌𝜌𝐮𝐮 = 𝑑𝑑𝑑𝑑𝑑𝑑 −𝑝𝑝′𝒖𝒖′ + 2𝜇𝜇𝒖𝒖′𝑠𝑠𝑖𝑖𝑖𝑖′ − 𝜌𝜌 1 2 𝑢𝑢𝑖𝑖 ′ . 𝑢𝑢𝑖𝑖 ′𝑢𝑢𝑗𝑗′ − 2𝜇𝜇𝑠𝑠𝑖𝑖𝑖𝑖 ′𝑠𝑠𝑖𝑖𝑖𝑖′ + 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′. 𝑆𝑆𝑖𝑖𝑖𝑖
  • 15. • Terms in the equation mathematically represent phenomena observed to occur in nature energy cascade (1)Largest eddies extract energy from the mean flow by a mechanism of vortex stretching (2)This energy is passed down to smaller eddies existing within the larger eddies, also by a mechanism of vortex stretching, and so onwards to smaller and smaller eddies (3)At the smallest eddy-scales, energy is finally dissipated as heat by friction Turbulent Kinetic Energy Equation, k
  • 16. • Lets revisit this Reynolds-averaged Navier-Stokes Equations (RANS) 𝜌𝜌 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 � 𝑢𝑢 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑢𝑢𝑢 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜌𝜌 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 ̅ 𝑣𝑣 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑣𝑣𝑣 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 𝜌𝜌 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝜌𝜌 � 𝑢𝑢 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + ̅ 𝑣𝑣 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 + � 𝑤𝑤 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 = − 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 + 𝜇𝜇 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑥𝑥2 + 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑦𝑦2 + 𝜕𝜕2 � 𝑤𝑤 𝜕𝜕𝑧𝑧2 + − 𝜕𝜕𝜌𝜌𝑢𝑢′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑣𝑣′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 − 𝜕𝜕𝜌𝜌𝑤𝑤′𝑤𝑤𝑤 𝜕𝜕𝜕𝜕 + 𝑆𝑆𝑀𝑀𝑀𝑀 τxx τxy τxz τyy τyz τzz Reynolds Stresses
  • 17. • Basis for most turbulence models is Boussinesq’s eddy viscosity concept – By analogy to the viscous stresses in original NS equations, the turbulent stresses are proportional to mean-velocity gradients Eddy viscosity (𝜇𝜇𝑡𝑡) is the proportionality “constant” Turbulence Modelling 𝑘𝑘 = 1 2 𝑢𝑢𝑢 2 + 𝑣𝑣𝑣 2 + 𝑤𝑤𝑤 2 𝜏𝜏𝑥𝑥𝑥𝑥 = −𝑝𝑝′𝑢𝑢′𝑢𝑢′ = 2𝜇𝜇𝑡𝑡 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 − 2 3 𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮 𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝′𝑣𝑣′𝑣𝑣′ = 2𝜇𝜇𝑡𝑡 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 − 2 3 𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑤𝑤′𝑤𝑤′ = 2𝜇𝜇𝑡𝑡 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 − 2 3 𝜌𝜌𝜌𝜌 + 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝐮𝐮 ? 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑦𝑦𝑦𝑦 = −𝑝𝑝′𝑢𝑢′𝑣𝑣′ = 𝜇𝜇𝑡𝑡 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 𝜏𝜏𝑥𝑥𝑥𝑥 = 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑢𝑢′𝑤𝑤′ = 𝜇𝜇𝑡𝑡 𝜕𝜕� 𝑢𝑢 𝜕𝜕𝜕𝜕 + 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 𝜏𝜏𝑦𝑦𝑦𝑦 = 𝜏𝜏𝑧𝑧𝑧𝑧 = −𝑝𝑝′𝑣𝑣′𝑤𝑤′ = 𝜇𝜇𝑡𝑡 𝜕𝜕 ̅ 𝑣𝑣 𝜕𝜕𝜕𝜕 + 𝜕𝜕� 𝑤𝑤 𝜕𝜕𝜕𝜕 Added to ensure consistency in definitions