SlideShare a Scribd company logo
1 of 35
Download to read offline
Waves
3. Statistics and Irregular Waves
Statistics and Irregular Waves
● Real wave fields are not regular
● Combination of many periods, heights, directions
● Design and simulation require realistic wave statistics:
‒ probability distribution of heights
‒ energy spectrum of frequencies (and directions)
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Measures of Wave Height
𝐻max Largest wave height in the sample 𝐻max = max
𝑖
(𝐻𝑖)
𝐻av Mean wave height 𝐻av =
1
𝑁
෍ 𝐻𝑖
𝐻rms Root-mean-square wave height 𝐻rms =
1
𝑁
෍ 𝐻𝑖
2
𝐻 Τ
1 3 Average of the highest 𝑁/3 waves 𝐻 Τ
1 3 =
1
𝑁/3
෍
1
𝑁/3
𝐻𝑖
𝐻𝑚0 Estimate based on the rms surface elevation 𝐻𝑚0 = 4 η2
Τ
1 2
𝐻𝑠 Significant wave height Either 𝐻 Τ
1 3 or 𝐻𝑚0
Measures of Wave Period
𝑇𝑠 Significant wave period (average of highest 𝑁/3 waves)
𝑇𝑝 Peak period (from peak frequency of energy spectrum)
𝑇𝑒
Energy period (period of a regular wave with same significant wave height and
power density; used in wave-energy prediction; derived from energy spectrum)
𝑇𝑧 Mean zero up-crossing period
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Probability Distribution of Wave Heights
For a narrow-banded frequency spectrum the Rayleigh probability distribution is
appropriate:
𝑃 height > 𝐻 = exp − Τ
(𝐻 )
𝐻rms
2
Cumulative distribution function:
𝐹 𝐻 = 𝑃 height < 𝐻 = 1 − e− Τ
𝐻 𝐻rms
2
Probability density function:
𝑓 𝐻 =
d𝐹
d𝐻
= 2
𝐻
𝐻rms
2 e− Τ
𝐻 𝐻rms
2
Rayleigh Distribution
𝐻av ≡ 𝐸 𝐻 = න
0
∞
𝐻 𝑓 𝐻 d𝐻
𝐻rms
2 ≡ 𝐸 𝐻2 = න
0
∞
𝐻2 𝑓 𝐻 d𝐻
𝐻av =
π
2
𝐻rms = 0.886 𝐻rms
𝐻 Τ
1 3 = 1.416 𝐻rms
𝐻 Τ
1 10 = 1.800 𝐻rms
𝐻 Τ
1 100 = 2.359 𝐻rms
Single parameter: 𝐻rms
𝑓 𝐻 = 2
𝐻
𝐻rms
2 e− Τ
𝐻 𝐻rms
2
Example
Near a pier, 400 consecutive wave heights are measured.
Assume that the sea state is narrow-banded.
(a) How many waves are expected to exceed 2𝐻rms?
(b) If the significant wave height is 2.5 m, what is 𝐻rms?
(c) Estimate the wave height exceeded by 80 waves.
(d) Estimate the number of waves with a height between
1.0 m and 3.0 m.
Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is
narrow-banded.
(a) How many waves are expected to exceed 2𝐻rms?
(b) If the significant wave height is 2.5 m, what is 𝐻rms?
(c) Estimate the wave height exceeded by 80 waves.
(d) Estimate the number of waves with a height between 1.0 m and 3.0 m.
𝑃 height > 𝐻 = e− Τ
𝐻 𝐻rms
2
𝑃 height > 2𝐻rms = e−4
(a)
= 0.01832
In 400 waves, 𝑛 = 400 × 0.01832
𝐻 Τ
1 3 = 1.416 𝐻rms
(b)
2.5 = 1.416 𝐻rms
𝑯𝐫𝐦𝐬 = 𝟏. 𝟕𝟔𝟔 𝐦
(c) 𝑃 height > 𝐻 = e− Τ
𝐻 𝐻rms
2
=
80
400
= 0.2
𝐻/𝐻rms
2
= − ln 0.2
𝐻 = 𝐻rms × − ln 0.2 = 𝟐. 𝟐𝟒𝟎 𝐦
𝑃 1.0 < height < 3.0 = 𝑃 height > 1.0 − 𝑃 height > 3.0
= e− 1.0/𝐻rms
2
− e− 3.0/𝐻rms
2
= 0.6699
In 400 waves, 𝑛 = 400 × 0.6699
(d)
= 𝟕. 𝟑𝟐𝟖
= 𝟐𝟔𝟖. 𝟎
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Regular vs Irregular Waves
Regular wave:
- single frequency
Irregular wave:
- many frequencies
Wave energy depends on 𝜂2
Energy Spectrum
● “Spectral” means “by frequency”
● A spectrum is usually determined by a Fourier transform
● This splits a signal up into its component frequencies
● Energy in a wave is proportional to 𝜂2, where 𝜂 is surface
displacement
● The energy spectrum, or power spectrum, is the Fourier
transform of 𝜂2
Energy Spectrum
For regular waves (single frequency):
𝐸 =
1
2
𝜌𝑔𝐴2 = 𝜌𝑔 )
𝜂2(𝑡 =
1
8
𝜌𝑔𝐻2
For irregular waves (many frequencies):
𝑆 𝑓 d𝑓
න
𝑓1
𝑓2
𝑆 𝑓 d𝑓
is the “energy” in a small interval d𝑓 near frequency 𝑓
is the “energy” between frequencies 𝑓1 and 𝑓2
(strictly: energy/𝜌𝑔)
The energy spectrum 𝑆(𝑓) is determined by Fourier transforming 𝜂2
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Model Spectra
Open ocean: Bretschneider spectrum
Fetch-limited seas: JONSWAP spectrum
Key parameters: peak frequency 𝑓𝑝 ( =1/(peak period, 𝑇𝑝) )
significant wave height 𝐻𝑚0
Model Spectra
Bretschneider spectrum:
JONSWAP spectrum:
𝑆 𝑓 =
5
16
𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
𝑆 𝑓 = 𝐶 𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
𝛾𝑏
𝜎 = ൝
0.07 𝑓 < 𝑓𝑝
0.09 𝑓 > 𝑓𝑝
𝑏 = exp −
1
2
Τ
𝑓 𝑓𝑝 − 1
𝜎
2
𝛾 = 3.3
Significant Wave Height, 𝑯𝒎𝟎
Bretschneider spectrum: 𝑆 𝑓 =
5
16
𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
Total energy:
𝐸
𝜌𝑔
≡ න
0
∞
𝑆 𝑓 d𝑓 =
1
16
𝐻𝑚0
2
𝐻𝑚0 = 4 Τ
𝐸 𝜌 𝑔 = 4 )
η2(𝑡
Total energy for a regular wave:
𝐸
𝜌𝑔
=
1
8
𝐻rms
2
Same energy if 𝐻𝑚0 = 2𝐻𝑟𝑚𝑠 = 1.414𝐻rms
Rayleigh distribution: 𝐻 Τ
1 3 = 1.416𝐻rms
𝑯𝒎𝟎 and 𝑯 Τ
𝟏 𝟑 can be used synonymously for 𝑯𝒔 ...
… but 𝐻𝑚0 is easier to measure!
Finding Wave Parameters From a Spectrum
● Surface displacement 𝜂(𝑡) is measured (e.g. wave buoy)
● 𝜂2(𝑡) is Fourier-transformed to get energy spectrum 𝑆(𝑓)
● Height and period parameters are deduced from the peak and the moments
of the spectrum:
𝑚𝑛 = න
0
∞
𝑓𝑛
𝑆 𝑓 d𝑓
Peak period: 𝑇𝑝 =
1
𝑓𝑝
Significant wave height: 𝐻𝑠 = 𝐻𝑚0 = 4 𝑚0
Energy period: 𝑇𝑒 =
𝑚−1
𝑚0
Multi-Modal Spectra
frequency f (Hz)
spectral
density
S
(m^2
s)
swell
wind
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Using a Spectrum To Generate a Wave Field
η 𝑡 = ෍ )
𝑎𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 𝜙𝑖
amplitude
𝑆 𝑓𝑖 Δ𝑓 = 𝐸𝑖 =
1
2
𝑎𝑖
2
𝑎𝑖 = 2𝑆 𝑓𝑖 Δ𝑓
(angular) frequency
𝜔𝑖 = 2π𝑓𝑖
wavenumber
𝜔𝑖
2
= 𝑔𝑘𝑖 tanh 𝑘𝑖ℎ
random phase
Simulated Wave Field
𝑇𝑝 = 8 s
𝐻𝑠 = 1.0 m
ℎ = 30 m
Regular waves:
Irregular waves:
Focused waves:
Example
An irregular wavefield at a deep-water location is characterised
by peak period of 8.7 s and significant wave height of 1.5 m.
(a) Provide a sketch of a Bretschneider spectrum, labelling both
axes with variables and units and indicating the frequencies
corresponding to both the peak period and the energy period.
Note: Calculations are not needed for this part.
(b) Determine the power density (in kW m–1) of a regular wave
component with frequency 0.125 Hz that represents the
frequency range 0.12 to 0.13 Hz of the irregular wave field.
An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and
significant wave height of 1.5 m.
(a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units
and indicating the frequencies corresponding to both the peak period and the energy
period.
frequency f (Hz)
spectral
density
S
(m^2
s)
fp fe
An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and
significant wave height of 1.5 m.
(b) Determine the power density (in kW m–1) of a regular wave component with frequency
0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field.
𝑓 = 0.125 Hz
Δ𝑓 = 0.01 Hz
𝑇𝑝 = 8.7 s 𝐻𝑠 = 1.5 m
𝑓𝑝 =
1
𝑇𝑝
𝑆 𝑓 = 1.645 m2 s
𝐸 = 𝜌𝑔 × 𝑆 𝑓 Δ𝑓
𝑃 = 𝐸𝑐𝑔 = 𝐸(𝑛𝑐) Deep water: 𝑛 =
1
2
𝑐 =
𝑔𝑇
2π
𝑇 =
1
𝑓
= 8 s
𝑷 = 𝟏. 𝟎𝟑𝟑 𝐤𝐖 𝐦−𝟏
= 0.1149 Hz
= 165.4 J m−2
= 12.49 m s−1
𝑆 𝑓 =
5
16
𝐻𝑠
2
𝑓𝑝
4
𝑓5
ex p( −
5
4
𝑓𝑝
4
𝑓4
)
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Terminology
A wave climate or sea state is a model wave spectrum, usually
defined by a representative height and period, for use in:
● forecasting (from a weather forecast in advance)
● nowcasting (from ongoing weather)
● hindcasting (reconstruction from previous event)
Prediction of Sea State
Require: significant wave height, 𝐻𝑠
significant wave period, 𝑇𝑠 (or peak period, 𝑇𝑝)
Depend on: wind speed, 𝑈
fetch, 𝐹
duration, 𝑡
gravity, 𝑔
Dimensional analysis:
Empirical functions: JONSWAP or SMB curves
൰
𝑔𝐻𝑠
𝑈2
= function(
𝑔𝐹
𝑈2
,
𝑔𝑡
𝑈
ቇ
𝑔𝑇𝑝
𝑈
= function(
𝑔𝐹
𝑈2
,
𝑔𝑡
𝑈
Fetch-Limited vs Duration-Limited
distance travelled by wave energy greater than fetch F
F
distance travelled by wave energy less than fetch F
F
Feff
FETCH-LIMITED
DURATION-LIMITED
JONSWAP Curves
For fetch-limited waves:
𝑔𝐻𝑠
𝑈2
= 0.0016
𝑔𝐹
𝑈2
Τ
1 2
(up to maximum 0.2433)
𝑔𝑇𝑝
𝑈
= 0.286
𝑔𝐹
𝑈2
Τ
1 3
(up to maximum 8.134)
Waves are fetch-limited provided the storm has blown for a minimum time
𝑡𝑚𝑖𝑛 given by
𝑔𝑡
𝑈 min
= 68.8
𝑔𝐹
𝑈2
Τ
2 3
up to maximum 7.15 × 104
Otherwise the waves are duration-limited, and the fetch used to determine
height and period is an effective fetch determined by inversion using the actual
storm duration 𝑡:
𝑔𝐹
𝑈2
eff
=
1
68.8
𝑔𝑡
𝑈
Τ
3 2
JONSWAP Curves (reprise)
෡
𝐻𝑠 = 0.0016 ෠
𝐹 Τ
1 2
෠
𝑇𝑝 = 0.286 ෠
𝐹 Τ
1 3
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
෠
𝐹 ≡
𝑔𝐹
𝑈2
, Ƹ
𝑡 ≡
𝑔𝑡
𝑈
, ෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
, ෠
𝑇𝑝 ≡
𝑔𝑇𝑝
𝑈
JONSWAP and SMB Curves
Solid lines: JONSWAP
Dashed lines: SMB
Example
(a) Wind has blown at a consistent 𝑈 = 20 m s−1
over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs .
Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves.
(b) If the wind blows steadily for another 4 hours
what are 𝐻𝑠 and 𝑇𝑝?
(a) Wind has blown at a consistent 𝑈 = 20 m s−1
over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs.
Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves.
𝑈 = 20 m s−1
𝐹 = 105 m
𝑡 = 6 × 3600 = 21600 s
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 =
𝑔𝑡
𝑈
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
= 12510
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 ≡
𝑔𝑡
𝑈
෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
Duration-limited
෠
𝐹eff =
Ƹ
𝑡
68.8
Τ
3 2
෡
𝐻𝑠 = 0.0016 ෠
𝐹eff
Τ
1 2
෠
𝑇𝑝 = 0.286 ෠
𝐹eff
Τ
1 3
𝐻𝑠 = ෡
𝐻𝑠 ×
𝑈2
𝑔
𝑇𝑝 = ෠
𝑇𝑝 ×
𝑈
𝑔
= 1910
= 0.06993
= 3.548
= 𝟐. 𝟖𝟓𝟏 𝐦
= 𝟕. 𝟐𝟑𝟑 𝐬
= 2453
= 10590
(b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝?
𝑈 = 20 m s−1
𝐹 = 105 m
𝑡 = 10 × 3600 = 36000 s
෠
𝐹 = 2453
Ƹ
𝑡 =
𝑔𝑡
𝑈
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
Ƹ
𝑡min = 12510
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 ≡
𝑔𝑡
𝑈
෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
Fetch-limited
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
𝐻𝑠 = ෡
𝐻𝑠 ×
𝑈2
𝑔
𝑇𝑝 = ෠
𝑇𝑝 ×
𝑈
𝑔
= 0.07924
= 3.857
= 𝟑. 𝟐𝟑𝟏 𝐦
= 𝟕. 𝟖𝟔𝟑 𝐬
= 17660

More Related Content

What's hot

Chapter 1 introduction to coastal engineering and management strategies
Chapter  1 introduction to coastal engineering and management strategiesChapter  1 introduction to coastal engineering and management strategies
Chapter 1 introduction to coastal engineering and management strategiesMohsin Siddique
 
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8World University of Bangladesh
 
Lec.01.introduction to hydrology
Lec.01.introduction to hydrologyLec.01.introduction to hydrology
Lec.01.introduction to hydrologyEngr Yasir shah
 
Chapter 4 Introduction to beach processes and management strategies
Chapter  4 Introduction to beach processes and management strategiesChapter  4 Introduction to beach processes and management strategies
Chapter 4 Introduction to beach processes and management strategiesMohsin Siddique
 
Flood frequency analyses
Flood frequency analysesFlood frequency analyses
Flood frequency analysesvivek gami
 
Slope stability analysis methods
Slope stability analysis methodsSlope stability analysis methods
Slope stability analysis methodszaidalFarhan1
 
Chapter 3 2
Chapter 3 2Chapter 3 2
Chapter 3 2shita43
 
Fluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic PressureFluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic PressureMalla Reddy University
 
Analysis of beam by plastic theory-part-I,
Analysis of beam by plastic theory-part-I, Analysis of beam by plastic theory-part-I,
Analysis of beam by plastic theory-part-I, Subhash Patankar
 
Flood frequency analysis
Flood frequency analysisFlood frequency analysis
Flood frequency analysisSanjan Banerjee
 

What's hot (20)

01_Warren (1).ppt
01_Warren (1).ppt01_Warren (1).ppt
01_Warren (1).ppt
 
Chapter 1 introduction to coastal engineering and management strategies
Chapter  1 introduction to coastal engineering and management strategiesChapter  1 introduction to coastal engineering and management strategies
Chapter 1 introduction to coastal engineering and management strategies
 
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
Class lectures on hydrology by Rabindra Ranjan Saha, Lecture 8
 
Lec.01.introduction to hydrology
Lec.01.introduction to hydrologyLec.01.introduction to hydrology
Lec.01.introduction to hydrology
 
Eccetric columns
Eccetric columnsEccetric columns
Eccetric columns
 
Unit3 hbn
Unit3 hbnUnit3 hbn
Unit3 hbn
 
Baseflow
BaseflowBaseflow
Baseflow
 
Ocean waves lecture
Ocean waves lectureOcean waves lecture
Ocean waves lecture
 
Coastal engineering
Coastal engineeringCoastal engineering
Coastal engineering
 
Surface currents
Surface currentsSurface currents
Surface currents
 
Chapter 4 Introduction to beach processes and management strategies
Chapter  4 Introduction to beach processes and management strategiesChapter  4 Introduction to beach processes and management strategies
Chapter 4 Introduction to beach processes and management strategies
 
Hydrogeological studies and groundwater
Hydrogeological studies and groundwaterHydrogeological studies and groundwater
Hydrogeological studies and groundwater
 
Flood frequency analyses
Flood frequency analysesFlood frequency analyses
Flood frequency analyses
 
Engineering hydrology
Engineering hydrologyEngineering hydrology
Engineering hydrology
 
Slope stability analysis methods
Slope stability analysis methodsSlope stability analysis methods
Slope stability analysis methods
 
Chapter 3 2
Chapter 3 2Chapter 3 2
Chapter 3 2
 
Fluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic PressureFluid Mechanics - Hydrostatic Pressure
Fluid Mechanics - Hydrostatic Pressure
 
Analysis of beam by plastic theory-part-I,
Analysis of beam by plastic theory-part-I, Analysis of beam by plastic theory-part-I,
Analysis of beam by plastic theory-part-I,
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Flood frequency analysis
Flood frequency analysisFlood frequency analysis
Flood frequency analysis
 

Similar to slidesWaveStatistics.pdf

WavesStatistics.pdf
WavesStatistics.pdfWavesStatistics.pdf
WavesStatistics.pdfcfisicaster
 
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...KrishnaKorankar
 
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptxgvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptxDEEPAKCHAURASIYA37
 
Introduction of travelling wave & magnetrons
Introduction of travelling wave & magnetronsIntroduction of travelling wave & magnetrons
Introduction of travelling wave & magnetronsVISHNUBEN
 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbchettanagarwal
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxRowelEngreso3
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdfcfisicaster
 
slidesWaveTransformation.pdf
slidesWaveTransformation.pdfslidesWaveTransformation.pdf
slidesWaveTransformation.pdfcfisicaster
 
Ultrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptxUltrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptxSudha durairaj
 
3 wave representations
3 wave representations3 wave representations
3 wave representationsMissingWaldo
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.pptgrssieee
 
Seismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysisSeismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysisSomak Hajra
 

Similar to slidesWaveStatistics.pdf (20)

WavesStatistics.pdf
WavesStatistics.pdfWavesStatistics.pdf
WavesStatistics.pdf
 
Extended abstract
Extended abstractExtended abstract
Extended abstract
 
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
 
ac slides type 2.pdf
ac slides type 2.pdfac slides type 2.pdf
ac slides type 2.pdf
 
AGU2014-SA31B-4098
AGU2014-SA31B-4098AGU2014-SA31B-4098
AGU2014-SA31B-4098
 
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptxgvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
 
Introduction of travelling wave & magnetrons
Introduction of travelling wave & magnetronsIntroduction of travelling wave & magnetrons
Introduction of travelling wave & magnetrons
 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdf
 
DLA_Presentation
DLA_PresentationDLA_Presentation
DLA_Presentation
 
slidesWaveTransformation.pdf
slidesWaveTransformation.pdfslidesWaveTransformation.pdf
slidesWaveTransformation.pdf
 
ultrasonic
ultrasonicultrasonic
ultrasonic
 
WaReS Validation Report
WaReS Validation ReportWaReS Validation Report
WaReS Validation Report
 
Ultrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptxUltrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptx
 
3 wave representations
3 wave representations3 wave representations
3 wave representations
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.ppt
 
Seismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysisSeismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysis
 
Phys 101 lo3
Phys 101 lo3 Phys 101 lo3
Phys 101 lo3
 

More from cfisicaster

slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdfcfisicaster
 
WavesLoading.pdf
WavesLoading.pdfWavesLoading.pdf
WavesLoading.pdfcfisicaster
 
WavesTransformation.pdf
WavesTransformation.pdfWavesTransformation.pdf
WavesTransformation.pdfcfisicaster
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdfcfisicaster
 
WavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfWavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfcfisicaster
 
slidesWaveLoading.pdf
slidesWaveLoading.pdfslidesWaveLoading.pdf
slidesWaveLoading.pdfcfisicaster
 
WavesExamples.pdf
WavesExamples.pdfWavesExamples.pdf
WavesExamples.pdfcfisicaster
 
WavesSchedule.pdf
WavesSchedule.pdfWavesSchedule.pdf
WavesSchedule.pdfcfisicaster
 
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...cfisicaster
 
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfMario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfcfisicaster
 
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...cfisicaster
 
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...cfisicaster
 
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...cfisicaster
 
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...cfisicaster
 
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfProblemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfcfisicaster
 
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...cfisicaster
 
TOC_6320_01_01.pdf
TOC_6320_01_01.pdfTOC_6320_01_01.pdf
TOC_6320_01_01.pdfcfisicaster
 
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...cfisicaster
 

More from cfisicaster (20)

slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
 
WavesLoading.pdf
WavesLoading.pdfWavesLoading.pdf
WavesLoading.pdf
 
WavesTransformation.pdf
WavesTransformation.pdfWavesTransformation.pdf
WavesTransformation.pdf
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
 
WavesLinear.pdf
WavesLinear.pdfWavesLinear.pdf
WavesLinear.pdf
 
WavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfWavesExamplesAnswers.pdf
WavesExamplesAnswers.pdf
 
slidesWaveLoading.pdf
slidesWaveLoading.pdfslidesWaveLoading.pdf
slidesWaveLoading.pdf
 
WavesExamples.pdf
WavesExamples.pdfWavesExamples.pdf
WavesExamples.pdf
 
WavesSchedule.pdf
WavesSchedule.pdfWavesSchedule.pdf
WavesSchedule.pdf
 
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
 
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfMario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
 
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
 
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
 
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
 
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
 
Fisica2.pdf
Fisica2.pdfFisica2.pdf
Fisica2.pdf
 
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfProblemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
 
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
 
TOC_6320_01_01.pdf
TOC_6320_01_01.pdfTOC_6320_01_01.pdf
TOC_6320_01_01.pdf
 
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
 

Recently uploaded

Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxhublikarsn
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)ChandrakantDivate1
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...ppkakm
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdfKamal Acharya
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information SystemsAnge Felix NSANZIYERA
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 

Recently uploaded (20)

Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information Systems
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 

slidesWaveStatistics.pdf

  • 1. Waves 3. Statistics and Irregular Waves
  • 2. Statistics and Irregular Waves ● Real wave fields are not regular ● Combination of many periods, heights, directions ● Design and simulation require realistic wave statistics: ‒ probability distribution of heights ‒ energy spectrum of frequencies (and directions)
  • 3. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 4. Measures of Wave Height 𝐻max Largest wave height in the sample 𝐻max = max 𝑖 (𝐻𝑖) 𝐻av Mean wave height 𝐻av = 1 𝑁 ෍ 𝐻𝑖 𝐻rms Root-mean-square wave height 𝐻rms = 1 𝑁 ෍ 𝐻𝑖 2 𝐻 Τ 1 3 Average of the highest 𝑁/3 waves 𝐻 Τ 1 3 = 1 𝑁/3 ෍ 1 𝑁/3 𝐻𝑖 𝐻𝑚0 Estimate based on the rms surface elevation 𝐻𝑚0 = 4 η2 Τ 1 2 𝐻𝑠 Significant wave height Either 𝐻 Τ 1 3 or 𝐻𝑚0
  • 5. Measures of Wave Period 𝑇𝑠 Significant wave period (average of highest 𝑁/3 waves) 𝑇𝑝 Peak period (from peak frequency of energy spectrum) 𝑇𝑒 Energy period (period of a regular wave with same significant wave height and power density; used in wave-energy prediction; derived from energy spectrum) 𝑇𝑧 Mean zero up-crossing period
  • 6. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 7. Probability Distribution of Wave Heights For a narrow-banded frequency spectrum the Rayleigh probability distribution is appropriate: 𝑃 height > 𝐻 = exp − Τ (𝐻 ) 𝐻rms 2 Cumulative distribution function: 𝐹 𝐻 = 𝑃 height < 𝐻 = 1 − e− Τ 𝐻 𝐻rms 2 Probability density function: 𝑓 𝐻 = d𝐹 d𝐻 = 2 𝐻 𝐻rms 2 e− Τ 𝐻 𝐻rms 2
  • 8. Rayleigh Distribution 𝐻av ≡ 𝐸 𝐻 = න 0 ∞ 𝐻 𝑓 𝐻 d𝐻 𝐻rms 2 ≡ 𝐸 𝐻2 = න 0 ∞ 𝐻2 𝑓 𝐻 d𝐻 𝐻av = π 2 𝐻rms = 0.886 𝐻rms 𝐻 Τ 1 3 = 1.416 𝐻rms 𝐻 Τ 1 10 = 1.800 𝐻rms 𝐻 Τ 1 100 = 2.359 𝐻rms Single parameter: 𝐻rms 𝑓 𝐻 = 2 𝐻 𝐻rms 2 e− Τ 𝐻 𝐻rms 2
  • 9. Example Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is narrow-banded. (a) How many waves are expected to exceed 2𝐻rms? (b) If the significant wave height is 2.5 m, what is 𝐻rms? (c) Estimate the wave height exceeded by 80 waves. (d) Estimate the number of waves with a height between 1.0 m and 3.0 m.
  • 10. Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is narrow-banded. (a) How many waves are expected to exceed 2𝐻rms? (b) If the significant wave height is 2.5 m, what is 𝐻rms? (c) Estimate the wave height exceeded by 80 waves. (d) Estimate the number of waves with a height between 1.0 m and 3.0 m. 𝑃 height > 𝐻 = e− Τ 𝐻 𝐻rms 2 𝑃 height > 2𝐻rms = e−4 (a) = 0.01832 In 400 waves, 𝑛 = 400 × 0.01832 𝐻 Τ 1 3 = 1.416 𝐻rms (b) 2.5 = 1.416 𝐻rms 𝑯𝐫𝐦𝐬 = 𝟏. 𝟕𝟔𝟔 𝐦 (c) 𝑃 height > 𝐻 = e− Τ 𝐻 𝐻rms 2 = 80 400 = 0.2 𝐻/𝐻rms 2 = − ln 0.2 𝐻 = 𝐻rms × − ln 0.2 = 𝟐. 𝟐𝟒𝟎 𝐦 𝑃 1.0 < height < 3.0 = 𝑃 height > 1.0 − 𝑃 height > 3.0 = e− 1.0/𝐻rms 2 − e− 3.0/𝐻rms 2 = 0.6699 In 400 waves, 𝑛 = 400 × 0.6699 (d) = 𝟕. 𝟑𝟐𝟖 = 𝟐𝟔𝟖. 𝟎
  • 11. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 12. Regular vs Irregular Waves Regular wave: - single frequency Irregular wave: - many frequencies Wave energy depends on 𝜂2
  • 13. Energy Spectrum ● “Spectral” means “by frequency” ● A spectrum is usually determined by a Fourier transform ● This splits a signal up into its component frequencies ● Energy in a wave is proportional to 𝜂2, where 𝜂 is surface displacement ● The energy spectrum, or power spectrum, is the Fourier transform of 𝜂2
  • 14. Energy Spectrum For regular waves (single frequency): 𝐸 = 1 2 𝜌𝑔𝐴2 = 𝜌𝑔 ) 𝜂2(𝑡 = 1 8 𝜌𝑔𝐻2 For irregular waves (many frequencies): 𝑆 𝑓 d𝑓 න 𝑓1 𝑓2 𝑆 𝑓 d𝑓 is the “energy” in a small interval d𝑓 near frequency 𝑓 is the “energy” between frequencies 𝑓1 and 𝑓2 (strictly: energy/𝜌𝑔) The energy spectrum 𝑆(𝑓) is determined by Fourier transforming 𝜂2 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
  • 15. Model Spectra Open ocean: Bretschneider spectrum Fetch-limited seas: JONSWAP spectrum Key parameters: peak frequency 𝑓𝑝 ( =1/(peak period, 𝑇𝑝) ) significant wave height 𝐻𝑚0
  • 16. Model Spectra Bretschneider spectrum: JONSWAP spectrum: 𝑆 𝑓 = 5 16 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 𝑆 𝑓 = 𝐶 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 𝛾𝑏 𝜎 = ൝ 0.07 𝑓 < 𝑓𝑝 0.09 𝑓 > 𝑓𝑝 𝑏 = exp − 1 2 Τ 𝑓 𝑓𝑝 − 1 𝜎 2 𝛾 = 3.3
  • 17. Significant Wave Height, 𝑯𝒎𝟎 Bretschneider spectrum: 𝑆 𝑓 = 5 16 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 Total energy: 𝐸 𝜌𝑔 ≡ න 0 ∞ 𝑆 𝑓 d𝑓 = 1 16 𝐻𝑚0 2 𝐻𝑚0 = 4 Τ 𝐸 𝜌 𝑔 = 4 ) η2(𝑡 Total energy for a regular wave: 𝐸 𝜌𝑔 = 1 8 𝐻rms 2 Same energy if 𝐻𝑚0 = 2𝐻𝑟𝑚𝑠 = 1.414𝐻rms Rayleigh distribution: 𝐻 Τ 1 3 = 1.416𝐻rms 𝑯𝒎𝟎 and 𝑯 Τ 𝟏 𝟑 can be used synonymously for 𝑯𝒔 ... … but 𝐻𝑚0 is easier to measure!
  • 18. Finding Wave Parameters From a Spectrum ● Surface displacement 𝜂(𝑡) is measured (e.g. wave buoy) ● 𝜂2(𝑡) is Fourier-transformed to get energy spectrum 𝑆(𝑓) ● Height and period parameters are deduced from the peak and the moments of the spectrum: 𝑚𝑛 = න 0 ∞ 𝑓𝑛 𝑆 𝑓 d𝑓 Peak period: 𝑇𝑝 = 1 𝑓𝑝 Significant wave height: 𝐻𝑠 = 𝐻𝑚0 = 4 𝑚0 Energy period: 𝑇𝑒 = 𝑚−1 𝑚0
  • 19. Multi-Modal Spectra frequency f (Hz) spectral density S (m^2 s) swell wind
  • 20. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 21. Using a Spectrum To Generate a Wave Field η 𝑡 = ෍ ) 𝑎𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 𝜙𝑖 amplitude 𝑆 𝑓𝑖 Δ𝑓 = 𝐸𝑖 = 1 2 𝑎𝑖 2 𝑎𝑖 = 2𝑆 𝑓𝑖 Δ𝑓 (angular) frequency 𝜔𝑖 = 2π𝑓𝑖 wavenumber 𝜔𝑖 2 = 𝑔𝑘𝑖 tanh 𝑘𝑖ℎ random phase
  • 22. Simulated Wave Field 𝑇𝑝 = 8 s 𝐻𝑠 = 1.0 m ℎ = 30 m Regular waves: Irregular waves: Focused waves:
  • 23. Example An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units and indicating the frequencies corresponding to both the peak period and the energy period. Note: Calculations are not needed for this part. (b) Determine the power density (in kW m–1) of a regular wave component with frequency 0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field.
  • 24. An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units and indicating the frequencies corresponding to both the peak period and the energy period. frequency f (Hz) spectral density S (m^2 s) fp fe
  • 25. An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (b) Determine the power density (in kW m–1) of a regular wave component with frequency 0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field. 𝑓 = 0.125 Hz Δ𝑓 = 0.01 Hz 𝑇𝑝 = 8.7 s 𝐻𝑠 = 1.5 m 𝑓𝑝 = 1 𝑇𝑝 𝑆 𝑓 = 1.645 m2 s 𝐸 = 𝜌𝑔 × 𝑆 𝑓 Δ𝑓 𝑃 = 𝐸𝑐𝑔 = 𝐸(𝑛𝑐) Deep water: 𝑛 = 1 2 𝑐 = 𝑔𝑇 2π 𝑇 = 1 𝑓 = 8 s 𝑷 = 𝟏. 𝟎𝟑𝟑 𝐤𝐖 𝐦−𝟏 = 0.1149 Hz = 165.4 J m−2 = 12.49 m s−1 𝑆 𝑓 = 5 16 𝐻𝑠 2 𝑓𝑝 4 𝑓5 ex p( − 5 4 𝑓𝑝 4 𝑓4 )
  • 26. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 27. Terminology A wave climate or sea state is a model wave spectrum, usually defined by a representative height and period, for use in: ● forecasting (from a weather forecast in advance) ● nowcasting (from ongoing weather) ● hindcasting (reconstruction from previous event)
  • 28. Prediction of Sea State Require: significant wave height, 𝐻𝑠 significant wave period, 𝑇𝑠 (or peak period, 𝑇𝑝) Depend on: wind speed, 𝑈 fetch, 𝐹 duration, 𝑡 gravity, 𝑔 Dimensional analysis: Empirical functions: JONSWAP or SMB curves ൰ 𝑔𝐻𝑠 𝑈2 = function( 𝑔𝐹 𝑈2 , 𝑔𝑡 𝑈 ቇ 𝑔𝑇𝑝 𝑈 = function( 𝑔𝐹 𝑈2 , 𝑔𝑡 𝑈
  • 29. Fetch-Limited vs Duration-Limited distance travelled by wave energy greater than fetch F F distance travelled by wave energy less than fetch F F Feff FETCH-LIMITED DURATION-LIMITED
  • 30. JONSWAP Curves For fetch-limited waves: 𝑔𝐻𝑠 𝑈2 = 0.0016 𝑔𝐹 𝑈2 Τ 1 2 (up to maximum 0.2433) 𝑔𝑇𝑝 𝑈 = 0.286 𝑔𝐹 𝑈2 Τ 1 3 (up to maximum 8.134) Waves are fetch-limited provided the storm has blown for a minimum time 𝑡𝑚𝑖𝑛 given by 𝑔𝑡 𝑈 min = 68.8 𝑔𝐹 𝑈2 Τ 2 3 up to maximum 7.15 × 104 Otherwise the waves are duration-limited, and the fetch used to determine height and period is an effective fetch determined by inversion using the actual storm duration 𝑡: 𝑔𝐹 𝑈2 eff = 1 68.8 𝑔𝑡 𝑈 Τ 3 2
  • 31. JONSWAP Curves (reprise) ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹 Τ 1 2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹 Τ 1 3 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 , Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 , ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 , ෠ 𝑇𝑝 ≡ 𝑔𝑇𝑝 𝑈
  • 32. JONSWAP and SMB Curves Solid lines: JONSWAP Dashed lines: SMB
  • 33. Example (a) Wind has blown at a consistent 𝑈 = 20 m s−1 over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs . Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves. (b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝?
  • 34. (a) Wind has blown at a consistent 𝑈 = 20 m s−1 over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs. Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves. 𝑈 = 20 m s−1 𝐹 = 105 m 𝑡 = 6 × 3600 = 21600 s ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 = 𝑔𝑡 𝑈 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 = 12510 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 Duration-limited ෠ 𝐹eff = Ƹ 𝑡 68.8 Τ 3 2 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹eff Τ 1 2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹eff Τ 1 3 𝐻𝑠 = ෡ 𝐻𝑠 × 𝑈2 𝑔 𝑇𝑝 = ෠ 𝑇𝑝 × 𝑈 𝑔 = 1910 = 0.06993 = 3.548 = 𝟐. 𝟖𝟓𝟏 𝐦 = 𝟕. 𝟐𝟑𝟑 𝐬 = 2453 = 10590
  • 35. (b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝? 𝑈 = 20 m s−1 𝐹 = 105 m 𝑡 = 10 × 3600 = 36000 s ෠ 𝐹 = 2453 Ƹ 𝑡 = 𝑔𝑡 𝑈 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 Ƹ 𝑡min = 12510 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 Fetch-limited ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 𝐻𝑠 = ෡ 𝐻𝑠 × 𝑈2 𝑔 𝑇𝑝 = ෠ 𝑇𝑝 × 𝑈 𝑔 = 0.07924 = 3.857 = 𝟑. 𝟐𝟑𝟏 𝐦 = 𝟕. 𝟖𝟔𝟑 𝐬 = 17660