Simulation of dispersion in a heterogeneous
aquifer: discussion of steady versus unsteady
groundwater flow
Gerard Uffink
Amro Elfeki
Sophie Lebreton
Delft University of Technology, Netherlands
Demo 1: Steady Flow
Demo 2: Unsteady Flow (fluctuations)
Transport in steady or unsteady groundwater flow
0 400 800 1200 1600
time (days)
0
400
800
1200
1600
Longitudinal Variance
Steady flow
NonSteady flow
2
x
Increase of variance in time
MADE-1 site
Literature:
Boggs et al. 1992
Adams and Gelhar, 1992
Rehfeldt et al. 1992
Zheng and Jiao, 1998,
etc
Available:
- measurement of tracer distribution
- heads (contours) and fluctuations
- hydraulic conductivities (several options)
Not available
- dispersivities
Depth-averaged bromide concentration distributions
after 49, 279, and 503 days (Boggs et al., 1992).
Vertical position tracer plume
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
time (months)
0.001
0.002
0.003
0.004
0.005
gradientmagnitude
measured gradient
fitted seasonal component
Head data
Fluctuations head gradient Contours of head
0 50 100 150 200 250
-100
-80
-60
-40
-20
0
0
4.3
43
430
0 20 40 60 80 100 120 140 160
-40
-20
0
0.78
1.3
2
3.5
6
10
16
26
43
71
116
Zheng & Jiao, 1998
(depth averaged)
Harvey & Gorelick, 2000
(depth averaged)
Present Study
(at 59 m depth)
Distribution of hydraulic conductivity according to various authors
0 20 40 60 80 100 120 140 160 180 200 220 240 260
-100
-80
-60
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200 220 240 260
-100
-80
-60
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200 220 240 260
-100
-80
-60
-40
-20
0
49 days
279 days
503 days
0 20 40 60 80 100 120 140 160 180 200 220 240 260
-100
-80
-60
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200 220 240 260
-100
-80
-60
-40
-20
0
0 20 40 60 80 100 120 140 160 180 200 220 240 260
-100
-80
-60
-40
-20
0
0.1
1
10
100
49 days
279 days
503 days
Simulation tracer test (concentration in mg/L). K according to Zheng & Jiao
L= 1 m, T = 0.5 mL= 0.1 m, T = 0.01 m
Flow
Concentration distributions based on measurements
0 20 40 60 80 100 120 140 160
-50
-40
-30
-20
-10
0
0 20 40 60 80 100 120 140 160
-50
-40
-30
-20
-10
0
0 20 40 60 80 100 120 140 160
-50
-40
-30
-20
-10
0
0.1
1
10
100
49 days
279 days
503 days
0 20 40 60 80 100 120 140 160
-50
-40
-30
-20
-10
0
0 20 40 60 80 100 120 140 160
-50
-40
-30
-20
-10
0
0 20 40 60 80 100 120 140 160
-50
-40
-30
-20
-10
0
49 days
279 days
503 days
L= 0.1 m, T = 0.01 m L= 1 m, T = 0.5 m
Simulation tracer test (concentration in mg/L). K according to Harvey & Gorelick
49 days
279 days
503 days
0 50 100 150 200 250 300
-150
-100
-50
0
0 50 100 150 200 250 300
-150
-100
-50
0
0 50 100 150 200 250 300
-150
-100
-50
0
49 days
0 50 100 150 200 250 300
-150
-100
-50
0
0 50 100 150 200 250 300
-150
-100
-50
0
0 50 100 150 200 250 300
-150
-100
-50
0
279 days
503 days
0.1
1
10
100
L= 0.1 m, T = 0.01 m L= 1 m, T = 0.5 m
Simulation tracer test (concentration in mg/L). K as in present study
Comparison simulations and experiment
- head distribution good
- tracer distribution poor
Possible explanation
- hydraulic conductivity field uncertain
- velocity field uncertain
- ?? Steady versus unsteady flow ??
0 100 200 300 400 500 600
time (days)
0
20
40
60
80meandisplacementinthex-direction(m)
steady state
seasonal trend for S=0.04 (cosine)
measured gradient for S=0.04 (dots)
observed data
0 100 200 300 400 500 600
time (days)
-35
-30
-25
-20
-15
-10
meandisplacementinthey-direction(m)
0 100 200 300 400 500 600
time (days)
10
20
30
40
50
60
meandisplacementinthex-direction(m)
steady state
seasonal trend for S=0.04 (cosine)
measured gradient for S=0.04 (dots)
observed data
0 100 200 300 400 500 600
time (days)
-35
-30
-25
-20
-15
-10
meandisplacementinthey-direction(m)
L= 0.1 m, T = 0.01 m
First Spatial Moments. K as by Harvey & Gorelick
L= 1 m, T = 0.5 m
L= 0.1 m, T = 0.01 m
Second Spatial Moments. K as by Harvey & Gorelick
L= 1 m, T = 0.5 m
0 100 200 300 400 500 600
time (days)
0.0001
0.001
0.01
0.1
1
10
100
1000
10000
longitudinalvariance(m2)
steady state
seasonal trend for S=0.04 (cosine)
measured gradient for S=0.04 (dots)
observed data
0 100 200 300 400 500 600
time (days)
0.1
1
10
100
lateralvariance(m2)
0 100 200 300 400 500 600
time (days)
0.0001
0.001
0.01
0.1
1
10
100
1000
longitudinalvariance(m2)
0 100 200 300 400 500 600
time (days)
0
20
40
60
80
lateralvariance(m2)
L= 0.1 m, T = 0.01 m
First Spatial Moments. K from present study
L= 1 m, T = 0.5 m
0 100 200 300 400 500 600
time (days)
60
64
68
72
76
80meandisplacementinx-direction(m)
steady state
seasonal trend for S=0.04 (cosine)
seasonal trend for S=0.1 (cosine)
measured gradient for S=0.04 (dots)
observed data
0 100 200 300 400 500 600
time (days)
-114
-112
-110
-108
-106
-104
meandisplacementiny-direction(m)
0 100 200 300 400 500 600
time (days)
60
64
68
72
76
80
meandisplacementinx-direction(m)
steady state
seasonal trend for S=0.04 (cosine)
seasonal trend for S=0.1 (cosine)
measured gradient for S=0.04 (dots)
observed data
0 100 200 300 400 500 600
time (days)
-116
-114
-112
-110
-108
-106
-104
meandisplacementiny-direction(m)
L= 0.1 m, T = 0.01 m
Second Spatial Moments. K from present study
L= 3 m, T = 1 m
0 100 200 300 400 500 600
time (days)
0.001
0.01
0.1
1
10
100
1000
10000
longitudinalvariance(m2)
steady state
seasonal trend for S=0.04 (cosine)
seasonal trend for S=0.1 (cosine)
measured gradient for S=0.04 (dots)
observed data
0 100 200 300 400 500 600
time (days)
1
10
100
lateralvariance(m2)
0 100 200 300 400 500 600
time (days)
0.001
0.01
0.1
1
10
100
1000
10000
longitudinalvariance(m2)
steady state
seasonal trend for S=0.04 (cosine)
seasonal trend for S=0.1 (cosine)
measured gradient for S=0.04 (dots)
observed data
0 100 200 300 400 500 600
time (days)
1
10
100
lateralvariance(m2)
Concluding remarks
- steady or unstead flow seems to have
no effect on spreading of tracer
- good conductivity field is essential to
reproduce realistic velocity field
- 2D versus 3D ??

Simulation of Dispersion in a Heterogeneous Aquifer: Discussion of Steady versus Unsteady Groundwater Flow and Uncertainty analysis.

  • 1.
    Simulation of dispersionin a heterogeneous aquifer: discussion of steady versus unsteady groundwater flow Gerard Uffink Amro Elfeki Sophie Lebreton Delft University of Technology, Netherlands
  • 2.
    Demo 1: SteadyFlow Demo 2: Unsteady Flow (fluctuations) Transport in steady or unsteady groundwater flow
  • 3.
    0 400 8001200 1600 time (days) 0 400 800 1200 1600 Longitudinal Variance Steady flow NonSteady flow 2 x Increase of variance in time
  • 4.
    MADE-1 site Literature: Boggs etal. 1992 Adams and Gelhar, 1992 Rehfeldt et al. 1992 Zheng and Jiao, 1998, etc
  • 5.
    Available: - measurement oftracer distribution - heads (contours) and fluctuations - hydraulic conductivities (several options) Not available - dispersivities
  • 6.
    Depth-averaged bromide concentrationdistributions after 49, 279, and 503 days (Boggs et al., 1992).
  • 7.
  • 8.
    1 3 57 9 11 13 15 17 19 21 23 25 27 29 31 time (months) 0.001 0.002 0.003 0.004 0.005 gradientmagnitude measured gradient fitted seasonal component Head data Fluctuations head gradient Contours of head
  • 9.
    0 50 100150 200 250 -100 -80 -60 -40 -20 0 0 4.3 43 430 0 20 40 60 80 100 120 140 160 -40 -20 0 0.78 1.3 2 3.5 6 10 16 26 43 71 116 Zheng & Jiao, 1998 (depth averaged) Harvey & Gorelick, 2000 (depth averaged) Present Study (at 59 m depth) Distribution of hydraulic conductivity according to various authors
  • 10.
    0 20 4060 80 100 120 140 160 180 200 220 240 260 -100 -80 -60 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 -100 -80 -60 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 -100 -80 -60 -40 -20 0 49 days 279 days 503 days 0 20 40 60 80 100 120 140 160 180 200 220 240 260 -100 -80 -60 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 -100 -80 -60 -40 -20 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 -100 -80 -60 -40 -20 0 0.1 1 10 100 49 days 279 days 503 days Simulation tracer test (concentration in mg/L). K according to Zheng & Jiao L= 1 m, T = 0.5 mL= 0.1 m, T = 0.01 m Flow
  • 11.
  • 12.
    0 20 4060 80 100 120 140 160 -50 -40 -30 -20 -10 0 0 20 40 60 80 100 120 140 160 -50 -40 -30 -20 -10 0 0 20 40 60 80 100 120 140 160 -50 -40 -30 -20 -10 0 0.1 1 10 100 49 days 279 days 503 days 0 20 40 60 80 100 120 140 160 -50 -40 -30 -20 -10 0 0 20 40 60 80 100 120 140 160 -50 -40 -30 -20 -10 0 0 20 40 60 80 100 120 140 160 -50 -40 -30 -20 -10 0 49 days 279 days 503 days L= 0.1 m, T = 0.01 m L= 1 m, T = 0.5 m Simulation tracer test (concentration in mg/L). K according to Harvey & Gorelick
  • 13.
    49 days 279 days 503days 0 50 100 150 200 250 300 -150 -100 -50 0 0 50 100 150 200 250 300 -150 -100 -50 0 0 50 100 150 200 250 300 -150 -100 -50 0 49 days 0 50 100 150 200 250 300 -150 -100 -50 0 0 50 100 150 200 250 300 -150 -100 -50 0 0 50 100 150 200 250 300 -150 -100 -50 0 279 days 503 days 0.1 1 10 100 L= 0.1 m, T = 0.01 m L= 1 m, T = 0.5 m Simulation tracer test (concentration in mg/L). K as in present study
  • 14.
    Comparison simulations andexperiment - head distribution good - tracer distribution poor Possible explanation - hydraulic conductivity field uncertain - velocity field uncertain - ?? Steady versus unsteady flow ??
  • 15.
    0 100 200300 400 500 600 time (days) 0 20 40 60 80meandisplacementinthex-direction(m) steady state seasonal trend for S=0.04 (cosine) measured gradient for S=0.04 (dots) observed data 0 100 200 300 400 500 600 time (days) -35 -30 -25 -20 -15 -10 meandisplacementinthey-direction(m) 0 100 200 300 400 500 600 time (days) 10 20 30 40 50 60 meandisplacementinthex-direction(m) steady state seasonal trend for S=0.04 (cosine) measured gradient for S=0.04 (dots) observed data 0 100 200 300 400 500 600 time (days) -35 -30 -25 -20 -15 -10 meandisplacementinthey-direction(m) L= 0.1 m, T = 0.01 m First Spatial Moments. K as by Harvey & Gorelick L= 1 m, T = 0.5 m
  • 16.
    L= 0.1 m,T = 0.01 m Second Spatial Moments. K as by Harvey & Gorelick L= 1 m, T = 0.5 m 0 100 200 300 400 500 600 time (days) 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 longitudinalvariance(m2) steady state seasonal trend for S=0.04 (cosine) measured gradient for S=0.04 (dots) observed data 0 100 200 300 400 500 600 time (days) 0.1 1 10 100 lateralvariance(m2) 0 100 200 300 400 500 600 time (days) 0.0001 0.001 0.01 0.1 1 10 100 1000 longitudinalvariance(m2) 0 100 200 300 400 500 600 time (days) 0 20 40 60 80 lateralvariance(m2)
  • 17.
    L= 0.1 m,T = 0.01 m First Spatial Moments. K from present study L= 1 m, T = 0.5 m 0 100 200 300 400 500 600 time (days) 60 64 68 72 76 80meandisplacementinx-direction(m) steady state seasonal trend for S=0.04 (cosine) seasonal trend for S=0.1 (cosine) measured gradient for S=0.04 (dots) observed data 0 100 200 300 400 500 600 time (days) -114 -112 -110 -108 -106 -104 meandisplacementiny-direction(m) 0 100 200 300 400 500 600 time (days) 60 64 68 72 76 80 meandisplacementinx-direction(m) steady state seasonal trend for S=0.04 (cosine) seasonal trend for S=0.1 (cosine) measured gradient for S=0.04 (dots) observed data 0 100 200 300 400 500 600 time (days) -116 -114 -112 -110 -108 -106 -104 meandisplacementiny-direction(m)
  • 18.
    L= 0.1 m,T = 0.01 m Second Spatial Moments. K from present study L= 3 m, T = 1 m 0 100 200 300 400 500 600 time (days) 0.001 0.01 0.1 1 10 100 1000 10000 longitudinalvariance(m2) steady state seasonal trend for S=0.04 (cosine) seasonal trend for S=0.1 (cosine) measured gradient for S=0.04 (dots) observed data 0 100 200 300 400 500 600 time (days) 1 10 100 lateralvariance(m2) 0 100 200 300 400 500 600 time (days) 0.001 0.01 0.1 1 10 100 1000 10000 longitudinalvariance(m2) steady state seasonal trend for S=0.04 (cosine) seasonal trend for S=0.1 (cosine) measured gradient for S=0.04 (dots) observed data 0 100 200 300 400 500 600 time (days) 1 10 100 lateralvariance(m2)
  • 19.
    Concluding remarks - steadyor unstead flow seems to have no effect on spreading of tracer - good conductivity field is essential to reproduce realistic velocity field - 2D versus 3D ??