SlideShare a Scribd company logo
Simulation of A
PMSM Motor Control System
   for EPS Controllers
        July 23, 2003

             by

         Guang Liu
         Alex Kurnia
      Ronan De Larminat

                            1
OUTLINE

1.   Introduction
2.   System block diagram
3.   Simulink models of system elements
4.   Simulation and experimental results
5.   Conclusion



                                           2
1. INTRODUCTION




                  3
1. INTRODUCTION



Simplified Block Diagram of An EPS System




            EPS




                                      Steering
                                      mechanism




                                                  4
2. SYSTEM BLOCK
     DIAGRAM




                  5
2. SYSTEM BLOCK DIAGRAM




                     6
3. SIMULINK MODELS OF SYSTEM ELEMENTS




3. SIMULINK MODELS OF
   SYSTEM ELEMENTS




                                         7
3. SIMULINK MODELS OF SYSTEM ELEMENTS

Permanent Magnet Synchronous Motor (PMSM) Model




                                                  8
3. SIMULINK MODELS OF SYSTEM ELEMENTS

Permanent Magnet Synchronous Motor (PMSM) Equations



Park transformation equations                             D-Q axis electric circuit equations
                            2π                4π
    2
vd = [va cos θ + vb cos(θ −
    3                        3
                               ) + vc cos(θ −
                                               3
                                                 )]       vd = Rs id + Ld      d
                                                                                 i − Lqω e dt iq
                                                                               dt d
                                                                                           d


                                2π                4π
    2
vq = [−va sin θ − vb sin s (θ −
    3                            3
                                   ) − vc sin(θ −
                                                   3
                                                     )]   vq = Rs iq + Lq dt iq + Ldω e dt id + ω e λPM
                                                                          d             d




                                                          Inverse Park transformation equations
 Torque equations
                                                           ia = id cosθ − iq sin θ
         3
 Te =      P[λ PM iq + ( Ld − Lq )id iq ]                                     2π                2π
         2                                                 ib = id cos(θ −       ) − iq sin(θ −    )
                                                                               3                 3
                              d
 Te = TL + K f ω m + J           ωm                                          4π                4π
                              dt                           ic = id cos(θ −      ) − iq sin(θ −    )
                                                                              3                 3
                                                                                                       9
3. SIMULINK MODELS OF SYSTEM ELEMENTS

         Motor Position Sensor Model


Complete Sensor:




Error generator:




                                                    10
3. SIMULINK MODELS OF SYSTEM ELEMENTS


Current Sensing Model




  V_B
         (1)   V1
   (5)              (3)
                     Vαβ
                           V_A
  V3                 V2
   (4)     (6)      (2)



  V_C

                                                                  11
3. SIMULINK MODELS OF SYSTEM ELEMENTS




PI Controller Model




                                         12
3. SIMULINK MODELS OF SYSTEM ELEMENTS

Inverse Park and SVM Model




                                        13
4. SIMULATION & EXPERIMENTAL RESULTS




  4. SIMULATION AND
EXPERIMENTAL RESUTLS




                                         14
4. SIMULATION & EXPERIMENTAL RESULTS

Simulated torque ripple with 6-count resolution
  Torque ripple = 1 N.m., current becomes square wave.
                                               Resolution = 6 count per rev.
                         1.5




                          1
     Torque(N.m.)




                         0.5




                          0
                               0   0.5   1     1.5          2           2.5    3   3.5   4
                                                       Time (Sec.)


                         30

                         20
     Phase current (A)




                         10

                          0

                         -10

                         -20

                         -30
                               0   0.5   1     1.5          2           2.5    3   3.5   4
                                                       Time (Sec.)




                                                                                             15
4. SIMULATION & EXPERIMENTAL RESULTS

Simulated torque ripple with 48-count resolution

   Torque ripple = 0.012 N.m.
                                                              Resolution = 48 count per rev.


                             1.005
      Torque(N.m.)


                                           1


                             0.995


                                         0.99


                             0.985
                                                    0.5   1   1.5          2            2.5    3   3.5   4
                                                                       Time (Sec.)


                                          30

                                          20
                     Phase current (A)




                                          10

                                           0

                                          -10

                                          -20

                                          -30
                                                0   0.5   1   1.5           2           2.5    3   3.5   4
                                                                       Time (Sec.)


                                                                                                             16
4. SIMULATION & EXPERIMENTAL RESULTS

Simulated torque ripple with 4096-count resolution

     Torque ripple = 0.006 N.m.
                                                                Resolution = 4096 count per rev.


                              1.002
       Torque(N.m.)




                                           1


                              0.998


                              0.996

                                                    0.5   1      1.5           2           2.5     3   3.5   4
                                                                          Time (Sec.)


                                          30

                                          20
                      Phase current (A)




                                          10

                                           0

                                          -10

                                          -20

                                          -30
                                                0   0.5   1       1.5          2           2.5     3   3.5   4
                                                                          Time (Sec.)


                                                                                                                 17
4. SIMULATION & EXPERIMENTAL RESULTS

Measured torque ripple with 48-count resolution
  Phase A current is 10A/div. Average torque = 1.05 N.m.
  Torque ripple = 0.023 N.m. (peak to peak)




                                                           18
4. SIMULATION & EXPERIMENTAL RESULTS

Simulated current sensing with 0.15A error
                                               3-per-rev torque ripple is about 0.017 N.m
                                                               Current sense error = 0.15 (A)
                            0.465

                                        0.46
     Torque(N.m.)




                            0.455

                                        0.45

                            0.445

                                        0.44

                            0.435

                                                   0.5    1    1.5          2            2.5    3   3.5   4
                                                                       Time (Sec.)


                                         15

                                         10
                    Motor current (A)




                                          5

                                          0

                                          -5

                                         -10

                                         -15
                                               0    0.5   1    1.5          2            2.5    3   3.5   4
                                                                       Time (Sec.)



                                                                                                              19
4. SIMULATION & EXPERIMENTAL RESULTS

Measured torque ripple with current sense error
       3-per-rev torque ripple is about 0.020 N.m
       Phase A current is 10A/div.




                                                      20
4. SIMULATION & EXPERIMENTAL RESULTS

Measured torque ripple with current error eliminated
           3-per-rev torque ripple is eliminated
           Phase A current is 10A/div.




                                                          21
4. SIMULATION & EXPERIMENTAL RESULTS

Simulated d-axis step response
  Rise time is about 2 ms.
  There is no overshoot.




                                                 22
4. SIMULATION & EXPERIMENTAL RESULTS

Measured d-axis step response
  Rise time is 1.8 ms.
  There is no overshoot.




                                                23
5. CONCLUSION

             CONCLUSION
• A complete PMSM drive model has been
  presented.
• Experimental results are provided to validate the
  simulation models.
• The effect of position sensor resolution and
  current measurement errors are simulated and
  validated.
• The current loop step response is simulated and
  validated.
• The simulation work helps reduce product cost
  and development time.

                                                   24

More Related Content

What's hot

5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
skysunilyadav
 
Tele4653 l7
Tele4653 l7Tele4653 l7
Tele4653 l7Vin Voro
 
fourier representation of signal and systems
fourier representation of signal and systemsfourier representation of signal and systems
fourier representation of signal and systemsSugeng Widodo
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
Faiza Saher
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
Muhammed Afsal Villan
 
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
Amr E. Mohamed
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Iidiarmseven
 
Fourier series example
Fourier series exampleFourier series example
Fourier series exampleAbi finni
 
Signals Processing Assignment Help
Signals Processing Assignment HelpSignals Processing Assignment Help
Signals Processing Assignment Help
Matlab Assignment Experts
 
Signal Processing Assignment Help
Signal Processing Assignment HelpSignal Processing Assignment Help
Signal Processing Assignment Help
Matlab Assignment Experts
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
Siddhi Viradiya
 
fourier series and fourier transform
fourier series and fourier transformfourier series and fourier transform
fourier series and fourier transform
Vikas Rathod
 
Fourier series
Fourier seriesFourier series
Fourier series
Shiv Prasad Gupta
 
The FFT And Spectral Analysis
The FFT And Spectral AnalysisThe FFT And Spectral Analysis
The FFT And Spectral Analysis
Athanasios Anastasiou
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
Matthew Leingang
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital Images
Frédéric Morain-Nicolier
 

What's hot (20)

Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
 
Hilbert
HilbertHilbert
Hilbert
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
 
Tele4653 l7
Tele4653 l7Tele4653 l7
Tele4653 l7
 
fourier representation of signal and systems
fourier representation of signal and systemsfourier representation of signal and systems
fourier representation of signal and systems
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Properties of Fourier transform
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
 
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
 
Optics Fourier Transform Ii
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
 
Fourier series example
Fourier series exampleFourier series example
Fourier series example
 
Signals Processing Assignment Help
Signals Processing Assignment HelpSignals Processing Assignment Help
Signals Processing Assignment Help
 
Nabaa
NabaaNabaa
Nabaa
 
Signal Processing Assignment Help
Signal Processing Assignment HelpSignal Processing Assignment Help
Signal Processing Assignment Help
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
 
fourier series and fourier transform
fourier series and fourier transformfourier series and fourier transform
fourier series and fourier transform
 
Fourier series
Fourier seriesFourier series
Fourier series
 
The FFT And Spectral Analysis
The FFT And Spectral AnalysisThe FFT And Spectral Analysis
The FFT And Spectral Analysis
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
P1121133705
P1121133705P1121133705
P1121133705
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital Images
 

Similar to Simulation of a_pmsm_motor_control_system

Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
guest3f9c6b
 
D I G I T A L C O N T R O L S Y S T E M S J N T U M O D E L P A P E R{Www
D I G I T A L  C O N T R O L  S Y S T E M S  J N T U  M O D E L  P A P E R{WwwD I G I T A L  C O N T R O L  S Y S T E M S  J N T U  M O D E L  P A P E R{Www
D I G I T A L C O N T R O L S Y S T E M S J N T U M O D E L P A P E R{Wwwguest3f9c6b
 
Upm scube-dynsys-presentation
Upm scube-dynsys-presentationUpm scube-dynsys-presentation
Upm scube-dynsys-presentationidragan
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
VasantkumarUpadhye
 
Digitalcontrolsystems
DigitalcontrolsystemsDigitalcontrolsystems
Digitalcontrolsystems
Satish Gottumukkala
 
matlab_simulink_for_control082p.pdf
matlab_simulink_for_control082p.pdfmatlab_simulink_for_control082p.pdf
matlab_simulink_for_control082p.pdf
MUHAMMAD FAISAL RASHEED
 
digital signal-processing-lab-manual
digital signal-processing-lab-manualdigital signal-processing-lab-manual
digital signal-processing-lab-manual
Ahmed Alshomi
 
Hull White model presentation
Hull White model presentationHull White model presentation
Hull White model presentation
Stephan Chang
 
SPSF03 - Numerical Integrations
SPSF03 - Numerical IntegrationsSPSF03 - Numerical Integrations
SPSF03 - Numerical Integrations
Syeilendra Pramuditya
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Shizuoka Inst. Science and Tech.
 
Pid En Un Pic16 F684
Pid En Un Pic16 F684Pid En Un Pic16 F684
Pid En Un Pic16 F684
quadrocopter
 
Pid En Un Pic16 F684
Pid En Un Pic16 F684Pid En Un Pic16 F684
Pid En Un Pic16 F684
quadrocopter
 
job scheduling
job schedulingjob scheduling
job scheduling
Arpit Tiwari
 
Optimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorOptimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorIAEME Publication
 
Optimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorOptimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorIAEME Publication
 
Krish final
Krish  finalKrish  final
Krish final
Krishna Moorthy
 
Efficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input DataEfficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input Data
ymelka
 
3. convolution fourier
3. convolution fourier3. convolution fourier
3. convolution fourier
skysunilyadav
 

Similar to Simulation of a_pmsm_motor_control_system (20)

Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
Digital Control Systems Jntu Model Paper{Www.Studentyogi.Com}
 
D I G I T A L C O N T R O L S Y S T E M S J N T U M O D E L P A P E R{Www
D I G I T A L  C O N T R O L  S Y S T E M S  J N T U  M O D E L  P A P E R{WwwD I G I T A L  C O N T R O L  S Y S T E M S  J N T U  M O D E L  P A P E R{Www
D I G I T A L C O N T R O L S Y S T E M S J N T U M O D E L P A P E R{Www
 
Upm scube-dynsys-presentation
Upm scube-dynsys-presentationUpm scube-dynsys-presentation
Upm scube-dynsys-presentation
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
Digitalcontrolsystems
DigitalcontrolsystemsDigitalcontrolsystems
Digitalcontrolsystems
 
matlab_simulink_for_control082p.pdf
matlab_simulink_for_control082p.pdfmatlab_simulink_for_control082p.pdf
matlab_simulink_for_control082p.pdf
 
digital signal-processing-lab-manual
digital signal-processing-lab-manualdigital signal-processing-lab-manual
digital signal-processing-lab-manual
 
Hull White model presentation
Hull White model presentationHull White model presentation
Hull White model presentation
 
SPSF03 - Numerical Integrations
SPSF03 - Numerical IntegrationsSPSF03 - Numerical Integrations
SPSF03 - Numerical Integrations
 
MLE Example
MLE ExampleMLE Example
MLE Example
 
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
 
Pid En Un Pic16 F684
Pid En Un Pic16 F684Pid En Un Pic16 F684
Pid En Un Pic16 F684
 
Pid En Un Pic16 F684
Pid En Un Pic16 F684Pid En Un Pic16 F684
Pid En Un Pic16 F684
 
job scheduling
job schedulingjob scheduling
job scheduling
 
Au26297302
Au26297302Au26297302
Au26297302
 
Optimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorOptimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motor
 
Optimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motorOptimum tuning of pid controller for a permanent magnet brushless dc motor
Optimum tuning of pid controller for a permanent magnet brushless dc motor
 
Krish final
Krish  finalKrish  final
Krish final
 
Efficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input DataEfficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input Data
 
3. convolution fourier
3. convolution fourier3. convolution fourier
3. convolution fourier
 

Simulation of a_pmsm_motor_control_system

  • 1. Simulation of A PMSM Motor Control System for EPS Controllers July 23, 2003 by Guang Liu Alex Kurnia Ronan De Larminat 1
  • 2. OUTLINE 1. Introduction 2. System block diagram 3. Simulink models of system elements 4. Simulation and experimental results 5. Conclusion 2
  • 4. 1. INTRODUCTION Simplified Block Diagram of An EPS System EPS Steering mechanism 4
  • 5. 2. SYSTEM BLOCK DIAGRAM 5
  • 6. 2. SYSTEM BLOCK DIAGRAM 6
  • 7. 3. SIMULINK MODELS OF SYSTEM ELEMENTS 3. SIMULINK MODELS OF SYSTEM ELEMENTS 7
  • 8. 3. SIMULINK MODELS OF SYSTEM ELEMENTS Permanent Magnet Synchronous Motor (PMSM) Model 8
  • 9. 3. SIMULINK MODELS OF SYSTEM ELEMENTS Permanent Magnet Synchronous Motor (PMSM) Equations Park transformation equations D-Q axis electric circuit equations 2π 4π 2 vd = [va cos θ + vb cos(θ − 3 3 ) + vc cos(θ − 3 )] vd = Rs id + Ld d i − Lqω e dt iq dt d d 2π 4π 2 vq = [−va sin θ − vb sin s (θ − 3 3 ) − vc sin(θ − 3 )] vq = Rs iq + Lq dt iq + Ldω e dt id + ω e λPM d d Inverse Park transformation equations Torque equations ia = id cosθ − iq sin θ 3 Te = P[λ PM iq + ( Ld − Lq )id iq ] 2π 2π 2 ib = id cos(θ − ) − iq sin(θ − ) 3 3 d Te = TL + K f ω m + J ωm 4π 4π dt ic = id cos(θ − ) − iq sin(θ − ) 3 3 9
  • 10. 3. SIMULINK MODELS OF SYSTEM ELEMENTS Motor Position Sensor Model Complete Sensor: Error generator: 10
  • 11. 3. SIMULINK MODELS OF SYSTEM ELEMENTS Current Sensing Model V_B (1) V1 (5) (3) Vαβ V_A V3 V2 (4) (6) (2) V_C 11
  • 12. 3. SIMULINK MODELS OF SYSTEM ELEMENTS PI Controller Model 12
  • 13. 3. SIMULINK MODELS OF SYSTEM ELEMENTS Inverse Park and SVM Model 13
  • 14. 4. SIMULATION & EXPERIMENTAL RESULTS 4. SIMULATION AND EXPERIMENTAL RESUTLS 14
  • 15. 4. SIMULATION & EXPERIMENTAL RESULTS Simulated torque ripple with 6-count resolution Torque ripple = 1 N.m., current becomes square wave. Resolution = 6 count per rev. 1.5 1 Torque(N.m.) 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (Sec.) 30 20 Phase current (A) 10 0 -10 -20 -30 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (Sec.) 15
  • 16. 4. SIMULATION & EXPERIMENTAL RESULTS Simulated torque ripple with 48-count resolution Torque ripple = 0.012 N.m. Resolution = 48 count per rev. 1.005 Torque(N.m.) 1 0.995 0.99 0.985 0.5 1 1.5 2 2.5 3 3.5 4 Time (Sec.) 30 20 Phase current (A) 10 0 -10 -20 -30 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (Sec.) 16
  • 17. 4. SIMULATION & EXPERIMENTAL RESULTS Simulated torque ripple with 4096-count resolution Torque ripple = 0.006 N.m. Resolution = 4096 count per rev. 1.002 Torque(N.m.) 1 0.998 0.996 0.5 1 1.5 2 2.5 3 3.5 4 Time (Sec.) 30 20 Phase current (A) 10 0 -10 -20 -30 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (Sec.) 17
  • 18. 4. SIMULATION & EXPERIMENTAL RESULTS Measured torque ripple with 48-count resolution Phase A current is 10A/div. Average torque = 1.05 N.m. Torque ripple = 0.023 N.m. (peak to peak) 18
  • 19. 4. SIMULATION & EXPERIMENTAL RESULTS Simulated current sensing with 0.15A error 3-per-rev torque ripple is about 0.017 N.m Current sense error = 0.15 (A) 0.465 0.46 Torque(N.m.) 0.455 0.45 0.445 0.44 0.435 0.5 1 1.5 2 2.5 3 3.5 4 Time (Sec.) 15 10 Motor current (A) 5 0 -5 -10 -15 0 0.5 1 1.5 2 2.5 3 3.5 4 Time (Sec.) 19
  • 20. 4. SIMULATION & EXPERIMENTAL RESULTS Measured torque ripple with current sense error 3-per-rev torque ripple is about 0.020 N.m Phase A current is 10A/div. 20
  • 21. 4. SIMULATION & EXPERIMENTAL RESULTS Measured torque ripple with current error eliminated 3-per-rev torque ripple is eliminated Phase A current is 10A/div. 21
  • 22. 4. SIMULATION & EXPERIMENTAL RESULTS Simulated d-axis step response Rise time is about 2 ms. There is no overshoot. 22
  • 23. 4. SIMULATION & EXPERIMENTAL RESULTS Measured d-axis step response Rise time is 1.8 ms. There is no overshoot. 23
  • 24. 5. CONCLUSION CONCLUSION • A complete PMSM drive model has been presented. • Experimental results are provided to validate the simulation models. • The effect of position sensor resolution and current measurement errors are simulated and validated. • The current loop step response is simulated and validated. • The simulation work helps reduce product cost and development time. 24