Fuzzy ARTMAP is a neural network architecture that uses fuzzy logic and adaptive resonance theory (ART) for supervised learning. It incorporates two fuzzy ART modules, ART-a and ART-b, linked together by an inter-ART module called the MAP field. This allows the network to form predictive associations between categories and track matches using a mechanism called match tracking. The match tracking recognizes category structures to avoid repeating predictive errors on subsequent inputs. Fuzzy ARTMAP is trained until it can correctly classify all training data by increasing the vigilance parameter of ART-a in response to predictive mismatches at ART-b.