Jump to first page
1
dA
dF
A
F
A
==
→ δ
δ
σ
δ 0
lim
Normal stress = [ ] )Pa(pascalm/N
A
Force 2
≡σ
Chapter 2 Mechanics of Materials
Example: Estimate the normal stress on a shin bone ( 脛骨
)
AF

F

F

F
 F

F
 Tensile stress (+)
F

F

Compressive stress (-)
At a point:
Jump to first page
2
Shear stress ( 切應力 ) = τ = F tangential to the area /
A
A F

F

dA
dF
=τAt a point,
Jump to first page
3
Normal strain ( 正應變 ) ε = fractional change of length= lx /
x
l γ
F
F
fixed
lx /Shear strain (?) = deformation under shear stress =
F

F

l x
Jump to first page
4
Stress-strain curve
σ
εo
Yield pt.
Work
hardening
breakElastic
deformation
Hooke's law: In elastic region, σ ∝ ε, or σ/ ε = E
E is a constant, named as Young’s modulus or modulus of
elasticity
Similarly, in elastic region, τ/γ = G, where G is a constant,
named as shear modulus or modulus of rigidity.
Jump to first page
5
Exercise set 2 (Problem 3)
Find the total
extension of the bar.
dx
x
dxde 2
4
1092.1 −
×=ε=
)(
120
)105(
6.0
3
mxm
m
xW =×= −
Pa
xmx
N
2
7
22
3
1088.2
)120/(
102 ×
=
×
=σ
X
15mm
W5mm
1.2m0.6m
o
kN2
dx
2
4
9
27
1092.1
10150
/1088.2
x
x
E
−
×
=
×
×
==
σ
ε
Width of a cross-sectional element at x:
Stress in this element :
Strain of this element:
The extension of this element :
The total extension of the whole bar is :
= 2.13 x 10-4
m
∫ ∫
−
×
==
8.1
6.0 2
4
1092.1
dx
x
dee
Jump to first page
6
Bulk modulus ≡
)/( VV
p
K
δ
δ
−
=
VV δ+
pδ
dV
dp
V−=
Jump to first page
7
Poisson's ratio :
For a homogeneous isotropic material
normal strain :
lateral strain :
Poisson's ratio :
value of ν : 0.2 - 0.5
d
d
L
∆
=ε
εεν /L−≡

x
=ε
F F

dd ∆+
x
d
Jump to first page
8
Double index notation for stress and strain
1st
index: surface, 2nd
index: force
For normal stress components : x ⇒ xx, y ⇒ yy , z ⇒ zz,
σx ⇒ σxx
zσ
xσ
yσ
x
y
z
σzx
σzy
σyz
σxz
σxy
σyx
Jump to first page
9
EEE
EEE
EEE
yyxxzz
zz
zzxxyy
yy
zzyyxx
xx
νσ
−
νσ
−
σ
=ε
νσ
−
νσ
−
σ
=ε
νσ
−
νσ
−
σ
=ε
zσ
xσ
yσ
x
y
z
Joint effect of three normal stress components
Jump to first page
10
Symmetry of shear stress components
Take moment about the z axis, total torque = 0,
(σxy ∆y∆z) ∆x = (σyx ∆x ∆z) ∆y, hence, σxy = σyx .
Similarly, σyz = σzy and σxz = σzx
z
y
x
σxy
σyx
∆x
∆y
∆z
Jump to first page
11
Define pure rotation angle θrot and
pure shear strain, such that the angular
displacements of the two surfaces are:
γ1= θrot+ θdef and γ2= θrot- θdef . Hence,
θrot = (γ1+ γ2)/2 and θdef = (γ1- γ2)/2
Original shear strain is “simple” strain = etc.,...,
y
dx
x
dy
∆∆
There is no real deformation during pure rotation,
but “simple” strain ≠ 0.
x
y
∆x
γ2 = -γ
Example: γ1 = 0 and γ2 = - γ,
so θdef = (0+γ)/2 = γ/2 and θrot= (0-γ)/2 = -γ/2
Pure shear strain is γ/2
x
y
∆x
dy1γ θrot
γ2
θdef
θdef
Jump to first page
12
Example: Show that
)21(3 ν−
=
E
K
)21(3
E
V/V
p
K
ν−
=
∆
∆
−≡∴
3
33)(
l
lll
V
V −∆+
=
∆
ε3/3 =∆≅ ll
Proof:
εxx = εyy = εzz = ε, hence
3ε = εxx+εyy+εzz = (1-2v)(σxx+σyy+σzz)/E
σxx =σyy =σzz = -∆p (compressive stress)
)(
)21(
3 p
E
∆−
ν−
=
V
V∆
For hydrostatic pressure
l
l
l
Jump to first page
13
Point C moves further along x- and y-direction by distances
of AD(γ/2) and AD(γ/2) respectively.
εnn = [(AD . γ/2)2
+ (AD . γ/2)2
]1/2
/ [(AD)2
+ (AD)2
]1/2
= γ/2
True shear strain: εyx = γ/2
Therefore, the normal component of strain is equal to the
shear component of strain:
εnn = εyx and εnn = γ/2
Example : Show that εnn = γ/2
2/γ x
y
A
C’
C
D
D’2
γ
Jump to first page
14
σ yx (lW) sin 45o
x2 = 2 (l cos 45o
) W σnn
Example : Show that εnn = σnn/(2G)
Consider equilibrium along n-direction:
Therefore σyx = σnn
From definition : γ = σxy /G = σnn /G = 2 εnn
l
l
σn
σyx
σxy
2
lcos45
o
Jump to first page
15
G
v
E
2
1
=
+
∴
σnn
σnn
-σnn
-σnn
εxx = σxx/E - ν σyy/E- v σzz/E
Set σxx = σ nn = -σ yy, σ zz = 0, εxx = εnn
εnn = (1+ν) σ nn /E = σ nn /2G (previous example)
Example : Show G
v
E 2
1
=
+
Jump to first page
16
Ex. 12 kN forces are applied to the top
& bottom of a cube (20 mm edges), E =
60 GPa, ν = 0.3. Find (i) the force
exerted by the walls, (ii) εyy
z
y
12kN
x
(ι) εxx = 0, σyy = 0 and
σzz= -12×103
N/(20×10-3
m)2
= 3×107
Pa
εxx = (σxx- v σyy- v σzz) /E
0 = [σxx- 0 – 0.3×(- 3×107
)]/60×109
∴ σxx = -9×106
Pa (compressive)
Force = Aσxx = (20×10-3
m)2
×(-9×106
Pa) = -3.6 ×103
N
(ii) εyy = (σyy- v σzz- v σxx) /E
= [0 – 0.3×(- 3×107
) – 0.3×(- 9×106
)]/60×109
= 1.95×10-4
Jump to first page
17
Elastic Strain Energy
The energy stored in a small volume:
∴ The energy stored :
∴ Energy density in the material :
dx
x
AEFdxdU )(

==
VE
A
e
E
AEe
dxx
AE
U
e
⋅=
==
= ∫
2
2
2
0
2
1
)()(
2
1
2
1
)(
ε



E
E
V
U
u
2
2
2
1
2
1 σ
ε ==≡
e=extension
dx
F F

x
Jump to first page
18
Similarly for shear strain :
F
dx

∫ ⋅= xdFU

∫= Fdx
γ
τ
==
/
/
x
AF
G
G
Gu
2
2
2
1
2
1 τ
γ ==∴

Shear

  • 1.
    Jump to firstpage 1 dA dF A F A == → δ δ σ δ 0 lim Normal stress = [ ] )Pa(pascalm/N A Force 2 ≡σ Chapter 2 Mechanics of Materials Example: Estimate the normal stress on a shin bone ( 脛骨 ) AF  F  F  F  F  F  Tensile stress (+) F  F  Compressive stress (-) At a point:
  • 2.
    Jump to firstpage 2 Shear stress ( 切應力 ) = τ = F tangential to the area / A A F  F  dA dF =τAt a point,
  • 3.
    Jump to firstpage 3 Normal strain ( 正應變 ) ε = fractional change of length= lx / x l γ F F fixed lx /Shear strain (?) = deformation under shear stress = F  F  l x
  • 4.
    Jump to firstpage 4 Stress-strain curve σ εo Yield pt. Work hardening breakElastic deformation Hooke's law: In elastic region, σ ∝ ε, or σ/ ε = E E is a constant, named as Young’s modulus or modulus of elasticity Similarly, in elastic region, τ/γ = G, where G is a constant, named as shear modulus or modulus of rigidity.
  • 5.
    Jump to firstpage 5 Exercise set 2 (Problem 3) Find the total extension of the bar. dx x dxde 2 4 1092.1 − ×=ε= )( 120 )105( 6.0 3 mxm m xW =×= − Pa xmx N 2 7 22 3 1088.2 )120/( 102 × = × =σ X 15mm W5mm 1.2m0.6m o kN2 dx 2 4 9 27 1092.1 10150 /1088.2 x x E − × = × × == σ ε Width of a cross-sectional element at x: Stress in this element : Strain of this element: The extension of this element : The total extension of the whole bar is : = 2.13 x 10-4 m ∫ ∫ − × == 8.1 6.0 2 4 1092.1 dx x dee
  • 6.
    Jump to firstpage 6 Bulk modulus ≡ )/( VV p K δ δ − = VV δ+ pδ dV dp V−=
  • 7.
    Jump to firstpage 7 Poisson's ratio : For a homogeneous isotropic material normal strain : lateral strain : Poisson's ratio : value of ν : 0.2 - 0.5 d d L ∆ =ε εεν /L−≡  x =ε F F  dd ∆+ x d
  • 8.
    Jump to firstpage 8 Double index notation for stress and strain 1st index: surface, 2nd index: force For normal stress components : x ⇒ xx, y ⇒ yy , z ⇒ zz, σx ⇒ σxx zσ xσ yσ x y z σzx σzy σyz σxz σxy σyx
  • 9.
    Jump to firstpage 9 EEE EEE EEE yyxxzz zz zzxxyy yy zzyyxx xx νσ − νσ − σ =ε νσ − νσ − σ =ε νσ − νσ − σ =ε zσ xσ yσ x y z Joint effect of three normal stress components
  • 10.
    Jump to firstpage 10 Symmetry of shear stress components Take moment about the z axis, total torque = 0, (σxy ∆y∆z) ∆x = (σyx ∆x ∆z) ∆y, hence, σxy = σyx . Similarly, σyz = σzy and σxz = σzx z y x σxy σyx ∆x ∆y ∆z
  • 11.
    Jump to firstpage 11 Define pure rotation angle θrot and pure shear strain, such that the angular displacements of the two surfaces are: γ1= θrot+ θdef and γ2= θrot- θdef . Hence, θrot = (γ1+ γ2)/2 and θdef = (γ1- γ2)/2 Original shear strain is “simple” strain = etc.,..., y dx x dy ∆∆ There is no real deformation during pure rotation, but “simple” strain ≠ 0. x y ∆x γ2 = -γ Example: γ1 = 0 and γ2 = - γ, so θdef = (0+γ)/2 = γ/2 and θrot= (0-γ)/2 = -γ/2 Pure shear strain is γ/2 x y ∆x dy1γ θrot γ2 θdef θdef
  • 12.
    Jump to firstpage 12 Example: Show that )21(3 ν− = E K )21(3 E V/V p K ν− = ∆ ∆ −≡∴ 3 33)( l lll V V −∆+ = ∆ ε3/3 =∆≅ ll Proof: εxx = εyy = εzz = ε, hence 3ε = εxx+εyy+εzz = (1-2v)(σxx+σyy+σzz)/E σxx =σyy =σzz = -∆p (compressive stress) )( )21( 3 p E ∆− ν− = V V∆ For hydrostatic pressure l l l
  • 13.
    Jump to firstpage 13 Point C moves further along x- and y-direction by distances of AD(γ/2) and AD(γ/2) respectively. εnn = [(AD . γ/2)2 + (AD . γ/2)2 ]1/2 / [(AD)2 + (AD)2 ]1/2 = γ/2 True shear strain: εyx = γ/2 Therefore, the normal component of strain is equal to the shear component of strain: εnn = εyx and εnn = γ/2 Example : Show that εnn = γ/2 2/γ x y A C’ C D D’2 γ
  • 14.
    Jump to firstpage 14 σ yx (lW) sin 45o x2 = 2 (l cos 45o ) W σnn Example : Show that εnn = σnn/(2G) Consider equilibrium along n-direction: Therefore σyx = σnn From definition : γ = σxy /G = σnn /G = 2 εnn l l σn σyx σxy 2 lcos45 o
  • 15.
    Jump to firstpage 15 G v E 2 1 = + ∴ σnn σnn -σnn -σnn εxx = σxx/E - ν σyy/E- v σzz/E Set σxx = σ nn = -σ yy, σ zz = 0, εxx = εnn εnn = (1+ν) σ nn /E = σ nn /2G (previous example) Example : Show G v E 2 1 = +
  • 16.
    Jump to firstpage 16 Ex. 12 kN forces are applied to the top & bottom of a cube (20 mm edges), E = 60 GPa, ν = 0.3. Find (i) the force exerted by the walls, (ii) εyy z y 12kN x (ι) εxx = 0, σyy = 0 and σzz= -12×103 N/(20×10-3 m)2 = 3×107 Pa εxx = (σxx- v σyy- v σzz) /E 0 = [σxx- 0 – 0.3×(- 3×107 )]/60×109 ∴ σxx = -9×106 Pa (compressive) Force = Aσxx = (20×10-3 m)2 ×(-9×106 Pa) = -3.6 ×103 N (ii) εyy = (σyy- v σzz- v σxx) /E = [0 – 0.3×(- 3×107 ) – 0.3×(- 9×106 )]/60×109 = 1.95×10-4
  • 17.
    Jump to firstpage 17 Elastic Strain Energy The energy stored in a small volume: ∴ The energy stored : ∴ Energy density in the material : dx x AEFdxdU )(  == VE A e E AEe dxx AE U e ⋅= == = ∫ 2 2 2 0 2 1 )()( 2 1 2 1 )( ε    E E V U u 2 2 2 1 2 1 σ ε ==≡ e=extension dx F F  x
  • 18.
    Jump to firstpage 18 Similarly for shear strain : F dx  ∫ ⋅= xdFU  ∫= Fdx γ τ == / / x AF G G Gu 2 2 2 1 2 1 τ γ ==∴