SlideShare a Scribd company logo
Twitter
990
10
583.7
170.1
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_ave01_04.html
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_dist01_04.html
990
10
583.7
170.1
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_ave01_04.html
http://www.toeic.or.jp/toeic/about/data/data_avelist/data_dist01_04.html
D = {x1, x2, · · · , xn}
¯x =
1
n
nX
i=1
xi
2
=
1
n
nX
i=1
(xi ¯x)2
=
v
u
u
t 1
n
nX
i=1
(xi ¯x)2
=
1
n
nX
i=1
|xi ¯x|
=
1
n
nX
i=1
(xi ¯x)2
p
=
v
u
u
t 1
N
NX
i=1
(xi ¯x)2
p
probability
! 2 ⌦ = {!1, !2, · · · , !m}
⌦ = { , }
! 2 { , }
!(1)
= !(2)
=
!(n)
=
⌦ = {1, 2, 3, 4, 5, 6}
!(1)
= !(2)
=
!(n)
=
⌦ = {!1, !2, · · · , !49870000}
!(1)
= !43890298 = 171cm
!(2)
= !29184638 = 168cm
!(n)
= !51398579 = 174cm
!(1)
= !(2)
=
!(n)
=!(3)
=
!1 !2 !3 !4 !5 !6 !7 !8 !9 !10
= {!1, !2, !3, · · · , !10}
! 2 ⌦ = {ID1, ID2, ID3, · · · , ID10}
⌦ !
!
X = X(!)
⌦ !
!
X(!1) = 0
X(!2) = 0
X(!3) = 0
X(!4) = 0
X(!5) = 0
X(!6) = 0
X(!7) = 0
X(!8) = 0
X(!9) = 0
X(!10) = 100
!
{! 2 ⌦ : X(!) 2 A}
{X 2 A}
X(!) X
{! 2 ⌦ : X(!) 2 A}
!1 !2 !3 !4 !5 !6 !7 !8 !9 !10
A X(!) = 100Ac
X(!) = 0
!5 or !9
PX (A) = P(X 2 A) = P({! 2 ⌦ : X(!) 2 A})
⌦
!5, !9 !5, !9
PX (A) =
#({! 2 ⌦ : X(!) 2 A})
#( )
=
#(!5, !9)
#( )
=
2
10
= 0.2
PX(⌦) = 1
A1, A2, · · ·
PX ([iAi) =
X
i
PX (Ai)
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
0  PX(A)  1
X = X(!)
⌦
A
A
!1
!2
!3
!4
!5
!6
!7
!8
!11
!10
!9
!12
!13
!14
!15
!16
B
C
D
X(!) = 0
X(!) = 0
#A = #{! 2 ⌦ : X(!) = 0} = 7
#B = #{! 2 ⌦ : X(!) = 1} = 2
#C = #{! 2 ⌦ : X(!) = 2} = 4
#D = #{! 2 ⌦ : X(!) = 3} = 3
⌦
A
A
!1
!2
!3
!4
!5
!6
!7
!8
!11
!10
!9
!12
!13
!14
!15
!16
B
C
DX(!) = 0
P(X = 0) = PX(A) =
#{! 2 ⌦ : X(!) = 0}
#⌦
=
7
16
P(X = 1) = PX (B) =
#{! 2 ⌦ : X(!) = 1}
#⌦
=
2
16
P(X = 2) = PX(C) =
#{! 2 ⌦ : X(!) = 2}
#⌦
=
4
16
P(X = 3) = PX(D) =
#{! 2 ⌦ : X(!) = 3}
#⌦
=
3
16
{x1, x2, · · · , xk}
P(X = xi) = f(xi)
F(x) = P(X  x)
P(x < X  x + x)
x + xx
x x ! 0
f(x) = lim
x!0
P(x < X  x + x)
x
x + xx
f(x)
F(x) = P(X  x) =
Z x
1
f(u)du
f(a < x < b) =
Z b
a
f(x)dx
http://www.math.wm.edu/~leemis/2008amstat.pdf
P(X = x) = px
(1 p)1 x
(x = 0, 1)
#
#
p = 0.7
trial_size = 10000
set.seed(71)
#
data <- rbern(trial_size, p)
#
dens <- data.frame(y=c((1-p),p)*trial_size, x=c(0, 1))
#
ggplot() +
layer(data=data.frame(x=data), mapping=aes(x=x), geom="bar",
stat="bin", bandwidth=0.1
) + layer(data=dens, mapping=aes(x=x, y=y), geom="bar",
stat="identity", width=0.05, fill="#777799", alpha=0.7)
(x = 0, 1, · · · , n)
#
p = 0.7
trial_size = 10000
sample_size = 30
set.seed(71)
#
gen_binom_var <- function() {
return(sum(rbern(sample_size, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dbinom(seq(sample_size),
sample_size, 0.7))*trial_size
#
ggplot() +
layer(data=resuylt, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=1, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(sample_size)+.5, y=y),
geom="line", stat="identity", position="identity",colour="red"
) + ggtitle("Bernoulli to Binomial.")
P(X = x) =
e x
x!
trial_size = 5000; width <- 1;
#
p = 0.7; n = 10;
np <- p*n
# n!∞ p!0 np=
n = 100000; p <- np/n
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dpois(seq(20), np))*trial_size
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(20)+.5, y=y),
geom="line", stat="identity", position="identity",
colour="red"
) + ggtitle("Bernoulli to Poisson.")
f(x) =
1
p
2⇡ 2
exp
⇢
1
2
(x µ)2
2
( 1 < x < 1)
#
n <- 10000; p <- 0.7;
trial_size = 10000
width=10
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
#
dens <- data.frame(y=dnorm(seq(6800,7200), mean=n*p,
sd=sqrt(n*p*(1-p)))*trial_size*width)
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(6800,7200), y=y),
geom="line", stat="identity", position="identity",
colour="red") + ggtitle("Bernoulli to Normal.")
( 1 < x < 1)
f(x) =
1
p
2⇡
exp
⇢
1
2
x2
#
n <- 10000; p <- 0.7
trial_size = 30000
width=0.18
#
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
result <- rdply(trial_size, gen_binom_var())
m <- mean(result$V1); sd <- sd(result$V1);
result <- (result - m)/sd
#
dens <- data.frame(y=dnorm(seq(-4,4,0.05), mean=0,
sd=1)*trial_size*width)
#
ggplot() +
layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(-4,4,0.05), y=y),
geom="line", stat="identity", position=“identity",
colour="red"
) + ggtitle("Bernoulli to Standard Normal.")
f(x, k) =
(1/2)k/2
(k/2)
xk/2 1
e x/2
(0  x)
Xi
Z = X2
1 + · · · + X2
k
#
p <- 0.7; n <- 1000;
trial_size <- 100000; width <- 0.3;
df <- 3
# (3 )
gen_binom_var <- function() {
return(sum(rbern(n, p)))
}
gen_chisq_var <- function() {
result <- rdply(trial_size, gen_binom_var())
return(((result$V1 - mean(result$V1))/sd(result$V1))**2)
}
# df
result <- rlply(df, gen_chisq_var(),.progress = "text")
res <- data.frame(x=result[[1]] + result[[2]] + result[[3]])
# ( =3)
xx <- seq(0,20,0.1)
dens <- data.frame(y=dchisq(x=xx, df=df)*trial_size*width)
#
ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=xx, y=y),
geom="line", stat="identity", position="identity",
colour="blue" ) + ggtitle("Bernoulli to Chisquare")
f(x, ) =
⇢
e x
(x 0)
0 (x < 0)
trial_size = 7000; width <- .01;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n
#
gen_exp_var <- function() {
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){
return(cnt) # 1
}
}
}
data <- data.frame(x=rdply(trial_size, gen_exp_var())/n)
names(data) <- c("n", "x")
#
dens <- data.frame(y=dexp(seq(0, 1.5, 0.1), np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0, 1.5, 0.1), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Exponential.")
f(x, ↵, ) =
↵
(↵)
x↵ 1
exp( x)
(0  x < 1)
↵X
i=1
Xi ⇠ (↵, )Xi ⇠ Exp( )
trial_size = 7000; width <- .035;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n; alpha <- 5
#
get_interval <- function(){
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){ return(cnt) }
}
}
gen_exp_var <- function() {
data <- data.frame(x=rdply(trial_size, get_interval())/n)
names(data) <- c("n", "x")
return(data)
}
result <- rlply(alpha, gen_exp_var())
data <- data.frame(x=result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x +
result[[5]]$x)
#
dens <- data.frame(y=dgamma(seq(0, 3,.01), shape=alpha, rate=np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Gamma")
f(x, ↵, ) =
↵
(↵)
x (↵+1)
exp
✓
x
◆
(0  x < 1)
Xi ⇠ Exp( ) Z =
↵X
i=1
Xi ⇠ (↵, )
1/Z ⇠ IG(↵, )
trial_size = 7000; width <- .;
#
p = 0.7; n = 10; np <- p*n;
# n!∞ p!0 np=
n = 10000; p <- np/n; alpha <- 5
#
get_interval <- function(){
cnt <- 0
while (TRUE) {
cnt <- cnt + 1
if (rbern(1, p)==1){ return(cnt) }
}
}
gen_exp_var <- function() {
data <- data.frame(x=rdply(trial_size, get_interval())/n)
names(data) <- c("n", "x")
return(data)
}
result <- rlply(alpha, gen_exp_var())
data <- data.frame(x=1/(result[[1]]$x + result[[2]]$x + result[[3]]$x +
result[[4]]$x + result[[5]]$x))
#
dens <- data.frame(y=dinvgamma(seq(0, 23,.01), shape=5, rate=1/np)*trial_size*width)
ggplot() +
layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Inversegamma")
f(x) =
⇢
1 (0  x  1)
0 (otherwise)
Z = x1(1/2)1
+ x2(1/2)2
+ · · · + xq(1/2)q
width <- 0.02
p <- 0.5;
sample_size <- 1000
trial_size <- 100000
gen_unif_rand <- function() {
# sample_size 2
#
return (sum(rbern(sample_size, p) * (rep(1/2, sample_size)
** seq(sample_size))))
}
gen_rand <- function(){
return( rdply(trial_size, gen_unif_rand()) )
}
system.time(res <- gen_rand())
ggplot() +
layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + ggtitle("Bernoulli to Standard Uniform")
f(x, a, b) =
⇢
(b a) 1
(a  x  b)
0 (otherwise)
a <- 5
b <- 8;
width <- 0.05
p <- 0.5
sample_size <- 1000
trial_size <- 500000
gen_unif_rand <- function() {
# sample_size 2
#
return (sum(rbern(sample_size, p) * (rep(1/2, sample_size)
** seq(sample_size))))
}
gen_rand <- function(){
return( rdply(trial_size, gen_unif_rand()) )
}
system.time(res <- gen_rand())
res$V1 <- res$V1 * (b-a) + a
ggplot() +
layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + ggtitle("Bernoulli to Uniform") + xlim(4,9)
f(x, ↵, ) =
1
B(↵, )
x↵ 1
(1 x) 1
(0 < x < 1)
Xi ⇠ U(0, 1)iid
(i = 1, 2, · · · , ↵ + 1)
width <- 0.03; p <- 0.5
digits_length <- 30; set_size <- 3
trial_size <- 30000
gen_unif_rand <- function() {
# digits_length 2
#
return (sum(rbern(digits_length, p) *
(rep(1/2, digits_length) **
seq(digits_length))))
}
gen_rand <- function(){
return( rdply(set_size, gen_unif_rand())$V1 )
}
unif_dataset <- rlply(trial_size, gen_rand, .progress='text')
p <- ceiling(set_size * 0.5); q <- set_size - p + 1
get_nth_data <- function(a){ return(a[order(a)][p]) }
disp_data <- data.frame(lapply(unif_dataset, get_nth_data))
names(disp_data) <- seq(length(disp_data)); disp_data <- data.frame(t(disp_data))
names(disp_data) <- "V1"
x_range <- seq(0, 1, 0.001)
dens <- data.frame(y=dbeta(x_range, p, q)*trial_size*width)
ggplot() +
layer(data=disp_data, mapping=aes(x=V1), geom="bar", stat = "bin",
binwidth=width, fill="#6666ee", color="gray"
) + layer(data=dens, mapping=aes(x=x_range, y=y),
geom="line", stat="identity", position="identity", colour="red"
) + ggtitle("Bernoulli to Beta")
E[X] = X( )P( ) + X( )P( )
= 0 ⇥ 0.8 + 1, 000, 000 ⇥ 0.2
= 200, 000
E[X] =
X
x
xp(x)
µ
✓
n
x
◆
=
n!
(n x)!x!
E[X] =
nX
x=0
xP(x) =
nX
x=0
x
✓
n
x
◆
px
(1 p)n x
=
nX
x=0
x
n!
(n x)!x!
px
(1 p)n x
=
nX
x=0
n
(n 1)!
(n x)!(x 1)!
px
(1 p)n x
= np
nX
x=0
✓
n 1
m 1
◆
p(x 1)
(1 p)(n 1) (x 1)
= np
= np
nX
x=1
✓
n 1
m 1
◆
p(x 1)
(1 p)(n 1) (x 1)
= np
Var[X] = E[(X E[X])2
]
=
X
x
(x E[x])2
P(x)
= 2
µ
Var[x] = E[(X E[X])2
]
=
Z 1
1
(x E[x])2
f(x)dx
= 2
E[X] =
Z 1
1
xf(x)dx
= µ
E[g(X)] =
Z 1
1
g(x)f(x)dx
g(X) = (X E[X])2
E[ · ] =
Z 1
1
· f(x)dx
g(x) = xk
E[g(X)] = E[Xk
] =
Z 1
1
xk
f(x)dx
µ0
k
g(x) = (x E[x])k
E[g(X)] = E[(X E[X]])k
] =
Z 1
1
(x E[x])k
f(x)dx
µk
E[cX] = cE[X]
* E[cX] =
Z 1
1
cxf(x)dx = c
Z 1
1
xf(x)dx
= cE[X]
Var[cX] = c2
Var[X]
* Var[cX] =
Z 1
1
(cx E[cx])2
f(x)dx
=
Z 1
1
(cx cµ)2
f(x)dx
=
Z 1
1
c2
(x µ)2
f(x)dx
= c2
Z 1
1
(x µ)2
f(x)dx
= c2
Var[X]
P(x < X 5 x + x, y < Y 5 y + y)
x, y ! 0
f(x, y) = lim
x, y!0
P(x < X 5 x + x, y < Y 5 y + y)
f(x, y)
g(x) =
Z 1
1
f(x, y)dy
h(y) =
Z 1
1
f(x, y)dx
g(x)
h(y)
EX,Y [ g(X, Y )] =
Z 1
1
Z 1
1
g(x, y)f(x, y)dxdy
g(x, y) = x0.8
y0.8 (x, y) ⇠ N((4, 4), S) S =

1 0.5
0.4 1
EX,Y [ g(X, Y )] = 8.02
g(X, Y ) = (X µX)(Y µY )
Cov[X, Y ] = E[(X µX)(Y µY )]
g(X, Y ) = (X µX)(Y µY )
µX µX
µX µX
µY
µY
µY
µY
S1 = S2 =
S3 = S4 =

1 0.8
0.8 1

1 0.8
0.8 1

1 0
0 1

1 0.999
0.999 1
Cov[X, Y ] = E[(X µX)(Y µY )]
(x, y) ⇠ N((4, 4), S)
f(x, y)
f(x, y) = g(x)h(y)
f(x, y) = g(x)h(y)
= 0
(x1, x2, · · · , xn)
x1
f(x1) =
Z
· · ·
Z
f(x1, · · · , xn)dx2 · · · dxn
x1
f(x1, · · · , xn) = f(x1) · · · f(xn)
x1 · · · xn
x1 · · · xn
g1(x1), · · · , gn(xn) x1 · · · xn
E[
nY
i=1
gi(xi)] =
nY
i=1
E[gi(xi)]
E[g1(x1)] E[gn(xn)]
E[
nY
i=1
gi(xi)] =
Z 1
1
· · ·
Z 1
1
g1(x1) · · · gn(xn)f(x1, · · · , xn)dx1 · · · dxn
=
Z 1
1
g1(x1)f(x1)dx1 · · ·
Z 1
1
gn(xn)f(xn)dxn
=
nY
i=1
E[gi(xi)]
f(x1) · · · f(xn)
x1 · · · xn
xi µi 2
i i = 1, 2, · · · , n
c = (c1, · · · , cn) c1x1 + · · · + cnxn
c1µ1 + · · · + cnµn
c2
1
2
1 + · · · + c2
n
2
n
E[c1x1 + · · · + cnxn]
=
Z 1
1
· · ·
Z 1
1
(c1x1 + · · · + cnxn)f(x1 · · · , xn)dx1 · · · dxn
= c1
Z 1
1
· · ·
Z 1
1
x1f(x1 · · · , xn)dx1 · · · dxn · · ·
cn
Z 1
1
· · ·
Z 1
1
xnf(x1 · · · , xn)dx1 · · · dxn
=c1
Z 1
1
x1dx1 · · · cn
Z 1
1
xndxn
=c1µ1 + · · · + cnµn
f(x1) · · · f(xn)
f(x1) · · · f(xn)
µ1 µn
=c1
Z 1
1
x1dx1 · · · cn
Z 1
1
xndxn
=c1µ1 + · · · + cnµn
Var[c1x1 + · · · + cnxn]
= E[{(c1x1 + · · · + cnxn) E[c1x1 + · · · + cnxn]}2
]
= E[{c1(x1 µ1) + · · · + c1(x1 µ1)}2
]
= E[
nX
i=1
c2
i (xi µi)2
+
X
i6=j
cicj(xi µj)(xi µj)]
=
nX
i=1
c2
i E[(xi µi)2
] +
X
i6=j
cicjE[(xi µj)(xi µj)]
= c2
1
2
1 + · · · + c2
n
2
n
c1µ1 + · · · + cnµn
= E[xi µi]E[xj µj] = 0= 2
i
x1 · · · xn
x1 · · · xn
xi
µ 2
(µ, 2
)
x1 · · · xn
T = x1 + · · · + xn
E[T] = E[x1 + · · · + xn]
= E[x1] + · · · + E[xn]
= nµ
Var[T] = Var[x1 + · · · + xn]
= Var[x1] + · · · + Var[xn]
= n 2
2
1 = · · · = 2
n
c1 = · · · = cn = 1
Var[c1x1 + · · · + cnxn]
= c2
1
2
1 + · · · + c2
n
2
n
¯x =
1
n
nX
i=1
xi =
1
n
T
E[¯x] =
1
n
E[T] = n ·
1
n
µ = µ
Var[¯x] = Var[
1
n
T] =
1
n2
Var[T] =
2
n
µ
2
Var[¯x] =
2
n
=
0.0833
500
= 0.000166
E[¯x] = 0.5
Var[¯x]
µ 2
P(|x µ| > ) 5
1
2
µ 2
1/ 2
= 1 ) P(|x µ| > ) 5 1
= 2 ) P(|x µ| > ) 5 1/4
= 3 ) P(|x µ| > ) 5 1/9
2
=
Z 1
1
(x µ)2
f(x)dx
=
Z
I1
(x µ)2
f(x)dx +
Z
I2
(x µ)2
f(x)dx +
Z
I3
(x µ)2
f(x)dx
2
=
Z
I1
(x µ)2
f(x)dx +
Z
I3
(x µ)2
f(x)dx
=
Z
I1
2 2
f(x)dx +
Z
I3
2 2
f(x)dx
= 2 2
[P(x 2 I1) + P(x 2 I3)]
I1 = ( 1, µ ),
I2 = [µ , µ + ],
I3 = (µ + , 1)
= P(|x µ| > )
P(|x µ| > ) 5
1
2
)
x1 · · · xn µ
2
" > 0
lim
n!1
P{|¯xn µ| = "} = 0
¯xn =
1
n
nX
i=1
xi
¯xn µ
¯xn ! µ in P
" > 0
P(|¯xn µ| > ")
= P(|¯xn µ| > "
p
n
p
n
)
5
2
"2n
= 2
¯x=
=
1
2
f(x) =
1
p
2⇡ 2
exp
✓
(x µ)2
2 2
◆
f(x) =
1
p
2⇡
exp
✓
x2
2
◆
1 < x < 1
1 < x < 1
f(y) = y2
f(x) = x2
f(y) = y2
f(y) = exp( y2
)
z =
p
2y
f(z) = exp
✓
1
2
z2
◆
Z 1
1
e y2
dy =
p
⇡
Z 1
1
exp
✓
z2
2
◆
dz =
p
2⇡
Z 1
1
1
p
2⇡
exp
✓
z2
2
◆
dz = 1
dz =
p
2dy
Z 1
1
1
p
2⇡
exp
✓
z2
2
◆
dz
z =
x µ dz
dx
=
1
f(x) =
Z 1
1
1
p
2⇡ 2
exp
✓
(x µ)2
2 2
◆
dx
1/
D = (x1, · · · , xn) µ 2
¯x µ
/
p
n
, n ! 1 N(0, 1)
= 0.1, µ =
1
= 10, 2
=
1
2
= 100 ¯x = p
n
=
r
1
2n
=
r
1
0.01 ⇥ 10000
=
r
1
100
=
1
10
g(x) = ext
E[ext
] =
Z 1
1
ext
f(x)dx
Mx(t) = E[ext
]
Mx(t)
My(t)
x
t = 0
y
g(x) = ext
ext
= 1 + xt +
t2
2!
x2
+ · · · +
tk
k!
xk
+ · · ·
Mx(t) = E[ext
]
= E[1 + xt +
t2
2!
x2
+ · · · +
tk
k!
xk
+ · · · ]
= 1 + tE[x] +
t2
2!
E[x2
] + · · · +
tk
k!
E[xk
] + · · ·
= 1 + xµ0
1 +
t2
2!
µ0
2 + · · · +
tk
k!
µ0
k + · · ·
Mx(t)
d
dtk
Mx(t) = E[xk
ext
]
t = 0
d
dtk
Mx(0) = E[xk
] = µ0
k
x ⇠ N(µ, )
Mx(t) = E[ext
] =
Z 1
1
ext 1
p
2⇡ 2
exp
✓
1
2
(x µ)2
2
◆
dx
z =
x µ
x = µ + z dx = dz
Mx(t) =
Z 1
1
e(µ+ z)t 1
p
2⇡ 2
exp
✓
1
2
z2
◆
dz
= eµt
Z 1
1
1
p
2⇡
exp
✓
tz
1
2
z2
◆
dz
= eµt
Z 1
1
1
p
2⇡
exp
✓
1
2
[z2
2 tz 2
t2
+ 2
t2
]
◆
dz
= eµt
Z 1
1
1
p
2⇡
e
2t2
2 exp
✓
1
2
(z t)2
◆
dz
= eµt
e
2t2
2
Z 1
1
1
p
2⇡
exp
✓
1
2
(z t)2
◆
dz
z t = w dz = dw
Mx(t) = eµt
e
2t2
2
Z 1
1
1
p
2⇡
exp
✓
w2
2
◆
dw = eµt+
2t2
2
(f · g)0
= f0
· g + f · g0
(f g)0
(x) = f0
(g(x))g0
(x)
M0
x(t) = (µ + 2
t)eµt+
2t2
2
M00
x (t) = (µ + 2
t)2
⇣
eµt+
2t2
2
⌘
+ 2
⇣
eµt+
2t2
2
⌘
=
⇣
eµt+
2t2
2
⌘
{(µ + 2
t)2
+ 2
}
Var[x] = E[x2
] (E[x])2
= (µ2
+ 2
) (µ)2
= 2
Var[x] = E[(x E[x])2
]
= E[x2
2E[x]x + E[x]2
)
= E[x2
] 2E[x]2
+ E[x]2
= E[x2
] E[x]2
t = 0
E[x] = M0
x(0) = (µ + 2
· 0)eµ·0+
2·02
2 = µ
E[x2
] = M00
x (0) =
⇣
eµ·0+
2·02
2
⌘
{(µ + 2
· 0)2
+ 2
} = µ2
+ 2
D = (x1, · · · , xn) µ 2
¯x µ
/
p
n
, n ! 1
N(0, 1)
T = x1 + · · · + xn
T nµ
p
n
2T0
=
T nµ
p
n
=
¯x µ
1/
p
n
Mx(t)
My(t)
x
t = 0
y
T T0
=
T nµ
p
n
N(0, 2
)
Mxi
(t) = 1 + µ0
1t + µ0
2
t2
2!
+ µ0
3
t3
3!
+ · · ·
Mxi µ(t) = 1 + µ1t + µ2
t2
2!
+ µ3
t3
3!
+ · · ·
= 1 + 0 + 2 t2
2!
+ µ3
t3
3!
+ · · ·
xi µ
p
n
xi µ
p
n
Mxi µ
p
n
(t) = E[e
xi µ
p
n
t
]
= 1 + 2 t2
2!n
+ µ3
t3
3!n3/2
+ · · · + µk
tk
k!nk/2
+ · · ·
= 1 +
2
t2
2n
+
n
2n
=
1
2n
n n ! 0 n ! 0
= 1 +
2
t2
+ n
2n
T0
=
x1 µ
p
n
+
x2 nµ
p
n
+ · · · +
xn µ
p
n
=
nX
i=1
xi µ
p
n
MT 0 (t) = MPn
i=1
⇣
xi µ
p
n
⌘(t) = E[e
Pn
i=1
⇣
xi µ
p
n
⌘
t
]
=
nY
i=0
E[e
⇣
xi µ
p
n
⌘
t
] =
✓
1 +
1
n
2
t2
+ n
2
◆n
er
⌘ lim
n!1
⇣
1 +
r
n
⌘n
r
r
= lim
n!1
⇣
1 +
r
n
⌘n
n ! 1
lim
n!1
MT 0 = lim
n!1
✓
1 +
1
n
2
t2
+ n
2
◆n
= e
2t2
2
lim
n!1
n = 0
N(0, 2
)
T0
=
T nµ
p
n
2
n = 100000
sample_size = 1000
rvs_list = []
m_list = []
for i in range(n):
unif_rvs = st.uniform.rvs(4.5, size=sample_size) # 5
beta_rvs = st.beta.rvs(a=3, b=3, size=sample_size) # 0.5 β
gamma_rvs = st.gamma.rvs(a=3, size=sample_size) # 3
chi2_rvs = st.chi2.rvs(df=5, size=sample_size) #
exp_rvs = st.expon.rvs(loc=0, size=sample_size) # 1
rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten()
m_list.append(np.mean(rvs))
rvs_list.append(rvs)
#
n = 10000
sample_size = 1000
rvs_list = []
m_list = []
m_unif = st.uniform.rvs(4, 2, size=sample_size)
m_beta_a = st.uniform.rvs(4, 2, size=sample_size)
m_beta_b = st.uniform.rvs(4, 2, size=sample_size)
m_gamma = rd.randint(2,5,size=sample_size)
m_chi2_df = rd.randint(3,6,size=sample_size)
m_exp = st.uniform.rvs(4, 2, size=sample_size)
def gen_random_state():
return int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000)
def create_rvs(n):
#rd.seed = int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000)
print("[START]")
for _ in range(n):
unif_rvs = [st.uniform.rvs(m, size=1, random_state=gen_random_state()) for m in
m_unif] # 5
beta_rvs = [st.beta.rvs(a=a, b=b, size=1, random_state=gen_random_state()) for a, b
in zip(m_beta_a, m_beta_b)]# 0.5 β
gamma_rvs = [st.gamma.rvs(a=a, size=1, random_state=gen_random_state()) for a in
m_gamma] # 3
chi2_rvs = [st.chi2.rvs(df=d, size=1, random_state=gen_random_state()) for d in
m_chi2_df] #
exp_rvs = [st.expon.rvs(loc=l, size=1, random_state=gen_random_state()) for l in
m_exp] # 1
rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten()
l_mean.append(np.mean(rvs))
l_rvs.append(rvs)
print("[END]")
n_jobs = 20
n_each = int(n/n_jobs)
jobs = [Process(target=create_rvs, args=(n_each,)) for _ in range(n_jobs)]
manager = Manager()
l_rvs = manager.list(range(len(jobs)))
l_mean = manager.list(range(len(jobs)))
start_time = time.time()
for j in jobs:
j.start()
time.sleep(0.2)
for j in jobs:
j.join()
finish_time = time.time()
print(finish_time - start_time)
m_list = l_mean[n_jobs:]
rvs_list = np.array(l_rvs[n_jobs:])
print(rvs_list.shape)
D = (x1, · · · , xn)
✓0 = ˆ✓(X1, · · · , Xn)
ˆ✓lower(X1, · · · , Xn) 5 ✓0 5 ˆ✓upper(X1, · · · , Xn)
ˆ✓(X)
E[(ˆ✓(X) ✓)2
]
E[(ˆ✓(X) ✓)2
]
= E[{(E[ˆ✓(X)] ✓) + (ˆ✓(X) E[ˆ✓(X)])}2
]
= E[(E[ˆ✓(X)] ✓)2
+ 2(E[ˆ✓(X)] ✓)(ˆ✓(X) E[ˆ✓(X)]) + (ˆ✓(X) E[ˆ✓(X)])2
]
= (E[ˆ✓(X)] ✓)2
+ Var[ˆ✓(X)]
E[ˆ✓(X)] ✓
E[(ˆ✓(X) ✓)2
] = Var[ˆ✓(X)]
E[¯x] =
1
n
E[T] = n ·
1
n
µ = µ
¯x
s2
=
1
n 1
nX
i=1
(xi ¯x)2
lim
n!1
P{|¯xn µ| = "} = 0 ¯xn ! µ in P
ˆ✓n(X) n ! 1
ˆ✓n(X) ! ✓ in P
ˆ✓n(X)
¯xn µ
Var[ˆ✓(X)]
ˆ✓(X)
D = (x1, · · · , xn) xi
f(xi)
nY
i=1
f(xi)
nY
i=1
f(xi|✓)
xi
`(✓|x1, x2, · · · , xn) =
nY
i=1
f(xi|✓)
x1, x2, · · · , x10
f(x1, x2, · · · , x10|µ, 2
) =
10Y
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
`(µ, 2
|x1, x2, · · · , x10) =
10Y
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
✓⇤
= arg max
✓
`(✓|x1, x2, · · · , xn)
log `(✓|x1, · · · , xn) ⌘ L(✓|x1, · · · , xn)
`
µ, 2
L(µ, 2
|x1, x2, · · · , x10) =
n
2
(2⇡)
n
2
log 2 1
2 2
nX
i=1
(xi µ)2
@L
@µ
=
1
2 2
nX
i=1
(xi µ)2
)
nX
i=1
xi = nµ
) µ⇤
=
1
n
nX
i=1
xi
`(µ, 2
|x1, x2, · · · , xn) =
nY
i=1
1
p
2⇡ 2
exp
✓
1
2
(xi µ)2
2
◆
@L
@ 2
=
n
2
1
2
+
1
2( 2)2
nX
i=1
(xi µ)2
= 0
)
1
2( 2)2
nX
i=1
(xi µ)2
=
n
2 2
) 2⇤
=
1
n
nX
i=1
(xi µ)2
2⇤
D = (x1, · · · , xn)µ 2
µ
u ⇠ N(0, 1)
t =
u
p
v/m
v ⇠ 2
(m)
f(t) =
m+1
2
p
m⇡ m
2
✓
t2
m
+ 1
◆ m+1
2
u ⇠ N(0, 1) v ⇠ 2
(m) v > 01 < u < +1
f(u, v) =
1
p
2⇡
exp
✓
u2
2
◆
(1/2)n/2
(n/2)
vn/2 1
e v/2
t =
u
p
v/m
x = v
f(t) =
m+1
2
p
m⇡ m
2
✓
t2
m
+ 1
◆ m+1
2
(z) =
Z 1
0
tz 1
e t
dt
µ
D = (x1, · · · , xn) xi ⇠ N(µ, 2
)
¯x ⇠ N(µ, 2
/n)¯x
1
2
nX
i=1
(xi ¯x)2
⇠ 2
n 1
u =
¯x µ
/
p
n
⇠ N(0, 1) v =
1
2
nX
i=1
(xi ¯x)2
⇠ 2
n 1
t =
u
p
v/(n 1)
=
¯x µ
/
p
n
·
"
1
2
1
(n 1)
nX
i=1
(xi ¯x)2
# 1/2
=
¯x µ
1/
p
n
·
1
p
s2
=
¯x µ
s/
p
n
⇠ tn 1
s2
=
1
n 1
nX
i=1
(xi ¯x)2
s2
P
✓
tn 1;↵/2 5
¯x µ
s/
p
n
5 tn 1;↵/2
◆
= 1 ↵
tn 1;↵/2 tn 1;↵/2
↵/2 ↵/2
1 ↵
1 ↵
1 ↵
P
✓
¯x tn 1;↵/2
s
p
n
5 µ 5 ¯x + tn 1;↵/2
s
p
n
◆
= 1 ↵
[ tn 1;↵/2, tn 1;↵/2]
µ
1 ↵
P
✓
tn 1;↵/2 5
¯x µ
s/
p
n
5 tn 1;↵/2
◆
= 1 ↵
tn 1;↵/2 tn 1;↵/2
↵/2 ↵/2
1 ↵
1 ↵
1 ↵
P
✓
¯x tn 1;↵/2
s
p
n
5 µ 5 ¯x + tn 1;↵/2
s
p
n
◆
= 1 ↵
[ tn 1;↵/2, tn 1;↵/2]
µ
1 ↵
= 1 µ = 0
H0 : µ0 = 0
H1 : µ 6= µ0
¯x = /
p
n
/
p
10 ; /3.16
↵/2 ↵/2
H0 : µ0 = 0
H1 : µ = 1
H1 : µ = 0.5
H1 : µ = 3
µ0H1 : µ = 3
H0 : µ0 = 0
e↵ect size : =
µ µ0
…
…
…
…
…
…
…
…
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
r =
1
n
Pn
i=1(xi ¯x)(yi ¯y)
q
1
n
Pn
i=1(xi ¯x)2
q
1
n
Pn
i=1(yi ¯y)2
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
1
n
nX
i=1
(xi ¯x)(yi ¯y)
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」
数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

More Related Content

What's hot

研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
Takayuki Itoh
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
Takami Sato
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
Preferred Networks
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
Arithmer Inc.
 
Anaconda navigatorのアップデートが終わらないときの対処方法メモ
Anaconda navigatorのアップデートが終わらないときの対処方法メモAnaconda navigatorのアップデートが終わらないときの対処方法メモ
Anaconda navigatorのアップデートが終わらないときの対処方法メモ
ayohe
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
mlm_kansai
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
Kota Matsui
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
Yuta Kikuchi
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
Toshihiro Kamishima
 
DockerコンテナでGitを使う
DockerコンテナでGitを使うDockerコンテナでGitを使う
DockerコンテナでGitを使う
Kazuhiro Suga
 
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門
Hiroshi Shimizu
 
幾何と機械学習: A Short Intro
幾何と機械学習: A Short Intro幾何と機械学習: A Short Intro
幾何と機械学習: A Short Intro
Ichigaku Takigawa
 
Marp Tutorial
Marp TutorialMarp Tutorial
Marp Tutorial
Rui Watanabe
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
Sho Tatsuno
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
Yoichi Ochiai
 
深層強化学習と実装例
深層強化学習と実装例深層強化学習と実装例
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLiveDXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
Tokoroten Nakayama
 
Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化
Yusuke Fujimoto
 

What's hot (20)

研究分野をサーベイする
研究分野をサーベイする研究分野をサーベイする
研究分野をサーベイする
 
最適化超入門
最適化超入門最適化超入門
最適化超入門
 
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learningゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning
 
全力解説!Transformer
全力解説!Transformer全力解説!Transformer
全力解説!Transformer
 
Anaconda navigatorのアップデートが終わらないときの対処方法メモ
Anaconda navigatorのアップデートが終わらないときの対処方法メモAnaconda navigatorのアップデートが終わらないときの対処方法メモ
Anaconda navigatorのアップデートが終わらないときの対処方法メモ
 
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
最近のKaggleに学ぶテーブルデータの特徴量エンジニアリング
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情最近のDeep Learning (NLP) 界隈におけるAttention事情
最近のDeep Learning (NLP) 界隈におけるAttention事情
 
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしないPyMCがあれば,ベイズ推定でもう泣いたりなんかしない
PyMCがあれば,ベイズ推定でもう泣いたりなんかしない
 
DockerコンテナでGitを使う
DockerコンテナでGitを使うDockerコンテナでGitを使う
DockerコンテナでGitを使う
 
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門
 
幾何と機械学習: A Short Intro
幾何と機械学習: A Short Intro幾何と機械学習: A Short Intro
幾何と機械学習: A Short Intro
 
Marp Tutorial
Marp TutorialMarp Tutorial
Marp Tutorial
 
Rの高速化
Rの高速化Rの高速化
Rの高速化
 
猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder猫でも分かるVariational AutoEncoder
猫でも分かるVariational AutoEncoder
 
先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15先端技術とメディア表現1 #FTMA15
先端技術とメディア表現1 #FTMA15
 
深層強化学習と実装例
深層強化学習と実装例深層強化学習と実装例
深層強化学習と実装例
 
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLiveDXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
DXとかDevOpsとかのなんかいい感じのやつ 富士通TechLive
 
Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化Tensor コアを使った PyTorch の高速化
Tensor コアを使った PyTorch の高速化
 

Viewers also liked

圏とHaskellの型
圏とHaskellの型圏とHaskellの型
圏とHaskellの型
KinebuchiTomo
 
楕円曲線入門 トーラスと楕円曲線のつながり
楕円曲線入門トーラスと楕円曲線のつながり楕円曲線入門トーラスと楕円曲線のつながり
楕円曲線入門 トーラスと楕円曲線のつながり
MITSUNARI Shigeo
 
数学つまみぐい入門編
数学つまみぐい入門編数学つまみぐい入門編
数学つまみぐい入門編
Akira Yamaguchi
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2
Kenta Oono
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1
Kenta Oono
 
CuPy解説
CuPy解説CuPy解説
CuPy解説
Ryosuke Okuta
 

Viewers also liked (6)

圏とHaskellの型
圏とHaskellの型圏とHaskellの型
圏とHaskellの型
 
楕円曲線入門 トーラスと楕円曲線のつながり
楕円曲線入門トーラスと楕円曲線のつながり楕円曲線入門トーラスと楕円曲線のつながり
楕円曲線入門 トーラスと楕円曲線のつながり
 
数学つまみぐい入門編
数学つまみぐい入門編数学つまみぐい入門編
数学つまみぐい入門編
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1
 
CuPy解説
CuPy解説CuPy解説
CuPy解説
 

Similar to 数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
Ken'ichi Matsui
 
Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.
Dr. Volkan OBAN
 
Cg my own programs
Cg my own programsCg my own programs
Cg my own programsAmit Kapoor
 
Computer Graphics Lab File C Programs
Computer Graphics Lab File C ProgramsComputer Graphics Lab File C Programs
Computer Graphics Lab File C Programs
Kandarp Tiwari
 
cps170_bayes_nets.ppt
cps170_bayes_nets.pptcps170_bayes_nets.ppt
cps170_bayes_nets.ppt
FaizAbaas
 
Advanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part IIAdvanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part II
Dr. Volkan OBAN
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
Trieu Nguyen
 
Genomic Graphics
Genomic GraphicsGenomic Graphics
Genomic Graphics
Dr. Volkan OBAN
 
The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212
Mahmoud Samir Fayed
 
Computer graphics lab manual
Computer graphics lab manualComputer graphics lab manual
Computer graphics lab manual
Uma mohan
 
Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語
ikdysfm
 
Javasccript MV* frameworks
Javasccript MV* frameworksJavasccript MV* frameworks
Javasccript MV* frameworks
Kerry Buckley
 
Plot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,onPlot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,on
Dr. Volkan OBAN
 
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Dr. Volkan OBAN
 
Scrollytelling
ScrollytellingScrollytelling
Scrollytelling
Baron Watts
 
Introduction to R
Introduction to RIntroduction to R
Introduction to R
Sander Kieft
 
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Matrunich Consulting
 
MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709
Min-hyung Kim
 
ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-
ssusere0a682
 

Similar to 数学カフェ 確率・統計・機械学習回 「速習 確率・統計」 (20)

第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
 
Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.Advanced Data Visualization in R- Somes Examples.
Advanced Data Visualization in R- Somes Examples.
 
Cg my own programs
Cg my own programsCg my own programs
Cg my own programs
 
Computer Graphics Lab File C Programs
Computer Graphics Lab File C ProgramsComputer Graphics Lab File C Programs
Computer Graphics Lab File C Programs
 
cps170_bayes_nets.ppt
cps170_bayes_nets.pptcps170_bayes_nets.ppt
cps170_bayes_nets.ppt
 
Advanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part IIAdvanced Data Visualization Examples with R-Part II
Advanced Data Visualization Examples with R-Part II
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
 
Joclad 2010 d
Joclad 2010 dJoclad 2010 d
Joclad 2010 d
 
Genomic Graphics
Genomic GraphicsGenomic Graphics
Genomic Graphics
 
The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212The Ring programming language version 1.10 book - Part 81 of 212
The Ring programming language version 1.10 book - Part 81 of 212
 
Computer graphics lab manual
Computer graphics lab manualComputer graphics lab manual
Computer graphics lab manual
 
Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語Haskellで学ぶ関数型言語
Haskellで学ぶ関数型言語
 
Javasccript MV* frameworks
Javasccript MV* frameworksJavasccript MV* frameworks
Javasccript MV* frameworks
 
Plot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,onPlot3D Package and Example in R.-Data visualizat,on
Plot3D Package and Example in R.-Data visualizat,on
 
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
Plot3D package in R-package-for-3d-and-4d-graph-Data visualization.
 
Scrollytelling
ScrollytellingScrollytelling
Scrollytelling
 
Introduction to R
Introduction to RIntroduction to R
Introduction to R
 
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
Создание картограмм на принципах грамматики графики. С помощью R-расширения g...
 
MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709MH prediction modeling and validation in r (2) classification 190709
MH prediction modeling and validation in r (2) classification 190709
 
ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-ゲーム理論BASIC 第40回 -仁-
ゲーム理論BASIC 第40回 -仁-
 

More from Ken'ichi Matsui

ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫る
Ken'ichi Matsui
 
音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる
Ken'ichi Matsui
 
データサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテストデータサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテスト
Ken'ichi Matsui
 
分析コンペティションの光と影
分析コンペティションの光と影分析コンペティションの光と影
分析コンペティションの光と影
Ken'ichi Matsui
 
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Ken'ichi Matsui
 
BERT入門
BERT入門BERT入門
BERT入門
Ken'ichi Matsui
 
データ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかたデータ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかた
Ken'ichi Matsui
 
確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる
Ken'ichi Matsui
 
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
Ken'ichi Matsui
 
Introduction of VAE
Introduction of VAEIntroduction of VAE
Introduction of VAE
Ken'ichi Matsui
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
Ken'ichi Matsui
 
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
Ken'ichi Matsui
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半
Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
Ken'ichi Matsui
 
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
Ken'ichi Matsui
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学
Ken'ichi Matsui
 
Random Forest による分類
Random Forest による分類Random Forest による分類
Random Forest による分類
Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
Ken'ichi Matsui
 
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
Ken'ichi Matsui
 
基礎からのベイズ統計学 輪読会資料 第1章 確率に関するベイズの定理
基礎からのベイズ統計学 輪読会資料 第1章 確率に関するベイズの定理基礎からのベイズ統計学 輪読会資料 第1章 確率に関するベイズの定理
基礎からのベイズ統計学 輪読会資料 第1章 確率に関するベイズの定理
Ken'ichi Matsui
 

More from Ken'ichi Matsui (20)

ベータ分布の謎に迫る
ベータ分布の謎に迫るベータ分布の謎に迫る
ベータ分布の謎に迫る
 
音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる音楽波形データからコードを推定してみる
音楽波形データからコードを推定してみる
 
データサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテストデータサイエンティストの仕事とデータ分析コンテスト
データサイエンティストの仕事とデータ分析コンテスト
 
分析コンペティションの光と影
分析コンペティションの光と影分析コンペティションの光と影
分析コンペティションの光と影
 
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solutionKaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
Kaggle Google Quest Q&A Labeling 反省会 LT資料 47th place solution
 
BERT入門
BERT入門BERT入門
BERT入門
 
データ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかたデータ分析コンテストとデータサイエンティストの働きかた
データ分析コンテストとデータサイエンティストの働きかた
 
確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる確率分布の成り立ちを理解してスポーツにあてはめてみる
確率分布の成り立ちを理解してスポーツにあてはめてみる
 
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点SIGNATE産業技術総合研究所 衛星画像分析コンテスト2位入賞モデルの工夫点
SIGNATE 産業技術総合研究所 衛星画像分析コンテスト 2位入賞モデルの工夫点
 
Introduction of VAE
Introduction of VAEIntroduction of VAE
Introduction of VAE
 
Variational Autoencoderの紹介
Variational Autoencoderの紹介Variational Autoencoderの紹介
Variational Autoencoderの紹介
 
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」DS LT祭り 「AUCが0.01改善したって どういうことですか?」
DS LT祭り 「AUCが0.01改善したって どういうことですか?」
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半
 
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」基礎からのベイズ統計学 輪読会資料  第8章 「比率・相関・信頼性」
基礎からのベイズ統計学 輪読会資料 第8章 「比率・相関・信頼性」
 
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
「ベータ分布の謎に迫る」第6回 プログラマのための数学勉強会 LT資料
 
15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学15分でわかる(範囲の)ベイズ統計学
15分でわかる(範囲の)ベイズ統計学
 
Random Forest による分類
Random Forest による分類Random Forest による分類
Random Forest による分類
 
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
 
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料「全ての確率はコイン投げに通ず」 Japan.R 発表資料
「全ての確率はコイン投げに通ず」 Japan.R 発表資料
 
基礎からのベイズ統計学 輪読会資料 第1章 確率に関するベイズの定理
基礎からのベイズ統計学 輪読会資料 第1章 確率に関するベイズの定理基礎からのベイズ統計学 輪読会資料 第1章 確率に関するベイズの定理
基礎からのベイズ統計学 輪読会資料 第1章 確率に関するベイズの定理
 

Recently uploaded

tapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive datatapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive data
theahmadsaood
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
benishzehra469
 
一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单
ewymefz
 
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
nscud
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
yhkoc
 
Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)
TravisMalana
 
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
nscud
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
ArpitMalhotra16
 
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
AbhimanyuSinha9
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
ewymefz
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
ewymefz
 
FP Growth Algorithm and its Applications
FP Growth Algorithm and its ApplicationsFP Growth Algorithm and its Applications
FP Growth Algorithm and its Applications
MaleehaSheikh2
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
ewymefz
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
ewymefz
 
Opendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptx
Opendatabay
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
enxupq
 
一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
enxupq
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
haila53
 
社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .
NABLAS株式会社
 

Recently uploaded (20)

tapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive datatapal brand analysis PPT slide for comptetive data
tapal brand analysis PPT slide for comptetive data
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
 
一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单一比一原版(BU毕业证)波士顿大学毕业证成绩单
一比一原版(BU毕业证)波士顿大学毕业证成绩单
 
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
 
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
一比一原版(CU毕业证)卡尔顿大学毕业证成绩单
 
Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)Malana- Gimlet Market Analysis (Portfolio 2)
Malana- Gimlet Market Analysis (Portfolio 2)
 
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
 
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
 
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
一比一原版(IIT毕业证)伊利诺伊理工大学毕业证成绩单
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
 
FP Growth Algorithm and its Applications
FP Growth Algorithm and its ApplicationsFP Growth Algorithm and its Applications
FP Growth Algorithm and its Applications
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
一比一原版(UofM毕业证)明尼苏达大学毕业证成绩单
 
Opendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptxOpendatabay - Open Data Marketplace.pptx
Opendatabay - Open Data Marketplace.pptx
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
 
一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
 
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdfCh03-Managing the Object-Oriented Information Systems Project a.pdf
Ch03-Managing the Object-Oriented Information Systems Project a.pdf
 
社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .社内勉強会資料_LLM Agents                              .
社内勉強会資料_LLM Agents                              .
 

数学カフェ 確率・統計・機械学習回 「速習 確率・統計」

  • 1.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 11. D = {x1, x2, · · · , xn} ¯x = 1 n nX i=1 xi 2 = 1 n nX i=1 (xi ¯x)2 = v u u t 1 n nX i=1 (xi ¯x)2
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 20.
  • 21.
  • 22.
  • 24. p
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 35. ! 2 ⌦ = {!1, !2, · · · , !m} ⌦ = { , } ! 2 { , } !(1) = !(2) = !(n) =
  • 36. ⌦ = {1, 2, 3, 4, 5, 6} !(1) = !(2) = !(n) = ⌦ = {!1, !2, · · · , !49870000} !(1) = !43890298 = 171cm !(2) = !29184638 = 168cm !(n) = !51398579 = 174cm
  • 37. !(1) = !(2) = !(n) =!(3) = !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 = {!1, !2, !3, · · · , !10} ! 2 ⌦ = {ID1, ID2, ID3, · · · , ID10}
  • 39. X = X(!) ⌦ ! ! X(!1) = 0 X(!2) = 0 X(!3) = 0 X(!4) = 0 X(!5) = 0 X(!6) = 0 X(!7) = 0 X(!8) = 0 X(!9) = 0 X(!10) = 100
  • 40. ! {! 2 ⌦ : X(!) 2 A} {X 2 A} X(!) X
  • 41. {! 2 ⌦ : X(!) 2 A} !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 A X(!) = 100Ac X(!) = 0 !5 or !9
  • 42. PX (A) = P(X 2 A) = P({! 2 ⌦ : X(!) 2 A}) ⌦ !5, !9 !5, !9 PX (A) = #({! 2 ⌦ : X(!) 2 A}) #( ) = #(!5, !9) #( ) = 2 10 = 0.2
  • 43. PX(⌦) = 1 A1, A2, · · · PX ([iAi) = X i PX (Ai) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 0  PX(A)  1
  • 44.
  • 45. X = X(!) ⌦ A A !1 !2 !3 !4 !5 !6 !7 !8 !11 !10 !9 !12 !13 !14 !15 !16 B C D X(!) = 0 X(!) = 0 #A = #{! 2 ⌦ : X(!) = 0} = 7 #B = #{! 2 ⌦ : X(!) = 1} = 2 #C = #{! 2 ⌦ : X(!) = 2} = 4 #D = #{! 2 ⌦ : X(!) = 3} = 3
  • 46. ⌦ A A !1 !2 !3 !4 !5 !6 !7 !8 !11 !10 !9 !12 !13 !14 !15 !16 B C DX(!) = 0 P(X = 0) = PX(A) = #{! 2 ⌦ : X(!) = 0} #⌦ = 7 16 P(X = 1) = PX (B) = #{! 2 ⌦ : X(!) = 1} #⌦ = 2 16 P(X = 2) = PX(C) = #{! 2 ⌦ : X(!) = 2} #⌦ = 4 16 P(X = 3) = PX(D) = #{! 2 ⌦ : X(!) = 3} #⌦ = 3 16
  • 47. {x1, x2, · · · , xk} P(X = xi) = f(xi) F(x) = P(X  x)
  • 48. P(x < X  x + x) x + xx x x ! 0 f(x) = lim x!0 P(x < X  x + x) x
  • 49. x + xx f(x) F(x) = P(X  x) = Z x 1 f(u)du f(a < x < b) = Z b a f(x)dx
  • 51.
  • 52. P(X = x) = px (1 p)1 x (x = 0, 1)
  • 53. # # p = 0.7 trial_size = 10000 set.seed(71) # data <- rbern(trial_size, p) # dens <- data.frame(y=c((1-p),p)*trial_size, x=c(0, 1)) # ggplot() + layer(data=data.frame(x=data), mapping=aes(x=x), geom="bar", stat="bin", bandwidth=0.1 ) + layer(data=dens, mapping=aes(x=x, y=y), geom="bar", stat="identity", width=0.05, fill="#777799", alpha=0.7)
  • 54.
  • 55. (x = 0, 1, · · · , n)
  • 56.
  • 57. # p = 0.7 trial_size = 10000 sample_size = 30 set.seed(71) # gen_binom_var <- function() { return(sum(rbern(sample_size, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dbinom(seq(sample_size), sample_size, 0.7))*trial_size # ggplot() + layer(data=resuylt, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=1, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(sample_size)+.5, y=y), geom="line", stat="identity", position="identity",colour="red" ) + ggtitle("Bernoulli to Binomial.")
  • 58.
  • 59.
  • 60. P(X = x) = e x x!
  • 61.
  • 62. trial_size = 5000; width <- 1; # p = 0.7; n = 10; np <- p*n # n!∞ p!0 np= n = 100000; p <- np/n # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dpois(seq(20), np))*trial_size # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(20)+.5, y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Poisson.")
  • 63.
  • 64. f(x) = 1 p 2⇡ 2 exp ⇢ 1 2 (x µ)2 2 ( 1 < x < 1)
  • 65.
  • 66.
  • 67. # n <- 10000; p <- 0.7; trial_size = 10000 width=10 # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) # dens <- data.frame(y=dnorm(seq(6800,7200), mean=n*p, sd=sqrt(n*p*(1-p)))*trial_size*width) # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(6800,7200), y=y), geom="line", stat="identity", position="identity", colour="red") + ggtitle("Bernoulli to Normal.")
  • 68.
  • 69. ( 1 < x < 1) f(x) = 1 p 2⇡ exp ⇢ 1 2 x2
  • 70.
  • 71. # n <- 10000; p <- 0.7 trial_size = 30000 width=0.18 # gen_binom_var <- function() { return(sum(rbern(n, p))) } result <- rdply(trial_size, gen_binom_var()) m <- mean(result$V1); sd <- sd(result$V1); result <- (result - m)/sd # dens <- data.frame(y=dnorm(seq(-4,4,0.05), mean=0, sd=1)*trial_size*width) # ggplot() + layer(data=result, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(-4,4,0.05), y=y), geom="line", stat="identity", position=“identity", colour="red" ) + ggtitle("Bernoulli to Standard Normal.")
  • 72.
  • 73. f(x, k) = (1/2)k/2 (k/2) xk/2 1 e x/2 (0  x) Xi Z = X2 1 + · · · + X2 k
  • 74.
  • 75. # p <- 0.7; n <- 1000; trial_size <- 100000; width <- 0.3; df <- 3 # (3 ) gen_binom_var <- function() { return(sum(rbern(n, p))) } gen_chisq_var <- function() { result <- rdply(trial_size, gen_binom_var()) return(((result$V1 - mean(result$V1))/sd(result$V1))**2) } # df result <- rlply(df, gen_chisq_var(),.progress = "text") res <- data.frame(x=result[[1]] + result[[2]] + result[[3]]) # ( =3) xx <- seq(0,20,0.1) dens <- data.frame(y=dchisq(x=xx, df=df)*trial_size*width) # ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=xx, y=y), geom="line", stat="identity", position="identity", colour="blue" ) + ggtitle("Bernoulli to Chisquare")
  • 76.
  • 77.
  • 78. f(x, ) = ⇢ e x (x 0) 0 (x < 0)
  • 79.
  • 80. trial_size = 7000; width <- .01; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n # gen_exp_var <- function() { cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) # 1 } } } data <- data.frame(x=rdply(trial_size, gen_exp_var())/n) names(data) <- c("n", "x") # dens <- data.frame(y=dexp(seq(0, 1.5, 0.1), np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0, 1.5, 0.1), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Exponential.")
  • 81.
  • 82. f(x, ↵, ) = ↵ (↵) x↵ 1 exp( x) (0  x < 1) ↵X i=1 Xi ⇠ (↵, )Xi ⇠ Exp( )
  • 83.
  • 84. trial_size = 7000; width <- .035; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n; alpha <- 5 # get_interval <- function(){ cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) } } } gen_exp_var <- function() { data <- data.frame(x=rdply(trial_size, get_interval())/n) names(data) <- c("n", "x") return(data) } result <- rlply(alpha, gen_exp_var()) data <- data.frame(x=result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x + result[[5]]$x) # dens <- data.frame(y=dgamma(seq(0, 3,.01), shape=alpha, rate=np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Gamma")
  • 85.
  • 86. f(x, ↵, ) = ↵ (↵) x (↵+1) exp ✓ x ◆ (0  x < 1) Xi ⇠ Exp( ) Z = ↵X i=1 Xi ⇠ (↵, ) 1/Z ⇠ IG(↵, )
  • 87.
  • 88. trial_size = 7000; width <- .; # p = 0.7; n = 10; np <- p*n; # n!∞ p!0 np= n = 10000; p <- np/n; alpha <- 5 # get_interval <- function(){ cnt <- 0 while (TRUE) { cnt <- cnt + 1 if (rbern(1, p)==1){ return(cnt) } } } gen_exp_var <- function() { data <- data.frame(x=rdply(trial_size, get_interval())/n) names(data) <- c("n", "x") return(data) } result <- rlply(alpha, gen_exp_var()) data <- data.frame(x=1/(result[[1]]$x + result[[2]]$x + result[[3]]$x + result[[4]]$x + result[[5]]$x)) # dens <- data.frame(y=dinvgamma(seq(0, 23,.01), shape=5, rate=1/np)*trial_size*width) ggplot() + layer(data=data, mapping=aes(x=x), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=seq(0,3,.01), y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Inversegamma")
  • 89.
  • 90. f(x) = ⇢ 1 (0  x  1) 0 (otherwise)
  • 91. Z = x1(1/2)1 + x2(1/2)2 + · · · + xq(1/2)q
  • 92. width <- 0.02 p <- 0.5; sample_size <- 1000 trial_size <- 100000 gen_unif_rand <- function() { # sample_size 2 # return (sum(rbern(sample_size, p) * (rep(1/2, sample_size) ** seq(sample_size)))) } gen_rand <- function(){ return( rdply(trial_size, gen_unif_rand()) ) } system.time(res <- gen_rand()) ggplot() + layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + ggtitle("Bernoulli to Standard Uniform")
  • 93.
  • 94. f(x, a, b) = ⇢ (b a) 1 (a  x  b) 0 (otherwise)
  • 95.
  • 96. a <- 5 b <- 8; width <- 0.05 p <- 0.5 sample_size <- 1000 trial_size <- 500000 gen_unif_rand <- function() { # sample_size 2 # return (sum(rbern(sample_size, p) * (rep(1/2, sample_size) ** seq(sample_size)))) } gen_rand <- function(){ return( rdply(trial_size, gen_unif_rand()) ) } system.time(res <- gen_rand()) res$V1 <- res$V1 * (b-a) + a ggplot() + layer(data=res, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + ggtitle("Bernoulli to Uniform") + xlim(4,9)
  • 97.
  • 98. f(x, ↵, ) = 1 B(↵, ) x↵ 1 (1 x) 1 (0 < x < 1) Xi ⇠ U(0, 1)iid (i = 1, 2, · · · , ↵ + 1)
  • 99.
  • 100. width <- 0.03; p <- 0.5 digits_length <- 30; set_size <- 3 trial_size <- 30000 gen_unif_rand <- function() { # digits_length 2 # return (sum(rbern(digits_length, p) * (rep(1/2, digits_length) ** seq(digits_length)))) } gen_rand <- function(){ return( rdply(set_size, gen_unif_rand())$V1 ) } unif_dataset <- rlply(trial_size, gen_rand, .progress='text') p <- ceiling(set_size * 0.5); q <- set_size - p + 1 get_nth_data <- function(a){ return(a[order(a)][p]) } disp_data <- data.frame(lapply(unif_dataset, get_nth_data)) names(disp_data) <- seq(length(disp_data)); disp_data <- data.frame(t(disp_data)) names(disp_data) <- "V1" x_range <- seq(0, 1, 0.001) dens <- data.frame(y=dbeta(x_range, p, q)*trial_size*width) ggplot() + layer(data=disp_data, mapping=aes(x=V1), geom="bar", stat = "bin", binwidth=width, fill="#6666ee", color="gray" ) + layer(data=dens, mapping=aes(x=x_range, y=y), geom="line", stat="identity", position="identity", colour="red" ) + ggtitle("Bernoulli to Beta")
  • 101.
  • 102. E[X] = X( )P( ) + X( )P( ) = 0 ⇥ 0.8 + 1, 000, 000 ⇥ 0.2 = 200, 000 E[X] = X x xp(x) µ
  • 103. ✓ n x ◆ = n! (n x)!x! E[X] = nX x=0 xP(x) = nX x=0 x ✓ n x ◆ px (1 p)n x = nX x=0 x n! (n x)!x! px (1 p)n x = nX x=0 n (n 1)! (n x)!(x 1)! px (1 p)n x = np nX x=0 ✓ n 1 m 1 ◆ p(x 1) (1 p)(n 1) (x 1) = np = np nX x=1 ✓ n 1 m 1 ◆ p(x 1) (1 p)(n 1) (x 1) = np
  • 104. Var[X] = E[(X E[X])2 ] = X x (x E[x])2 P(x) = 2 µ
  • 105. Var[x] = E[(X E[X])2 ] = Z 1 1 (x E[x])2 f(x)dx = 2 E[X] = Z 1 1 xf(x)dx = µ
  • 106. E[g(X)] = Z 1 1 g(x)f(x)dx g(X) = (X E[X])2 E[ · ] = Z 1 1 · f(x)dx
  • 107. g(x) = xk E[g(X)] = E[Xk ] = Z 1 1 xk f(x)dx µ0 k
  • 108. g(x) = (x E[x])k E[g(X)] = E[(X E[X]])k ] = Z 1 1 (x E[x])k f(x)dx µk
  • 109. E[cX] = cE[X] * E[cX] = Z 1 1 cxf(x)dx = c Z 1 1 xf(x)dx = cE[X]
  • 110. Var[cX] = c2 Var[X] * Var[cX] = Z 1 1 (cx E[cx])2 f(x)dx = Z 1 1 (cx cµ)2 f(x)dx = Z 1 1 c2 (x µ)2 f(x)dx = c2 Z 1 1 (x µ)2 f(x)dx = c2 Var[X]
  • 111.
  • 112. P(x < X 5 x + x, y < Y 5 y + y) x, y ! 0 f(x, y) = lim x, y!0 P(x < X 5 x + x, y < Y 5 y + y) f(x, y)
  • 113. g(x) = Z 1 1 f(x, y)dy h(y) = Z 1 1 f(x, y)dx g(x) h(y)
  • 114. EX,Y [ g(X, Y )] = Z 1 1 Z 1 1 g(x, y)f(x, y)dxdy g(x, y) = x0.8 y0.8 (x, y) ⇠ N((4, 4), S) S =  1 0.5 0.4 1 EX,Y [ g(X, Y )] = 8.02
  • 115. g(X, Y ) = (X µX)(Y µY ) Cov[X, Y ] = E[(X µX)(Y µY )]
  • 116. g(X, Y ) = (X µX)(Y µY ) µX µX µX µX µY µY µY µY S1 = S2 = S3 = S4 =  1 0.8 0.8 1  1 0.8 0.8 1  1 0 0 1  1 0.999 0.999 1 Cov[X, Y ] = E[(X µX)(Y µY )] (x, y) ⇠ N((4, 4), S)
  • 117. f(x, y) f(x, y) = g(x)h(y)
  • 118. f(x, y) = g(x)h(y) = 0
  • 119. (x1, x2, · · · , xn) x1 f(x1) = Z · · · Z f(x1, · · · , xn)dx2 · · · dxn x1 f(x1, · · · , xn) = f(x1) · · · f(xn) x1 · · · xn
  • 120. x1 · · · xn g1(x1), · · · , gn(xn) x1 · · · xn E[ nY i=1 gi(xi)] = nY i=1 E[gi(xi)] E[g1(x1)] E[gn(xn)] E[ nY i=1 gi(xi)] = Z 1 1 · · · Z 1 1 g1(x1) · · · gn(xn)f(x1, · · · , xn)dx1 · · · dxn = Z 1 1 g1(x1)f(x1)dx1 · · · Z 1 1 gn(xn)f(xn)dxn = nY i=1 E[gi(xi)] f(x1) · · · f(xn)
  • 121. x1 · · · xn xi µi 2 i i = 1, 2, · · · , n c = (c1, · · · , cn) c1x1 + · · · + cnxn c1µ1 + · · · + cnµn c2 1 2 1 + · · · + c2 n 2 n
  • 122. E[c1x1 + · · · + cnxn] = Z 1 1 · · · Z 1 1 (c1x1 + · · · + cnxn)f(x1 · · · , xn)dx1 · · · dxn = c1 Z 1 1 · · · Z 1 1 x1f(x1 · · · , xn)dx1 · · · dxn · · · cn Z 1 1 · · · Z 1 1 xnf(x1 · · · , xn)dx1 · · · dxn =c1 Z 1 1 x1dx1 · · · cn Z 1 1 xndxn =c1µ1 + · · · + cnµn f(x1) · · · f(xn) f(x1) · · · f(xn) µ1 µn =c1 Z 1 1 x1dx1 · · · cn Z 1 1 xndxn =c1µ1 + · · · + cnµn
  • 123. Var[c1x1 + · · · + cnxn] = E[{(c1x1 + · · · + cnxn) E[c1x1 + · · · + cnxn]}2 ] = E[{c1(x1 µ1) + · · · + c1(x1 µ1)}2 ] = E[ nX i=1 c2 i (xi µi)2 + X i6=j cicj(xi µj)(xi µj)] = nX i=1 c2 i E[(xi µi)2 ] + X i6=j cicjE[(xi µj)(xi µj)] = c2 1 2 1 + · · · + c2 n 2 n c1µ1 + · · · + cnµn = E[xi µi]E[xj µj] = 0= 2 i
  • 124.
  • 125. x1 · · · xn x1 · · · xn xi µ 2 (µ, 2 )
  • 126. x1 · · · xn T = x1 + · · · + xn E[T] = E[x1 + · · · + xn] = E[x1] + · · · + E[xn] = nµ Var[T] = Var[x1 + · · · + xn] = Var[x1] + · · · + Var[xn] = n 2 2 1 = · · · = 2 n c1 = · · · = cn = 1 Var[c1x1 + · · · + cnxn] = c2 1 2 1 + · · · + c2 n 2 n
  • 127. ¯x = 1 n nX i=1 xi = 1 n T E[¯x] = 1 n E[T] = n · 1 n µ = µ Var[¯x] = Var[ 1 n T] = 1 n2 Var[T] = 2 n µ 2
  • 130.
  • 131. µ 2 P(|x µ| > ) 5 1 2 µ 2 1/ 2 = 1 ) P(|x µ| > ) 5 1 = 2 ) P(|x µ| > ) 5 1/4 = 3 ) P(|x µ| > ) 5 1/9
  • 132. 2 = Z 1 1 (x µ)2 f(x)dx = Z I1 (x µ)2 f(x)dx + Z I2 (x µ)2 f(x)dx + Z I3 (x µ)2 f(x)dx 2 = Z I1 (x µ)2 f(x)dx + Z I3 (x µ)2 f(x)dx = Z I1 2 2 f(x)dx + Z I3 2 2 f(x)dx = 2 2 [P(x 2 I1) + P(x 2 I3)] I1 = ( 1, µ ), I2 = [µ , µ + ], I3 = (µ + , 1) = P(|x µ| > ) P(|x µ| > ) 5 1 2 )
  • 133. x1 · · · xn µ 2 " > 0 lim n!1 P{|¯xn µ| = "} = 0 ¯xn = 1 n nX i=1 xi ¯xn µ ¯xn ! µ in P
  • 134. " > 0 P(|¯xn µ| > ") = P(|¯xn µ| > " p n p n ) 5 2 "2n = 2 ¯x= = 1 2
  • 135.
  • 136.
  • 137. f(x) = 1 p 2⇡ 2 exp ✓ (x µ)2 2 2 ◆ f(x) = 1 p 2⇡ exp ✓ x2 2 ◆ 1 < x < 1 1 < x < 1
  • 139. f(x) = x2 f(y) = y2
  • 140. f(y) = exp( y2 )
  • 141. z = p 2y f(z) = exp ✓ 1 2 z2 ◆
  • 142. Z 1 1 e y2 dy = p ⇡ Z 1 1 exp ✓ z2 2 ◆ dz = p 2⇡ Z 1 1 1 p 2⇡ exp ✓ z2 2 ◆ dz = 1 dz = p 2dy
  • 144. z = x µ dz dx = 1 f(x) = Z 1 1 1 p 2⇡ 2 exp ✓ (x µ)2 2 2 ◆ dx 1/
  • 145.
  • 146. D = (x1, · · · , xn) µ 2 ¯x µ / p n , n ! 1 N(0, 1) = 0.1, µ = 1 = 10, 2 = 1 2 = 100 ¯x = p n = r 1 2n = r 1 0.01 ⇥ 10000 = r 1 100 = 1 10
  • 147. g(x) = ext E[ext ] = Z 1 1 ext f(x)dx Mx(t) = E[ext ] Mx(t) My(t) x t = 0 y
  • 148. g(x) = ext ext = 1 + xt + t2 2! x2 + · · · + tk k! xk + · · · Mx(t) = E[ext ] = E[1 + xt + t2 2! x2 + · · · + tk k! xk + · · · ] = 1 + tE[x] + t2 2! E[x2 ] + · · · + tk k! E[xk ] + · · · = 1 + xµ0 1 + t2 2! µ0 2 + · · · + tk k! µ0 k + · · ·
  • 149. Mx(t) d dtk Mx(t) = E[xk ext ] t = 0 d dtk Mx(0) = E[xk ] = µ0 k
  • 150. x ⇠ N(µ, ) Mx(t) = E[ext ] = Z 1 1 ext 1 p 2⇡ 2 exp ✓ 1 2 (x µ)2 2 ◆ dx z = x µ x = µ + z dx = dz
  • 151. Mx(t) = Z 1 1 e(µ+ z)t 1 p 2⇡ 2 exp ✓ 1 2 z2 ◆ dz = eµt Z 1 1 1 p 2⇡ exp ✓ tz 1 2 z2 ◆ dz = eµt Z 1 1 1 p 2⇡ exp ✓ 1 2 [z2 2 tz 2 t2 + 2 t2 ] ◆ dz = eµt Z 1 1 1 p 2⇡ e 2t2 2 exp ✓ 1 2 (z t)2 ◆ dz = eµt e 2t2 2 Z 1 1 1 p 2⇡ exp ✓ 1 2 (z t)2 ◆ dz z t = w dz = dw Mx(t) = eµt e 2t2 2 Z 1 1 1 p 2⇡ exp ✓ w2 2 ◆ dw = eµt+ 2t2 2
  • 152. (f · g)0 = f0 · g + f · g0 (f g)0 (x) = f0 (g(x))g0 (x) M0 x(t) = (µ + 2 t)eµt+ 2t2 2 M00 x (t) = (µ + 2 t)2 ⇣ eµt+ 2t2 2 ⌘ + 2 ⇣ eµt+ 2t2 2 ⌘ = ⇣ eµt+ 2t2 2 ⌘ {(µ + 2 t)2 + 2 }
  • 153. Var[x] = E[x2 ] (E[x])2 = (µ2 + 2 ) (µ)2 = 2 Var[x] = E[(x E[x])2 ] = E[x2 2E[x]x + E[x]2 ) = E[x2 ] 2E[x]2 + E[x]2 = E[x2 ] E[x]2 t = 0 E[x] = M0 x(0) = (µ + 2 · 0)eµ·0+ 2·02 2 = µ E[x2 ] = M00 x (0) = ⇣ eµ·0+ 2·02 2 ⌘ {(µ + 2 · 0)2 + 2 } = µ2 + 2
  • 154. D = (x1, · · · , xn) µ 2 ¯x µ / p n , n ! 1 N(0, 1) T = x1 + · · · + xn T nµ p n 2T0 = T nµ p n = ¯x µ 1/ p n
  • 155. Mx(t) My(t) x t = 0 y T T0 = T nµ p n N(0, 2 )
  • 156. Mxi (t) = 1 + µ0 1t + µ0 2 t2 2! + µ0 3 t3 3! + · · · Mxi µ(t) = 1 + µ1t + µ2 t2 2! + µ3 t3 3! + · · · = 1 + 0 + 2 t2 2! + µ3 t3 3! + · · ·
  • 157. xi µ p n xi µ p n Mxi µ p n (t) = E[e xi µ p n t ] = 1 + 2 t2 2!n + µ3 t3 3!n3/2 + · · · + µk tk k!nk/2 + · · · = 1 + 2 t2 2n + n 2n = 1 2n n n ! 0 n ! 0 = 1 + 2 t2 + n 2n
  • 158. T0 = x1 µ p n + x2 nµ p n + · · · + xn µ p n = nX i=1 xi µ p n MT 0 (t) = MPn i=1 ⇣ xi µ p n ⌘(t) = E[e Pn i=1 ⇣ xi µ p n ⌘ t ] = nY i=0 E[e ⇣ xi µ p n ⌘ t ] = ✓ 1 + 1 n 2 t2 + n 2 ◆n er ⌘ lim n!1 ⇣ 1 + r n ⌘n r r = lim n!1 ⇣ 1 + r n ⌘n
  • 159. n ! 1 lim n!1 MT 0 = lim n!1 ✓ 1 + 1 n 2 t2 + n 2 ◆n = e 2t2 2 lim n!1 n = 0 N(0, 2 ) T0 = T nµ p n 2
  • 160. n = 100000 sample_size = 1000 rvs_list = [] m_list = [] for i in range(n): unif_rvs = st.uniform.rvs(4.5, size=sample_size) # 5 beta_rvs = st.beta.rvs(a=3, b=3, size=sample_size) # 0.5 β gamma_rvs = st.gamma.rvs(a=3, size=sample_size) # 3 chi2_rvs = st.chi2.rvs(df=5, size=sample_size) # exp_rvs = st.expon.rvs(loc=0, size=sample_size) # 1 rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten() m_list.append(np.mean(rvs)) rvs_list.append(rvs)
  • 161. # n = 10000 sample_size = 1000 rvs_list = [] m_list = [] m_unif = st.uniform.rvs(4, 2, size=sample_size) m_beta_a = st.uniform.rvs(4, 2, size=sample_size) m_beta_b = st.uniform.rvs(4, 2, size=sample_size) m_gamma = rd.randint(2,5,size=sample_size) m_chi2_df = rd.randint(3,6,size=sample_size) m_exp = st.uniform.rvs(4, 2, size=sample_size) def gen_random_state(): return int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000) def create_rvs(n): #rd.seed = int(dt.now().timestamp() * 10**6) - 1492914610000000 + rd.randint(0, 1000000) print("[START]") for _ in range(n): unif_rvs = [st.uniform.rvs(m, size=1, random_state=gen_random_state()) for m in m_unif] # 5 beta_rvs = [st.beta.rvs(a=a, b=b, size=1, random_state=gen_random_state()) for a, b in zip(m_beta_a, m_beta_b)]# 0.5 β gamma_rvs = [st.gamma.rvs(a=a, size=1, random_state=gen_random_state()) for a in m_gamma] # 3 chi2_rvs = [st.chi2.rvs(df=d, size=1, random_state=gen_random_state()) for d in m_chi2_df] # exp_rvs = [st.expon.rvs(loc=l, size=1, random_state=gen_random_state()) for l in m_exp] # 1 rvs = np.array([unif_rvs, beta_rvs, gamma_rvs, chi2_rvs, exp_rvs]).flatten() l_mean.append(np.mean(rvs)) l_rvs.append(rvs) print("[END]")
  • 162. n_jobs = 20 n_each = int(n/n_jobs) jobs = [Process(target=create_rvs, args=(n_each,)) for _ in range(n_jobs)] manager = Manager() l_rvs = manager.list(range(len(jobs))) l_mean = manager.list(range(len(jobs))) start_time = time.time() for j in jobs: j.start() time.sleep(0.2) for j in jobs: j.join() finish_time = time.time() print(finish_time - start_time) m_list = l_mean[n_jobs:] rvs_list = np.array(l_rvs[n_jobs:]) print(rvs_list.shape)
  • 163.
  • 164. D = (x1, · · · , xn)
  • 165. ✓0 = ˆ✓(X1, · · · , Xn) ˆ✓lower(X1, · · · , Xn) 5 ✓0 5 ˆ✓upper(X1, · · · , Xn)
  • 168. E[(ˆ✓(X) ✓)2 ] = E[{(E[ˆ✓(X)] ✓) + (ˆ✓(X) E[ˆ✓(X)])}2 ] = E[(E[ˆ✓(X)] ✓)2 + 2(E[ˆ✓(X)] ✓)(ˆ✓(X) E[ˆ✓(X)]) + (ˆ✓(X) E[ˆ✓(X)])2 ] = (E[ˆ✓(X)] ✓)2 + Var[ˆ✓(X)] E[ˆ✓(X)] ✓ E[(ˆ✓(X) ✓)2 ] = Var[ˆ✓(X)]
  • 169. E[¯x] = 1 n E[T] = n · 1 n µ = µ ¯x s2 = 1 n 1 nX i=1 (xi ¯x)2
  • 170.
  • 171. lim n!1 P{|¯xn µ| = "} = 0 ¯xn ! µ in P ˆ✓n(X) n ! 1 ˆ✓n(X) ! ✓ in P ˆ✓n(X) ¯xn µ
  • 173.
  • 174.
  • 175. D = (x1, · · · , xn) xi f(xi) nY i=1 f(xi) nY i=1 f(xi|✓) xi `(✓|x1, x2, · · · , xn) = nY i=1 f(xi|✓)
  • 176. x1, x2, · · · , x10 f(x1, x2, · · · , x10|µ, 2 ) = 10Y i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 177. `(µ, 2 |x1, x2, · · · , x10) = 10Y i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 178.
  • 179. ✓⇤ = arg max ✓ `(✓|x1, x2, · · · , xn) log `(✓|x1, · · · , xn) ⌘ L(✓|x1, · · · , xn) `
  • 180.
  • 181. µ, 2 L(µ, 2 |x1, x2, · · · , x10) = n 2 (2⇡) n 2 log 2 1 2 2 nX i=1 (xi µ)2 @L @µ = 1 2 2 nX i=1 (xi µ)2 ) nX i=1 xi = nµ ) µ⇤ = 1 n nX i=1 xi `(µ, 2 |x1, x2, · · · , xn) = nY i=1 1 p 2⇡ 2 exp ✓ 1 2 (xi µ)2 2 ◆
  • 182. @L @ 2 = n 2 1 2 + 1 2( 2)2 nX i=1 (xi µ)2 = 0 ) 1 2( 2)2 nX i=1 (xi µ)2 = n 2 2 ) 2⇤ = 1 n nX i=1 (xi µ)2 2⇤
  • 183.
  • 184. D = (x1, · · · , xn)µ 2 µ
  • 185. u ⇠ N(0, 1) t = u p v/m v ⇠ 2 (m) f(t) = m+1 2 p m⇡ m 2 ✓ t2 m + 1 ◆ m+1 2
  • 186. u ⇠ N(0, 1) v ⇠ 2 (m) v > 01 < u < +1 f(u, v) = 1 p 2⇡ exp ✓ u2 2 ◆ (1/2)n/2 (n/2) vn/2 1 e v/2 t = u p v/m x = v f(t) = m+1 2 p m⇡ m 2 ✓ t2 m + 1 ◆ m+1 2 (z) = Z 1 0 tz 1 e t dt
  • 187. µ D = (x1, · · · , xn) xi ⇠ N(µ, 2 ) ¯x ⇠ N(µ, 2 /n)¯x 1 2 nX i=1 (xi ¯x)2 ⇠ 2 n 1
  • 188. u = ¯x µ / p n ⇠ N(0, 1) v = 1 2 nX i=1 (xi ¯x)2 ⇠ 2 n 1 t = u p v/(n 1) = ¯x µ / p n · " 1 2 1 (n 1) nX i=1 (xi ¯x)2 # 1/2 = ¯x µ 1/ p n · 1 p s2 = ¯x µ s/ p n ⇠ tn 1 s2 = 1 n 1 nX i=1 (xi ¯x)2 s2
  • 189. P ✓ tn 1;↵/2 5 ¯x µ s/ p n 5 tn 1;↵/2 ◆ = 1 ↵ tn 1;↵/2 tn 1;↵/2 ↵/2 ↵/2 1 ↵ 1 ↵ 1 ↵ P ✓ ¯x tn 1;↵/2 s p n 5 µ 5 ¯x + tn 1;↵/2 s p n ◆ = 1 ↵ [ tn 1;↵/2, tn 1;↵/2] µ 1 ↵
  • 190. P ✓ tn 1;↵/2 5 ¯x µ s/ p n 5 tn 1;↵/2 ◆ = 1 ↵ tn 1;↵/2 tn 1;↵/2 ↵/2 ↵/2 1 ↵ 1 ↵ 1 ↵ P ✓ ¯x tn 1;↵/2 s p n 5 µ 5 ¯x + tn 1;↵/2 s p n ◆ = 1 ↵ [ tn 1;↵/2, tn 1;↵/2] µ 1 ↵
  • 191.
  • 192.
  • 193. = 1 µ = 0 H0 : µ0 = 0 H1 : µ 6= µ0
  • 194. ¯x = / p n / p 10 ; /3.16
  • 195. ↵/2 ↵/2 H0 : µ0 = 0
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202. H1 : µ = 1
  • 203. H1 : µ = 0.5
  • 204. H1 : µ = 3 µ0H1 : µ = 3 H0 : µ0 = 0
  • 205.
  • 206. e↵ect size : = µ µ0
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 222. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 223. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2
  • 224. r = 1 n Pn i=1(xi ¯x)(yi ¯y) q 1 n Pn i=1(xi ¯x)2 q 1 n Pn i=1(yi ¯y)2