SlideShare a Scribd company logo
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 1
Magnus Lindström, Ericsson
3GPP TSG-RAN WG2
LTELTE--AdvancedAdvanced
Radio Layer 2 and RRC aspectsRadio Layer 2 and RRC aspects
REV-090004
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 2
Outline
E‐UTRA overview
• LTE Advanced features
• E‐UTRAN architecture
• User plane protocol stack
• Control plane protocol stack
User plane
• Reliable transport
• U‐plane data flow
• Scheduling
• DRX
• Security
Control plane
• System information
• Connection control
• RRC state model
• IDLE mode mobility
• CONNECTED mode mobility
• Radio Link Failure handling
• Random Access
• Priority access
Performance
• U‐plane latency
• C‐plane latency
• HO interruption
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 3
LTE Advanced features
LTE Advanced supports:
• Reliable, high rate, high capacity and low latency data transfer
• suitable for a wide range of services
• Mobility
• seamless and lossless (using packet forwarding)
• optimized for low mobile speed from 0 to 15 km/h
• higher mobile speed between 15 and 120 km/h also supported with high performance
• mobility across the cellular network can be maintained at speeds from 120 km/h to 350 km/h 
(or even up to 500 km/h depending on the frequency band)
• Relays
• to improve e.g. the coverage of high data rates, temporary network deployment, cell‐edge 
throughput and/or to provide coverage in new areas
• relay node wirelessly connected to donor cell of donor eNB
• Carrier and spectrum aggregation
• to support wider transmission bandwidths up to 100MHz and spectrum aggregation
• aggregation of both contiguous and non‐contiguous component carriers is supported
• Coordinated Multi‐Point transmission and reception
• to improve the coverage of high data rates, the cell‐edge throughput and/or to increase 
system throughput
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 4
LTE Advanced features
(cont’d)
LTE Advanced further supports:
• Emergency Calls
• Provisioning of emergency call service to user equipment in both normal service 
mode (authenticated) and limited service mode (unauthenticated)
• Positioning
• UE location determination through user plane and control plane based solutions; 
e.g., A‐GNSS, OTDOA, cell level granularity location reporting
• Public warning systems (PWS)
• Provisioning of timely and accurate alerts, warnings and critical information 
regarding disasters and other emergencies through Earthquake and Tsunami 
Warning System (ETWS) and Commercial Mobile Alert System (CMAS)
• Home eNB (HeNB) 
• Provisioning of LTE service through customer‐premises equipment using operator’s 
licenced spectrum
• Multimedia Broadcast/Multicast Service (MBMS)
• Multi‐cell broadcast of multimedia services through efficient Single Frequency 
Network (SFN) mode of operation
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 5
eNodeB
Cells
eNodeB
Cells
P-GW(s)
MME
S-GW(s)
External IP networks (internet, corporate
networks, operator services)
EPC
E-UTRAN
S1-MME S1-U
X2
Relay Node
Cells
IP Transport Network
E‐UTRAN architecture
PDCP
NAS
RRC
RLC
MAC
eNodeB
PHY
S-GWMME
Control
Plane
User
Plane
Non-Access
Stratum
(NAS)
Access
Stratum
(AS)
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 6
User plane protocol stack
PDCP (Packet Data Convergence Protocol)
• Header compression using the RoHC protocol†
; 
• In‐sequence delivery and retransmission of PDCP 
SDUs for AM Radio Bearers at handover;
• Duplicate detection;
• Ciphering;
• Integrity protection‡
.
RLC (Radio Link Control)
• Transfer of upper layer PDUs supporting AM, UM 
and TM data transfer;
• Error Correction through ARQ;
• Segmentation according to the size of the TB;
• Re‐segmentation of PDUs that need to be 
retransmitted;
• Concatenation of SDUs for the same radio bearer;
• Protocol error detection and recovery;
• In‐sequence delivery
MAC (Media Access Control)
• Multiplexing/demultiplexing of RLC PDUs
• Scheduling Information reporting;
• Error correction through HARQ;
• Logical Channel Prioritisation;
• Padding;
†) for U-plane ‡) for C-plane
TS 36.321
TS 36.323
TS 36.322
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 7
Channel Mapping
Transport Channels:
• PCH: Paging Ch.
• BCH: Broadcast Ch.
• MCH: Multicast Ch.
• DL‐SCH: Downlink Shared Ch.
• UL‐SCH: Uplink Shared Ch.
Logical channels:
• PCCH: Paging Control Ch.
• BCCH: Broadcast Control Ch.
• CCCH: Common Control Ch.
• DCCH: Dedicated Control Ch.
• DTCH: Dedicated Traffic Ch.
• MCCH: Multicast Control Ch.
• MTCH: Multicast Traffic Ch.
BCCHPCCH CCCH DCCH DTCH MCCH MTCH
BCHPCH DL-SCH MCH
Downlink
Logical channels
Downlink
Transport channels
CCCH DCCH DTCH
UL-SCHRACH
Uplink
Logical channels
Uplink
Transport channels
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 8
Control plane protocol stack
RRC (Radio Resource Control)
protocol performs:
• Broadcast of System Information related 
to NAS and AS;
• Establishment, maintenance and release 
of RRC connection;
• Establishment, configuration, 
maintenance and release of Signalling and  
Data Radio Bearers (SRBs and DRBs);
• Security functions including key 
management;
• Mobility functions including, e.g.:
• Control of UE cell selection/reselection; 
Paging; UE measurement configuration and 
reporting; Handover; 
• QoS management functions;
• UE measurement reporting and control of 
the reporting;
• Notification for ETWS, CMAS and MBMS;
• NAS direct message transfer between UE 
and NAS.
TS 36.331RLC and MAC sublayers perform the same 
functions as for the user plane.
PDCP sublayer performs ciphering and 
integrity protection.
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 9
User plane
E‐UTRA overview
• LTE Advanced features
• E‐UTRAN architecture
• User plane protocol stack
• Control plane protocol stack
User plane
• Reliable transport
• U‐plane data flow
• Scheduling
• DRX
• Security
Control plane
• System information
• Connection control
• RRC state model
• IDLE mode mobility
• CONNECTED mode mobility
• Radio Link Failure handling
• Random Access
• Priority access
Performance
• U‐plane latency
• C‐plane latency
• HO interruption
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 10
Reliable transport
Retransmission protocols
†) RLC AM (Acknowledged Mode)
only. No retransmissions in RLC
UM (Unacknowledged mode).
L1 applies 24 bit CRC protection to transport blocks (MAC PDUs)
• Erroneous transport blocks are discarded on L1
Hybrid ARQ protocol in MAC complemented by ARQ protocol in RLC† for 
high reliability and radio efficiency
• HARQ feedback sent on L1/L2 control channel
• Single, uncoded bit (low overhead)
• Sent for each scheduled subframe (fast)
• Retransmissions are soft‐combined with previous attempt (efficient)
• ARQ status report sent as MAC data
• protected by CRC and HARQ retransmissions
• RLC Status is sent on demand (poll, timer, gap detection)
Both HARQ and ARQ protocols terminated in the eNB
• fast handling of residual HARQ errors
Ensures low latency and high reliability
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 11
Reliable transport
Lossless and in‐sequence delivery
Lossless and in‐sequence delivery of data provided by:
• RLC retransmission (ARQ) and re‐ordering functions for normal operation 
(based on RLC SNs)
• PDCP forwarding, retransmission and reordering functions for handover cases 
(based on PDCP SNs)
• For RLC AM data radio bearers only
• PDCP SNs are maintained across handovers
• Lower layers (RLC/MAC) are reset
Duplicate detection provided by PDCP
• Duplicates may disturb TCP performance
• Detects and removes duplicates based on PDCP Sequence Numbers (SNs)
RLC PDU
RLC SDU RLC SDU RLC SDU RLC SDU
n+3n+2n+1n
RLC header RLC header
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 12
User Plane data flow (downlink)
PDCP SDU
IP PayloadH
H
PDCP
(Header Compression
& Ciphering)
PDCP
header
IP PDU
Radio Bearer 1
RLC SDU
MAC
(multiplex.)
MAC SDU
CRCPHY Transport Block
MAC
header
IP PayloadH IP PayloadH
IP PDU
Radio Bearer 1
IP PDU
Radio Bearer 2
H H
PDCP SDU
PDCP
header
PDCP SDU
PDCP
header
RLC
header
RLC
header
RLC SDU
RLC
header
RLC SDU
MAC SDU
MAC
header
CRCTransport Block
RLC PDU RLC PDU RLC PDU
MAC PDU
RLC
(segmentation &
concatenation)
Multiplexing
Concatenation Segmentation
MAC SDU
IP
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 13
Scheduling
Scheduler residing in eNB with objective of:
• Fulfilling of "QoS Contracts“;
• Maximising cell throughput;
• Providing Fairness,
based on measurements, scheduling information  and QoS parameters.
Scheduling Information from UE, e.g.:
• Channel Quality Indication; Buffer Status Report; Power Headroom Report; Uplink 
Sounding.
QoS framework with per bearer granularity
• Bearers associated with several QoS parameters, e.g.:
• QoS Class Identifier (QCI); Guaranteed Bit Rate (GBR); Allocation and Retention Priority (ARP); 
Logical Channel Priority; Prioritised Bit Rate (PBR); Aggregate Maximum Bitrate (AMBR).
• Supports wide range of services, e.g.:
• Basic conversational service class, rich conversational service class and conversational low 
delay service class;
• Also interactive high delay, interactive low delay, streaming live, streaming non‐live and 
background.
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 14
Scheduling
Dynamic & Semi‐Persistent & TTI Bundling
Scheduling decisions dynamically signaled on L1L2 control channel PDCCH
• 1ms Transmission Time Interval (TTI) for DL‐SCH and UL‐SCH
• PDCCH provides physical resource allocation, Modulation and Coding scheme, New‐Data indicator, 
Transport Block size, Redundancy version, HARQ Process ID
• DL: adaptive HARQ
• All (re‐)transmissions are indicated on PDCCH
• Synchronous HARQ feedback, asynchronous retransmissions
• UL: adaptive and non‐adaptive HARQ
• First transmission indicated on PDCCH
• Retransmissions can be indicated on PDCCH or be derived from previous transmission parameters and HARQ 
feedback
• Synchronous HARQ feedback, synchronous retransmissions
Semi‐Persistent Scheduling (SPS)
• Reduced L1/L2 control signalling for traffic with periodic transmissions
• UL/DL resources configured to occur at specific interval
• Only first assignment/grant need to be signalled
• Subsequent transmissions use the same resources as the first transmission
• Can be deactivated with a special assignment/grant
TTI Bundling
• Improved coverage at lower delay
• UE performs multiple HARQ transmission attempts in consecutive TTIs before receiving HARQ feedback
• Less HARQ signalling reduces risk of HARQ failure
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 15
UE battery efficiency
Discontinuous Reception ‐ DRX
Configurable Sleep Mode for UE’s receiver chain
Periodic repetition of an “On Duration” followed by a possible period of inactivity
“Active time” defines periods of mandatory activity:
• In configured On Duration (e.g. 2 ms per 20 ms);
• While receiving assignments or grants for new data; 
(an Inactivity Timer is (re‐)started and the UE is prepared to be scheduled continuously);
• When expecting a retransmission of a Downlink HARQ transmission (one HARQ RTT after receiving 
an unsuccessful DL transmission);
• When expecting HARQ feedback for an Uplink HARQ transmission;
• After transmitting a Scheduling Request.
Two‐level DRX scheme
• Long DRX for very power efficient operation during periods of low activity
• Short DRX for low latency during periods of more activity
• autonomous transitions between states
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 16
Security
Ciphering and Integrity Protection
AS security functions provided by PDCP controlled by 
RRC
• Always activated early
• Once started, always on
• Based on SNOW3G and AES algorithms
• Keys changed at handover; backward and forward security
• Counter split in two parts for high radio efficiency:
• Hyper Frame Number (HFN): maintained locally
• Sequence Number (SN): signalled over the air
Integrity protection
• for C‐plane radio bearers (Signalling Radio Bearers)
• 32‐bit Message Authentication Code (MAC‐I)
• MAC‐I placed at end of PDU
Ciphering (confidentiality protection)
• for C‐plane radio bearers (Signalling Radio Bearers)
• for U‐plane radio bearers (Data Radio Bearers)
• PDCP Control PDUs (RoHC feedback and PDCP status 
reports) not ciphered
Packetsnot
associatedtoa
PDCPSDU
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 17
Control plane
E‐UTRA overview
• LTE Advanced features
• E‐UTRAN architecture
• User plane protocol stack
• Control plane protocol stack
User plane
• Reliable transport
• U‐plane data flow
• Scheduling
• DRX
• Security
Control plane
• System information
• Connection control
• RRC state model
• IDLE mode mobility
• CONNECTED mode mobility
• Radio Link Failure handling
• Random Access
• Priority access
Performance
• U‐plane latency
• C‐plane latency
• HO interruption
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 18
System Information
System Information is provided by RRC, structured in MIB and SIBs
MIB – transmitted in fixed location
• Includes parameters essential to find SIB1 scheduled on DL‐SCH (e.g., DL 
bandwidth and System Frame Number)
SIB1 – scheduled in the frequency domain (fixed timing) on DL‐SCH
• Contains information relevant when evaluating if a UE is allowed to access a 
cell and defines the scheduling of other system information
Other SIBs are multiplexed in SystemInformationMessages
• Scheduled in time and frequency domains as defined by SIB1
• SIB2
• contains resource configuration information that is common for all UEs; needed 
before accessing a cell
• SIB3, SIB4, ... 
• other system information grouped according to functionality
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 19
Connection Management
Connection/session management is performed by:
• the RRC protocol between the UE and E‐UTRAN
• the NAS protocol between the UE and CN
The NAS protocol performs e.g.:
• authentication, registration, bearer context activation/ deactivation 
and location registration management
RRC messages are used e.g., to:
• establish connection, configure the radio bearers and their 
corresponding attributes, and to control mobility
The RRC protocol has two states:
• RRC_IDLE and RRC_CONNECTED
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 20
Mobility and RRC State Models
IDLE: 
• UE known in EPC and has IP 
address;
• UE not known in E‐UTRAN/eNB;
• UE location known on Tracking 
Area level;
• Unicast data transfer not 
possible;
• UE reached by paging in tracking 
areas controlled by EPC;
• UE‐based cell‐selection and 
tracking area update to EPC.
CONNECTED:  
• UE known in EPC and E‐
UTRAN/eNB; ”context” in eNB;
• UE location known on cell level; 
• Unicast data transfer possible;
• DRX supported for power saving;
• Mobility is controlled by the 
network.
RRC_CONNECTEDRRC_IDLE
Dormant Active
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 21
Idle Mode Mobility
UE known on 
Tracking Area (TA) 
level
UE reached by 
paging in TAs
TA1
TA2
TA3
TA4
MME
TA list 1
-TA1
-TA2
-TA3
Page in TA1, TA2, TA3
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 22
Idle Mode Mobility
1 area (3 in WCDMA)
• Tracking area, TA
TA1
TA2
TA3
TA4
MME
TA Update
request
TA Update
TA list 2
-TA2
-TA3
-TA4
TA list 1
-TA1
-TA2
-TA3
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 23
Connected State Mobility
Source eNodeB
configures UE 
measurements and 
reporting
Source eNB receives 
UE measurement 
report
eNode B eNode B
Measurement Reports
MME S-GW
X2
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 24
Connected State Mobility
HO request from 
source node
Admission control
HO Ack from target 
node
eNode B eNode B
HO Request
MME S-GW
HO Request ACK
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 25
Connected State Mobility
HO Command from 
source node
eNode B eNode BHO Command
MME S-GW
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 26
Connected State Mobility
Data forwarding 
initiated
eNode B eNode B
Data Forwarding
MME S-GW
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 27
Connected State Mobility
Handover confirm to 
target node
eNode B eNode B
HO confirm
MME S-GW
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 28
Connected State Mobility
Request EPC to switch 
data path
S‐GW switches data 
path
HO completed
eNode B eNode B
MME S-GW
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 29
Radio Link Failure handling
1st phase:
• Layer 1 monitors downlink quality and indicates problems to RRC
• RRC filters L1 indications and starts a timer
• if no recovery within 1st phase, triggers 2nd phase
• Layer 2 monitors random access attempts and indicates problems to RRC
• RRC triggers 2nd phase
2nd phase – Radio Link Failure (RLF):
• Possible recovery through an RRC Connection Reestablishment procedure
• reestablishment may be performed in any cell to which the UE’s context is made available
• If no recovery within 2nd phase, UE goes autonomously to IDLE
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 30
Random Access procedure
Four‐step procedure to…
• …establish uplink synchronization
• …obtain UL‐SCH resources
• …obtain identity (C‐RNTI)
1. Preamble transmission on PRACH
Timing estimation at eNodeB
2. Random access response
Timing Advance command
UL‐SCH resource assignment for step 3
Temporary C‐RNTI
3. Contention resolution
transmit terminal identity
also other data
4. Contention resolution
Echo terminal identity from step 3
also other signaling/data
Also support for contention‐free random 
access procedure  only step 1 and 2 
used
RA Preamble
RA Response
(Timing Advance, UL grant, etc.)
RA Message 3
(UE Identity, BSR, etc.)
RA Contention Resolution
(UL grant, DL assignment) 4
3
2
1
Further uplink/downlink transmissions
UE eNB
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 31
Priority access
Access classes used to differentiate admittance in accessing 
a cell
• UE associated to an access class for normal use
• UE may also belong to an access class in the special categories, e.g., 
PLMN staff, social security services, government officials
Access class barring 
• Access load can be controlled by use of access barring
• For normal use, access barring rate and barring time could be 
broadcast in case of congestion
• For the special categories, 1‐bit barring status could be broadcast 
for each access class
• Barring parameters could be configured independently for mobile 
originating data and mobile originating signaling attempts
• For emergency calls, a separate 1‐bit barring status is indicated
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 32
Performance
E‐UTRA overview
• LTE Advanced features
• E‐UTRAN architecture
• User plane protocol stack
• Control plane protocol stack
User plane
• Reliable transport
• U‐plane data flow
• Scheduling
• DRX
• Security
Control plane
• System information
• Connection control
• RRC state model
• IDLE mode mobility
• CONNECTED mode mobility
• Radio Link Failure handling
• Random Access
• Priority access
Performance
• U‐plane latency
• C‐plane latency
• HO interruption
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 33
User plane latency
User plane latency (FDD RIT)
• 4ms when HARQ retransmission 
is not needed
User plane latency (TDD RIT)
• Depends on UL/DL configuration 
and on whether UL or DL 
transmission
• 4.9ms possible for uplink and 
downlink jointly when HARQ 
retransmission is not needed
UE eNB
1.5 ms
1.5 ms
HARQ RTT
8 ms
1.5 ms
1.5 ms
TTI
1 ms
1 ms
UE eNB
1ms+ FAt1.5ms
TTI
1 ms
HARQ RTT
1.5ms1ms+ FAt 1 ms
FDD RIT
TDD RIT
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 34
Control plane latency ‐ IDLE CONNECTED
50Total delay
16Processing delay in UE (L2 and RRC)17
1.5Transmission of RRC Security Mode Command and
Connection Reconfiguration (+TTI alignment)
16
4Processing delay in eNB (S1-C → Uu)15
S1-C Transfer delay14
MME Processing Delay (including UE context retrieval of
10ms)
13
S1-C Transfer delay12
Processing delay in eNB (Uu → S1-C)11
1Transmission of RRC Connection Set-up complete10
12Processing delay in the UE (L2 and RRC)9
1Transmission of RRC Connection Set-up (and UL grant)8
4Processing delay in eNB (L2 and RRC)7
1Transmission of RRC and NAS Request6
5UE Processing Delay (decoding of scheduling grant,
timing alignment and C-RNTI assignment + L1 encoding
of RRC Connection Request)
5
3Preamble detection and transmission of RA response
(Time between the end RACH transmission and UE’s
reception of scheduling grant and timing adjustment)
3-4
1RACH Preamble2
0.5Average delay due to RACH scheduling period (1ms
RACH cycle)
1
Time [ms]
LTE Advanced
DescriptionStep
NOTE: LTE Rel‐8 supports IDLE CONNECTED latency of around 80ms and, 
hence, already meets the ITU requirement on C‐plane latency for 
IDLE CONNECTED transition
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 35
Control plane latency – Dormant  Active
9.5
1
3
1
3
1
0.5
Time [ms]
Total delay
Transmission of UL data6
UE Processing Delay (decoding of scheduling
grant + L1 encoding of UL data)
5
Transmission of Scheduling Grant4
eNB decodes Scheduling Request and
generates the Scheduling Grant (+ delay for
nearest DL subframe)
3
UE sends Scheduling Request2
Average delay to next SR opportunity (1ms
PUCCH cycle)
1
LTE Advanced
DescriptionStep
Uplink initiated transition from dormant state (DRX substate) to active state (non‐
DRX substate) for synchronised UE; including first uplink data transmission.
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 36
Handover interruption
Intra‐LTE inter‐eNB handover
Target cell already identified and 
measured by the UE
• Fast radio synchronisation to target 
aided by previous measurement
Data forwarding initiated before 
radio synchronisation to target cell 
and backhaul faster than radio
• Forwarded data available in target 
when UE is ready to receive
• Data forwarding does not affect 
overall delay
UE Source Target
HO Preparation
HO Command
Processing
Data Forwarding
4. Processing
5. Grant
1. Radio Synch
3. Preamble
2. RACH Waiting
interruption
7. Data
6. Processing
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 37
Handover interruption
(cont’d)
UE Source Target
HO Preparation
HO Command
Processing
Data Forwarding
4. Processing
5. Grant
1. Radio Synch
3. Preamble
2. RACH Waiting
interruption
7. Data
6. Processing
10.5Total delay
1Transmission of DL Datta7
2Decoding of scheduling grant and
timing alignment
6
5Preamble detection and transmission
of RA response (Time between
the end RACH transmission and
UE’s reception of scheduling
grant and timing adjustment)
4-5
1RACH Preamble3
0.5Average delay due to RACH
scheduling period (1ms
periodicity)
2
1Radio Synchronisation to the target cell1
Time [ms]
LTE Advanced
DescriptionStep
Note: This delay does not depend on the
frequency of the target in the typical case where
the cell has already been measured by the UE
© 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 38
References
TR 36.912: Feasibility study for Further Advancements for E‐UTRA
(LTE‐Advanced) 
TS 36.300: E‐UTRA and E‐UTRAN Overall description
TS 36.304: E‐UTRA User Equipment (UE) procedures in idle mode
TS 36.321: E‐UTRA Medium Access Control (MAC) protocol 
specification
TS 36.322: E‐UTRA Radio Link Control (RLC) protocol specification
TS 36.323: E‐UTRA Packet Data Convergence Protocol (PDCP) 
specification
TS 36.331: E‐UTRA Radio Resource Control (RRC) Protocol 
specification
Latest versions of these specifications can be acquired from:
http://www.3gpp.org/ftp/Specs/html‐info/36‐series.htm

More Related Content

What's hot

5G Sandardization
5G Sandardization5G Sandardization
5G Sandardization
Yi-Hsueh Tsai
 
UDM Report
UDM ReportUDM Report
UDM Report
Enea Software AB
 
Lte network chart_poster
Lte network chart_posterLte network chart_poster
Lte network chart_posterDipeshHShah
 
Future LTE-A UE Capabilities - 450 Mbps and Beyond
Future LTE-A UE Capabilities - 450 Mbps and Beyond Future LTE-A UE Capabilities - 450 Mbps and Beyond
Future LTE-A UE Capabilities - 450 Mbps and Beyond
Eiko Seidel
 
5G Network Architecture and Design
5G Network Architecture and Design5G Network Architecture and Design
5G Network Architecture and Design
3G4G
 
Bluetooth UDP Performance over Bluetooth
Bluetooth UDP Performance over BluetoothBluetooth UDP Performance over Bluetooth
Bluetooth UDP Performance over Bluetooth
Vertoda System
 
Epc cups overview
Epc cups overviewEpc cups overview
Epc cups overview
Hemraj Kumar
 
Towards achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function
Towards achieving-high-performance-in-5g-mobile-packet-cores-user-plane-functionTowards achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function
Towards achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function
Eiko Seidel
 
Speed5G Workshop London presentation of the Speed5G MAC framework
Speed5G Workshop London presentation of the Speed5G MAC frameworkSpeed5G Workshop London presentation of the Speed5G MAC framework
Speed5G Workshop London presentation of the Speed5G MAC framework
Klaus Moessner
 
5G Integrated Access and Backhaul
5G Integrated Access and Backhaul5G Integrated Access and Backhaul
5G Integrated Access and Backhaul
Sridhar Bhaskaran
 
5 g ran architcture
5 g ran architcture5 g ran architcture
5 g ran architcture
Hemraj Kumar
 
Overview 5G NR Radio Protocols by Intel
Overview 5G NR Radio Protocols by Intel Overview 5G NR Radio Protocols by Intel
Overview 5G NR Radio Protocols by Intel
Eiko Seidel
 
Oct 2014: Update on 3GPP SA5
Oct 2014: Update on 3GPP SA5Oct 2014: Update on 3GPP SA5
Oct 2014: Update on 3GPP SA5
3G4G
 
Speed5G Workshop London presentation of 5G-MiEdge
Speed5G Workshop London presentation of 5G-MiEdgeSpeed5G Workshop London presentation of 5G-MiEdge
Speed5G Workshop London presentation of 5G-MiEdge
Klaus Moessner
 
CS-Core Mobile Network (General)
CS-Core Mobile Network (General)CS-Core Mobile Network (General)
CS-Core Mobile Network (General)
Hamidreza Bolhasani
 
LTE Radio Layer 2 And Rrc Aspects
LTE Radio Layer 2 And Rrc AspectsLTE Radio Layer 2 And Rrc Aspects
LTE Radio Layer 2 And Rrc Aspects
BP Tiwari
 

What's hot (19)

5G Sandardization
5G Sandardization5G Sandardization
5G Sandardization
 
UDM Report
UDM ReportUDM Report
UDM Report
 
Lte network chart_poster
Lte network chart_posterLte network chart_poster
Lte network chart_poster
 
Lte
LteLte
Lte
 
Future LTE-A UE Capabilities - 450 Mbps and Beyond
Future LTE-A UE Capabilities - 450 Mbps and Beyond Future LTE-A UE Capabilities - 450 Mbps and Beyond
Future LTE-A UE Capabilities - 450 Mbps and Beyond
 
5G Network Architecture and Design
5G Network Architecture and Design5G Network Architecture and Design
5G Network Architecture and Design
 
Bluetooth UDP Performance over Bluetooth
Bluetooth UDP Performance over BluetoothBluetooth UDP Performance over Bluetooth
Bluetooth UDP Performance over Bluetooth
 
Epc cups overview
Epc cups overviewEpc cups overview
Epc cups overview
 
3GPP LTE-MAC
3GPP LTE-MAC3GPP LTE-MAC
3GPP LTE-MAC
 
LTE, LTE-A and 5G
LTE, LTE-A and 5GLTE, LTE-A and 5G
LTE, LTE-A and 5G
 
Towards achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function
Towards achieving-high-performance-in-5g-mobile-packet-cores-user-plane-functionTowards achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function
Towards achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function
 
Speed5G Workshop London presentation of the Speed5G MAC framework
Speed5G Workshop London presentation of the Speed5G MAC frameworkSpeed5G Workshop London presentation of the Speed5G MAC framework
Speed5G Workshop London presentation of the Speed5G MAC framework
 
5G Integrated Access and Backhaul
5G Integrated Access and Backhaul5G Integrated Access and Backhaul
5G Integrated Access and Backhaul
 
5 g ran architcture
5 g ran architcture5 g ran architcture
5 g ran architcture
 
Overview 5G NR Radio Protocols by Intel
Overview 5G NR Radio Protocols by Intel Overview 5G NR Radio Protocols by Intel
Overview 5G NR Radio Protocols by Intel
 
Oct 2014: Update on 3GPP SA5
Oct 2014: Update on 3GPP SA5Oct 2014: Update on 3GPP SA5
Oct 2014: Update on 3GPP SA5
 
Speed5G Workshop London presentation of 5G-MiEdge
Speed5G Workshop London presentation of 5G-MiEdgeSpeed5G Workshop London presentation of 5G-MiEdge
Speed5G Workshop London presentation of 5G-MiEdge
 
CS-Core Mobile Network (General)
CS-Core Mobile Network (General)CS-Core Mobile Network (General)
CS-Core Mobile Network (General)
 
LTE Radio Layer 2 And Rrc Aspects
LTE Radio Layer 2 And Rrc AspectsLTE Radio Layer 2 And Rrc Aspects
LTE Radio Layer 2 And Rrc Aspects
 

Viewers also liked

Lte workshop business plan-final
Lte workshop  business plan-finalLte workshop  business plan-final
Lte workshop business plan-final
Khazane Hassan
 
中国通信网初级通信教程 Lte学习入门
中国通信网初级通信教程 Lte学习入门中国通信网初级通信教程 Lte学习入门
中国通信网初级通信教程 Lte学习入门
albert_shi
 
Precoding
PrecodingPrecoding
Precoding
Khalid Hussain
 
Huawei Workshop LTE Spectrum Strategic Opportunities
Huawei Workshop LTE Spectrum Strategic OpportunitiesHuawei Workshop LTE Spectrum Strategic Opportunities
Huawei Workshop LTE Spectrum Strategic Opportunities
Adrian Hall
 
Beam forming
Beam formingBeam forming
Beam forming
Ayush Khandelia
 
Mimo tutorial by-fuyun_ling
Mimo tutorial by-fuyun_lingMimo tutorial by-fuyun_ling
Mimo tutorial by-fuyun_ling
Fuyun Ling
 
LTE ADVANCED PPT
LTE ADVANCED PPTLTE ADVANCED PPT
LTE ADVANCED PPT
Trinath
 
LTE - Long Term Evolution
LTE - Long Term EvolutionLTE - Long Term Evolution
LTE - Long Term Evolution
Arief Gunawan
 

Viewers also liked (8)

Lte workshop business plan-final
Lte workshop  business plan-finalLte workshop  business plan-final
Lte workshop business plan-final
 
中国通信网初级通信教程 Lte学习入门
中国通信网初级通信教程 Lte学习入门中国通信网初级通信教程 Lte学习入门
中国通信网初级通信教程 Lte学习入门
 
Precoding
PrecodingPrecoding
Precoding
 
Huawei Workshop LTE Spectrum Strategic Opportunities
Huawei Workshop LTE Spectrum Strategic OpportunitiesHuawei Workshop LTE Spectrum Strategic Opportunities
Huawei Workshop LTE Spectrum Strategic Opportunities
 
Beam forming
Beam formingBeam forming
Beam forming
 
Mimo tutorial by-fuyun_ling
Mimo tutorial by-fuyun_lingMimo tutorial by-fuyun_ling
Mimo tutorial by-fuyun_ling
 
LTE ADVANCED PPT
LTE ADVANCED PPTLTE ADVANCED PPT
LTE ADVANCED PPT
 
LTE - Long Term Evolution
LTE - Long Term EvolutionLTE - Long Term Evolution
LTE - Long Term Evolution
 

Similar to Rev 090004radiolayer2andrrcaspects-100324020411-phpapp02

Arnaud_Meylan_Huawei_3GPP_TSG_RAN_WG2_LT.pdf
Arnaud_Meylan_Huawei_3GPP_TSG_RAN_WG2_LT.pdfArnaud_Meylan_Huawei_3GPP_TSG_RAN_WG2_LT.pdf
Arnaud_Meylan_Huawei_3GPP_TSG_RAN_WG2_LT.pdf
sehat maruli
 
3 gpp lte radio layer 2
3 gpp lte radio layer 23 gpp lte radio layer 2
3 gpp lte radio layer 2pkamoto
 
3 gpp lte radio layer 2
3 gpp lte radio layer 23 gpp lte radio layer 2
3 gpp lte radio layer 2pkamoto
 
Lte overview titus
Lte overview titusLte overview titus
Lte overview titus
Nabil Al_Mutawakel
 
UMTS Protocols
UMTS ProtocolsUMTS Protocols
UMTS Protocols
Naveen Jakhar, I.T.S
 
WN UNIT 3 new.pptx
WN UNIT 3 new.pptxWN UNIT 3 new.pptx
WN UNIT 3 new.pptx
SATHYARAJ P ECE
 
01 lte radio_parameters_lte_overview_rl1
01 lte radio_parameters_lte_overview_rl101 lte radio_parameters_lte_overview_rl1
01 lte radio_parameters_lte_overview_rl1
Md.Akm Sahansha
 
Rev 090004 Radio Layer 2 And Rrc Aspects
Rev 090004 Radio Layer 2 And Rrc AspectsRev 090004 Radio Layer 2 And Rrc Aspects
Rev 090004 Radio Layer 2 And Rrc Aspects
maddiv
 
Lte basics
Lte basicsLte basics
Lte basics
Vibhor Gupta
 
aaa.pptx
aaa.pptxaaa.pptx
LTE_Basic_principle.pptx
LTE_Basic_principle.pptxLTE_Basic_principle.pptx
LTE_Basic_principle.pptx
Abhilash C A
 
Technical Overview of LTE ( Hyung G. Myung)
Technical Overview of LTE ( Hyung G. Myung)Technical Overview of LTE ( Hyung G. Myung)
Technical Overview of LTE ( Hyung G. Myung)
Going LTE
 
Lte training session_1
Lte training session_1Lte training session_1
Lte training session_1
Sajal Kumar Das
 
3gpp lte
3gpp lte3gpp lte
MWC 2010 LTE
MWC 2010 LTEMWC 2010 LTE
MWC 2010 LTE
Continuous Computing
 
LTE @ Yogyakarta, 19 December 2001
LTE @ Yogyakarta, 19 December 2001LTE @ Yogyakarta, 19 December 2001
LTE @ Yogyakarta, 19 December 2001
Arief Gunawan
 
Introduction to 3GPP and LTE standardization
Introduction to 3GPP and LTE standardizationIntroduction to 3GPP and LTE standardization
Introduction to 3GPP and LTE standardization
Ajin R Nair
 
LTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) IntroductionLTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) Introduction
Guisun Han
 
LTE_poster.pdf
LTE_poster.pdfLTE_poster.pdf
LTE_poster.pdf
LibaBali
 

Similar to Rev 090004radiolayer2andrrcaspects-100324020411-phpapp02 (20)

Arnaud_Meylan_Huawei_3GPP_TSG_RAN_WG2_LT.pdf
Arnaud_Meylan_Huawei_3GPP_TSG_RAN_WG2_LT.pdfArnaud_Meylan_Huawei_3GPP_TSG_RAN_WG2_LT.pdf
Arnaud_Meylan_Huawei_3GPP_TSG_RAN_WG2_LT.pdf
 
3 gpp lte radio layer 2
3 gpp lte radio layer 23 gpp lte radio layer 2
3 gpp lte radio layer 2
 
3 gpp lte radio layer 2
3 gpp lte radio layer 23 gpp lte radio layer 2
3 gpp lte radio layer 2
 
Lte overview titus
Lte overview titusLte overview titus
Lte overview titus
 
UMTS Protocols
UMTS ProtocolsUMTS Protocols
UMTS Protocols
 
WN UNIT 3 new.pptx
WN UNIT 3 new.pptxWN UNIT 3 new.pptx
WN UNIT 3 new.pptx
 
01 lte radio_parameters_lte_overview_rl1
01 lte radio_parameters_lte_overview_rl101 lte radio_parameters_lte_overview_rl1
01 lte radio_parameters_lte_overview_rl1
 
Rev 090004 Radio Layer 2 And Rrc Aspects
Rev 090004 Radio Layer 2 And Rrc AspectsRev 090004 Radio Layer 2 And Rrc Aspects
Rev 090004 Radio Layer 2 And Rrc Aspects
 
Lte basics
Lte basicsLte basics
Lte basics
 
aaa.pptx
aaa.pptxaaa.pptx
aaa.pptx
 
LTE_Basic_principle.pptx
LTE_Basic_principle.pptxLTE_Basic_principle.pptx
LTE_Basic_principle.pptx
 
Technical Overview of LTE ( Hyung G. Myung)
Technical Overview of LTE ( Hyung G. Myung)Technical Overview of LTE ( Hyung G. Myung)
Technical Overview of LTE ( Hyung G. Myung)
 
Lte training session_1
Lte training session_1Lte training session_1
Lte training session_1
 
3gpp lte
3gpp lte3gpp lte
3gpp lte
 
MWC 2010 LTE
MWC 2010 LTEMWC 2010 LTE
MWC 2010 LTE
 
LTE @ Yogyakarta, 19 December 2001
LTE @ Yogyakarta, 19 December 2001LTE @ Yogyakarta, 19 December 2001
LTE @ Yogyakarta, 19 December 2001
 
Introduction to 3GPP and LTE standardization
Introduction to 3GPP and LTE standardizationIntroduction to 3GPP and LTE standardization
Introduction to 3GPP and LTE standardization
 
Introduction W Cdma
Introduction W CdmaIntroduction W Cdma
Introduction W Cdma
 
LTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) IntroductionLTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) Introduction
 
LTE_poster.pdf
LTE_poster.pdfLTE_poster.pdf
LTE_poster.pdf
 

Recently uploaded

space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 

Recently uploaded (20)

space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 

Rev 090004radiolayer2andrrcaspects-100324020411-phpapp02

  • 1. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 1 Magnus Lindström, Ericsson 3GPP TSG-RAN WG2 LTELTE--AdvancedAdvanced Radio Layer 2 and RRC aspectsRadio Layer 2 and RRC aspects REV-090004
  • 2. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 2 Outline E‐UTRA overview • LTE Advanced features • E‐UTRAN architecture • User plane protocol stack • Control plane protocol stack User plane • Reliable transport • U‐plane data flow • Scheduling • DRX • Security Control plane • System information • Connection control • RRC state model • IDLE mode mobility • CONNECTED mode mobility • Radio Link Failure handling • Random Access • Priority access Performance • U‐plane latency • C‐plane latency • HO interruption
  • 3. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 3 LTE Advanced features LTE Advanced supports: • Reliable, high rate, high capacity and low latency data transfer • suitable for a wide range of services • Mobility • seamless and lossless (using packet forwarding) • optimized for low mobile speed from 0 to 15 km/h • higher mobile speed between 15 and 120 km/h also supported with high performance • mobility across the cellular network can be maintained at speeds from 120 km/h to 350 km/h  (or even up to 500 km/h depending on the frequency band) • Relays • to improve e.g. the coverage of high data rates, temporary network deployment, cell‐edge  throughput and/or to provide coverage in new areas • relay node wirelessly connected to donor cell of donor eNB • Carrier and spectrum aggregation • to support wider transmission bandwidths up to 100MHz and spectrum aggregation • aggregation of both contiguous and non‐contiguous component carriers is supported • Coordinated Multi‐Point transmission and reception • to improve the coverage of high data rates, the cell‐edge throughput and/or to increase  system throughput
  • 4. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 4 LTE Advanced features (cont’d) LTE Advanced further supports: • Emergency Calls • Provisioning of emergency call service to user equipment in both normal service  mode (authenticated) and limited service mode (unauthenticated) • Positioning • UE location determination through user plane and control plane based solutions;  e.g., A‐GNSS, OTDOA, cell level granularity location reporting • Public warning systems (PWS) • Provisioning of timely and accurate alerts, warnings and critical information  regarding disasters and other emergencies through Earthquake and Tsunami  Warning System (ETWS) and Commercial Mobile Alert System (CMAS) • Home eNB (HeNB)  • Provisioning of LTE service through customer‐premises equipment using operator’s  licenced spectrum • Multimedia Broadcast/Multicast Service (MBMS) • Multi‐cell broadcast of multimedia services through efficient Single Frequency  Network (SFN) mode of operation
  • 5. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 5 eNodeB Cells eNodeB Cells P-GW(s) MME S-GW(s) External IP networks (internet, corporate networks, operator services) EPC E-UTRAN S1-MME S1-U X2 Relay Node Cells IP Transport Network E‐UTRAN architecture PDCP NAS RRC RLC MAC eNodeB PHY S-GWMME Control Plane User Plane Non-Access Stratum (NAS) Access Stratum (AS)
  • 6. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 6 User plane protocol stack PDCP (Packet Data Convergence Protocol) • Header compression using the RoHC protocol† ;  • In‐sequence delivery and retransmission of PDCP  SDUs for AM Radio Bearers at handover; • Duplicate detection; • Ciphering; • Integrity protection‡ . RLC (Radio Link Control) • Transfer of upper layer PDUs supporting AM, UM  and TM data transfer; • Error Correction through ARQ; • Segmentation according to the size of the TB; • Re‐segmentation of PDUs that need to be  retransmitted; • Concatenation of SDUs for the same radio bearer; • Protocol error detection and recovery; • In‐sequence delivery MAC (Media Access Control) • Multiplexing/demultiplexing of RLC PDUs • Scheduling Information reporting; • Error correction through HARQ; • Logical Channel Prioritisation; • Padding; †) for U-plane ‡) for C-plane TS 36.321 TS 36.323 TS 36.322
  • 7. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 7 Channel Mapping Transport Channels: • PCH: Paging Ch. • BCH: Broadcast Ch. • MCH: Multicast Ch. • DL‐SCH: Downlink Shared Ch. • UL‐SCH: Uplink Shared Ch. Logical channels: • PCCH: Paging Control Ch. • BCCH: Broadcast Control Ch. • CCCH: Common Control Ch. • DCCH: Dedicated Control Ch. • DTCH: Dedicated Traffic Ch. • MCCH: Multicast Control Ch. • MTCH: Multicast Traffic Ch. BCCHPCCH CCCH DCCH DTCH MCCH MTCH BCHPCH DL-SCH MCH Downlink Logical channels Downlink Transport channels CCCH DCCH DTCH UL-SCHRACH Uplink Logical channels Uplink Transport channels
  • 8. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 8 Control plane protocol stack RRC (Radio Resource Control) protocol performs: • Broadcast of System Information related  to NAS and AS; • Establishment, maintenance and release  of RRC connection; • Establishment, configuration,  maintenance and release of Signalling and   Data Radio Bearers (SRBs and DRBs); • Security functions including key  management; • Mobility functions including, e.g.: • Control of UE cell selection/reselection;  Paging; UE measurement configuration and  reporting; Handover;  • QoS management functions; • UE measurement reporting and control of  the reporting; • Notification for ETWS, CMAS and MBMS; • NAS direct message transfer between UE  and NAS. TS 36.331RLC and MAC sublayers perform the same  functions as for the user plane. PDCP sublayer performs ciphering and  integrity protection.
  • 9. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 9 User plane E‐UTRA overview • LTE Advanced features • E‐UTRAN architecture • User plane protocol stack • Control plane protocol stack User plane • Reliable transport • U‐plane data flow • Scheduling • DRX • Security Control plane • System information • Connection control • RRC state model • IDLE mode mobility • CONNECTED mode mobility • Radio Link Failure handling • Random Access • Priority access Performance • U‐plane latency • C‐plane latency • HO interruption
  • 10. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 10 Reliable transport Retransmission protocols †) RLC AM (Acknowledged Mode) only. No retransmissions in RLC UM (Unacknowledged mode). L1 applies 24 bit CRC protection to transport blocks (MAC PDUs) • Erroneous transport blocks are discarded on L1 Hybrid ARQ protocol in MAC complemented by ARQ protocol in RLC† for  high reliability and radio efficiency • HARQ feedback sent on L1/L2 control channel • Single, uncoded bit (low overhead) • Sent for each scheduled subframe (fast) • Retransmissions are soft‐combined with previous attempt (efficient) • ARQ status report sent as MAC data • protected by CRC and HARQ retransmissions • RLC Status is sent on demand (poll, timer, gap detection) Both HARQ and ARQ protocols terminated in the eNB • fast handling of residual HARQ errors Ensures low latency and high reliability
  • 11. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 11 Reliable transport Lossless and in‐sequence delivery Lossless and in‐sequence delivery of data provided by: • RLC retransmission (ARQ) and re‐ordering functions for normal operation  (based on RLC SNs) • PDCP forwarding, retransmission and reordering functions for handover cases  (based on PDCP SNs) • For RLC AM data radio bearers only • PDCP SNs are maintained across handovers • Lower layers (RLC/MAC) are reset Duplicate detection provided by PDCP • Duplicates may disturb TCP performance • Detects and removes duplicates based on PDCP Sequence Numbers (SNs) RLC PDU RLC SDU RLC SDU RLC SDU RLC SDU n+3n+2n+1n RLC header RLC header
  • 12. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 12 User Plane data flow (downlink) PDCP SDU IP PayloadH H PDCP (Header Compression & Ciphering) PDCP header IP PDU Radio Bearer 1 RLC SDU MAC (multiplex.) MAC SDU CRCPHY Transport Block MAC header IP PayloadH IP PayloadH IP PDU Radio Bearer 1 IP PDU Radio Bearer 2 H H PDCP SDU PDCP header PDCP SDU PDCP header RLC header RLC header RLC SDU RLC header RLC SDU MAC SDU MAC header CRCTransport Block RLC PDU RLC PDU RLC PDU MAC PDU RLC (segmentation & concatenation) Multiplexing Concatenation Segmentation MAC SDU IP
  • 13. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 13 Scheduling Scheduler residing in eNB with objective of: • Fulfilling of "QoS Contracts“; • Maximising cell throughput; • Providing Fairness, based on measurements, scheduling information  and QoS parameters. Scheduling Information from UE, e.g.: • Channel Quality Indication; Buffer Status Report; Power Headroom Report; Uplink  Sounding. QoS framework with per bearer granularity • Bearers associated with several QoS parameters, e.g.: • QoS Class Identifier (QCI); Guaranteed Bit Rate (GBR); Allocation and Retention Priority (ARP);  Logical Channel Priority; Prioritised Bit Rate (PBR); Aggregate Maximum Bitrate (AMBR). • Supports wide range of services, e.g.: • Basic conversational service class, rich conversational service class and conversational low  delay service class; • Also interactive high delay, interactive low delay, streaming live, streaming non‐live and  background.
  • 14. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 14 Scheduling Dynamic & Semi‐Persistent & TTI Bundling Scheduling decisions dynamically signaled on L1L2 control channel PDCCH • 1ms Transmission Time Interval (TTI) for DL‐SCH and UL‐SCH • PDCCH provides physical resource allocation, Modulation and Coding scheme, New‐Data indicator,  Transport Block size, Redundancy version, HARQ Process ID • DL: adaptive HARQ • All (re‐)transmissions are indicated on PDCCH • Synchronous HARQ feedback, asynchronous retransmissions • UL: adaptive and non‐adaptive HARQ • First transmission indicated on PDCCH • Retransmissions can be indicated on PDCCH or be derived from previous transmission parameters and HARQ  feedback • Synchronous HARQ feedback, synchronous retransmissions Semi‐Persistent Scheduling (SPS) • Reduced L1/L2 control signalling for traffic with periodic transmissions • UL/DL resources configured to occur at specific interval • Only first assignment/grant need to be signalled • Subsequent transmissions use the same resources as the first transmission • Can be deactivated with a special assignment/grant TTI Bundling • Improved coverage at lower delay • UE performs multiple HARQ transmission attempts in consecutive TTIs before receiving HARQ feedback • Less HARQ signalling reduces risk of HARQ failure
  • 15. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 15 UE battery efficiency Discontinuous Reception ‐ DRX Configurable Sleep Mode for UE’s receiver chain Periodic repetition of an “On Duration” followed by a possible period of inactivity “Active time” defines periods of mandatory activity: • In configured On Duration (e.g. 2 ms per 20 ms); • While receiving assignments or grants for new data;  (an Inactivity Timer is (re‐)started and the UE is prepared to be scheduled continuously); • When expecting a retransmission of a Downlink HARQ transmission (one HARQ RTT after receiving  an unsuccessful DL transmission); • When expecting HARQ feedback for an Uplink HARQ transmission; • After transmitting a Scheduling Request. Two‐level DRX scheme • Long DRX for very power efficient operation during periods of low activity • Short DRX for low latency during periods of more activity • autonomous transitions between states
  • 16. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 16 Security Ciphering and Integrity Protection AS security functions provided by PDCP controlled by  RRC • Always activated early • Once started, always on • Based on SNOW3G and AES algorithms • Keys changed at handover; backward and forward security • Counter split in two parts for high radio efficiency: • Hyper Frame Number (HFN): maintained locally • Sequence Number (SN): signalled over the air Integrity protection • for C‐plane radio bearers (Signalling Radio Bearers) • 32‐bit Message Authentication Code (MAC‐I) • MAC‐I placed at end of PDU Ciphering (confidentiality protection) • for C‐plane radio bearers (Signalling Radio Bearers) • for U‐plane radio bearers (Data Radio Bearers) • PDCP Control PDUs (RoHC feedback and PDCP status  reports) not ciphered Packetsnot associatedtoa PDCPSDU
  • 17. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 17 Control plane E‐UTRA overview • LTE Advanced features • E‐UTRAN architecture • User plane protocol stack • Control plane protocol stack User plane • Reliable transport • U‐plane data flow • Scheduling • DRX • Security Control plane • System information • Connection control • RRC state model • IDLE mode mobility • CONNECTED mode mobility • Radio Link Failure handling • Random Access • Priority access Performance • U‐plane latency • C‐plane latency • HO interruption
  • 18. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 18 System Information System Information is provided by RRC, structured in MIB and SIBs MIB – transmitted in fixed location • Includes parameters essential to find SIB1 scheduled on DL‐SCH (e.g., DL  bandwidth and System Frame Number) SIB1 – scheduled in the frequency domain (fixed timing) on DL‐SCH • Contains information relevant when evaluating if a UE is allowed to access a  cell and defines the scheduling of other system information Other SIBs are multiplexed in SystemInformationMessages • Scheduled in time and frequency domains as defined by SIB1 • SIB2 • contains resource configuration information that is common for all UEs; needed  before accessing a cell • SIB3, SIB4, ...  • other system information grouped according to functionality
  • 19. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 19 Connection Management Connection/session management is performed by: • the RRC protocol between the UE and E‐UTRAN • the NAS protocol between the UE and CN The NAS protocol performs e.g.: • authentication, registration, bearer context activation/ deactivation  and location registration management RRC messages are used e.g., to: • establish connection, configure the radio bearers and their  corresponding attributes, and to control mobility The RRC protocol has two states: • RRC_IDLE and RRC_CONNECTED
  • 20. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 20 Mobility and RRC State Models IDLE:  • UE known in EPC and has IP  address; • UE not known in E‐UTRAN/eNB; • UE location known on Tracking  Area level; • Unicast data transfer not  possible; • UE reached by paging in tracking  areas controlled by EPC; • UE‐based cell‐selection and  tracking area update to EPC. CONNECTED:   • UE known in EPC and E‐ UTRAN/eNB; ”context” in eNB; • UE location known on cell level;  • Unicast data transfer possible; • DRX supported for power saving; • Mobility is controlled by the  network. RRC_CONNECTEDRRC_IDLE Dormant Active
  • 21. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 21 Idle Mode Mobility UE known on  Tracking Area (TA)  level UE reached by  paging in TAs TA1 TA2 TA3 TA4 MME TA list 1 -TA1 -TA2 -TA3 Page in TA1, TA2, TA3
  • 22. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 22 Idle Mode Mobility 1 area (3 in WCDMA) • Tracking area, TA TA1 TA2 TA3 TA4 MME TA Update request TA Update TA list 2 -TA2 -TA3 -TA4 TA list 1 -TA1 -TA2 -TA3
  • 23. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 23 Connected State Mobility Source eNodeB configures UE  measurements and  reporting Source eNB receives  UE measurement  report eNode B eNode B Measurement Reports MME S-GW X2
  • 24. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 24 Connected State Mobility HO request from  source node Admission control HO Ack from target  node eNode B eNode B HO Request MME S-GW HO Request ACK
  • 25. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 25 Connected State Mobility HO Command from  source node eNode B eNode BHO Command MME S-GW
  • 26. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 26 Connected State Mobility Data forwarding  initiated eNode B eNode B Data Forwarding MME S-GW
  • 27. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 27 Connected State Mobility Handover confirm to  target node eNode B eNode B HO confirm MME S-GW
  • 28. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 28 Connected State Mobility Request EPC to switch  data path S‐GW switches data  path HO completed eNode B eNode B MME S-GW
  • 29. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 29 Radio Link Failure handling 1st phase: • Layer 1 monitors downlink quality and indicates problems to RRC • RRC filters L1 indications and starts a timer • if no recovery within 1st phase, triggers 2nd phase • Layer 2 monitors random access attempts and indicates problems to RRC • RRC triggers 2nd phase 2nd phase – Radio Link Failure (RLF): • Possible recovery through an RRC Connection Reestablishment procedure • reestablishment may be performed in any cell to which the UE’s context is made available • If no recovery within 2nd phase, UE goes autonomously to IDLE
  • 30. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 30 Random Access procedure Four‐step procedure to… • …establish uplink synchronization • …obtain UL‐SCH resources • …obtain identity (C‐RNTI) 1. Preamble transmission on PRACH Timing estimation at eNodeB 2. Random access response Timing Advance command UL‐SCH resource assignment for step 3 Temporary C‐RNTI 3. Contention resolution transmit terminal identity also other data 4. Contention resolution Echo terminal identity from step 3 also other signaling/data Also support for contention‐free random  access procedure  only step 1 and 2  used RA Preamble RA Response (Timing Advance, UL grant, etc.) RA Message 3 (UE Identity, BSR, etc.) RA Contention Resolution (UL grant, DL assignment) 4 3 2 1 Further uplink/downlink transmissions UE eNB
  • 31. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 31 Priority access Access classes used to differentiate admittance in accessing  a cell • UE associated to an access class for normal use • UE may also belong to an access class in the special categories, e.g.,  PLMN staff, social security services, government officials Access class barring  • Access load can be controlled by use of access barring • For normal use, access barring rate and barring time could be  broadcast in case of congestion • For the special categories, 1‐bit barring status could be broadcast  for each access class • Barring parameters could be configured independently for mobile  originating data and mobile originating signaling attempts • For emergency calls, a separate 1‐bit barring status is indicated
  • 32. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 32 Performance E‐UTRA overview • LTE Advanced features • E‐UTRAN architecture • User plane protocol stack • Control plane protocol stack User plane • Reliable transport • U‐plane data flow • Scheduling • DRX • Security Control plane • System information • Connection control • RRC state model • IDLE mode mobility • CONNECTED mode mobility • Radio Link Failure handling • Random Access • Priority access Performance • U‐plane latency • C‐plane latency • HO interruption
  • 33. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 33 User plane latency User plane latency (FDD RIT) • 4ms when HARQ retransmission  is not needed User plane latency (TDD RIT) • Depends on UL/DL configuration  and on whether UL or DL  transmission • 4.9ms possible for uplink and  downlink jointly when HARQ  retransmission is not needed UE eNB 1.5 ms 1.5 ms HARQ RTT 8 ms 1.5 ms 1.5 ms TTI 1 ms 1 ms UE eNB 1ms+ FAt1.5ms TTI 1 ms HARQ RTT 1.5ms1ms+ FAt 1 ms FDD RIT TDD RIT
  • 34. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 34 Control plane latency ‐ IDLE CONNECTED 50Total delay 16Processing delay in UE (L2 and RRC)17 1.5Transmission of RRC Security Mode Command and Connection Reconfiguration (+TTI alignment) 16 4Processing delay in eNB (S1-C → Uu)15 S1-C Transfer delay14 MME Processing Delay (including UE context retrieval of 10ms) 13 S1-C Transfer delay12 Processing delay in eNB (Uu → S1-C)11 1Transmission of RRC Connection Set-up complete10 12Processing delay in the UE (L2 and RRC)9 1Transmission of RRC Connection Set-up (and UL grant)8 4Processing delay in eNB (L2 and RRC)7 1Transmission of RRC and NAS Request6 5UE Processing Delay (decoding of scheduling grant, timing alignment and C-RNTI assignment + L1 encoding of RRC Connection Request) 5 3Preamble detection and transmission of RA response (Time between the end RACH transmission and UE’s reception of scheduling grant and timing adjustment) 3-4 1RACH Preamble2 0.5Average delay due to RACH scheduling period (1ms RACH cycle) 1 Time [ms] LTE Advanced DescriptionStep NOTE: LTE Rel‐8 supports IDLE CONNECTED latency of around 80ms and,  hence, already meets the ITU requirement on C‐plane latency for  IDLE CONNECTED transition
  • 35. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 35 Control plane latency – Dormant  Active 9.5 1 3 1 3 1 0.5 Time [ms] Total delay Transmission of UL data6 UE Processing Delay (decoding of scheduling grant + L1 encoding of UL data) 5 Transmission of Scheduling Grant4 eNB decodes Scheduling Request and generates the Scheduling Grant (+ delay for nearest DL subframe) 3 UE sends Scheduling Request2 Average delay to next SR opportunity (1ms PUCCH cycle) 1 LTE Advanced DescriptionStep Uplink initiated transition from dormant state (DRX substate) to active state (non‐ DRX substate) for synchronised UE; including first uplink data transmission.
  • 36. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 36 Handover interruption Intra‐LTE inter‐eNB handover Target cell already identified and  measured by the UE • Fast radio synchronisation to target  aided by previous measurement Data forwarding initiated before  radio synchronisation to target cell  and backhaul faster than radio • Forwarded data available in target  when UE is ready to receive • Data forwarding does not affect  overall delay UE Source Target HO Preparation HO Command Processing Data Forwarding 4. Processing 5. Grant 1. Radio Synch 3. Preamble 2. RACH Waiting interruption 7. Data 6. Processing
  • 37. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 37 Handover interruption (cont’d) UE Source Target HO Preparation HO Command Processing Data Forwarding 4. Processing 5. Grant 1. Radio Synch 3. Preamble 2. RACH Waiting interruption 7. Data 6. Processing 10.5Total delay 1Transmission of DL Datta7 2Decoding of scheduling grant and timing alignment 6 5Preamble detection and transmission of RA response (Time between the end RACH transmission and UE’s reception of scheduling grant and timing adjustment) 4-5 1RACH Preamble3 0.5Average delay due to RACH scheduling period (1ms periodicity) 2 1Radio Synchronisation to the target cell1 Time [ms] LTE Advanced DescriptionStep Note: This delay does not depend on the frequency of the target in the typical case where the cell has already been measured by the UE
  • 38. © 3GPP 2009 Mobile World Congress, Barcelona, 19th February 2009© 3GPP 2009 <3GPP LTE-Advanced Evaluation Workshop, Dec. 17-18, 2009> 38 References TR 36.912: Feasibility study for Further Advancements for E‐UTRA (LTE‐Advanced)  TS 36.300: E‐UTRA and E‐UTRAN Overall description TS 36.304: E‐UTRA User Equipment (UE) procedures in idle mode TS 36.321: E‐UTRA Medium Access Control (MAC) protocol  specification TS 36.322: E‐UTRA Radio Link Control (RLC) protocol specification TS 36.323: E‐UTRA Packet Data Convergence Protocol (PDCP)  specification TS 36.331: E‐UTRA Radio Resource Control (RRC) Protocol  specification Latest versions of these specifications can be acquired from: http://www.3gpp.org/ftp/Specs/html‐info/36‐series.htm