Math 2
Relations and Functions
Function Rules, Tables & Graphs
Vocabulary
Relation – set of ordered pairs
Domain – x values
Range – y values
Function – relation that assigns exactly
one value in the range to each value in
the domain
Function Examples
This is a function. This is NOT a function.
1
2
3
2
3
1
2
3
2
3
Examples
Find the domain & range.
1) {(1,2), (1,7), (3,4)}
2) Table x y
-1 3
0 6
4 -1
3) Mapping
4
5
6
-1
2
Examples
Find the domain & range.
1) {(1,2), (1,7), (3,4)}
D: 1, 3
R: 2, 7, 4
2) Table
D: -1, 0, 4
R: 3, 6, -1
x y
-1 3
0 6
4 -1
3) Mapping
4
5
6
-1
2
3) D: -1, 2
R: 4, 5, 6
Examples
Use a vertical line test to
determine if the relation is
a function.
4) {(4,-2), (1,2), (0,1), (-2,2)}
5) {(0,2), (1,-1), (-1,4), (0,-3)}
Examples
Use a vertical line test to
determine if the relation is
a function.
4) {(4,-2), (1,2), (0,1), (-2,2)}
No
5) {(0,2), (1,-1), (-1,4), (0,-3)}
Yes
Examples
Use a mapping to
determine if the relation
is a function.
6) {(3,-2), (8,1), (9,2), (3,3)}
7) {(6,0), (7,-1), (6,0), (2,6)}
Find the range if the
domain is {-4, -2, 0, 4}.
8) y = -2x + 1
9) f(x) = 3x – 7
10) y = x3
+ 2
Examples
Model the rule with a table and a graph.
Use D={ -2, -1, 0, 1, 5}
11)f(x) = 3x + 4 12) f(x) = |x| - 1
Examples
Model the rule with a table and a graph.
Use D={ -2, -1, 0, 1, 5}
13) y = x2
– 1 14) y = 8 - x

Relations & functions

  • 1.
    Math 2 Relations andFunctions Function Rules, Tables & Graphs
  • 2.
    Vocabulary Relation – setof ordered pairs Domain – x values Range – y values Function – relation that assigns exactly one value in the range to each value in the domain
  • 3.
    Function Examples This isa function. This is NOT a function. 1 2 3 2 3 1 2 3 2 3
  • 4.
    Examples Find the domain& range. 1) {(1,2), (1,7), (3,4)} 2) Table x y -1 3 0 6 4 -1 3) Mapping 4 5 6 -1 2
  • 5.
    Examples Find the domain& range. 1) {(1,2), (1,7), (3,4)} D: 1, 3 R: 2, 7, 4 2) Table D: -1, 0, 4 R: 3, 6, -1 x y -1 3 0 6 4 -1 3) Mapping 4 5 6 -1 2 3) D: -1, 2 R: 4, 5, 6
  • 6.
    Examples Use a verticalline test to determine if the relation is a function. 4) {(4,-2), (1,2), (0,1), (-2,2)} 5) {(0,2), (1,-1), (-1,4), (0,-3)}
  • 7.
    Examples Use a verticalline test to determine if the relation is a function. 4) {(4,-2), (1,2), (0,1), (-2,2)} No 5) {(0,2), (1,-1), (-1,4), (0,-3)} Yes
  • 8.
    Examples Use a mappingto determine if the relation is a function. 6) {(3,-2), (8,1), (9,2), (3,3)} 7) {(6,0), (7,-1), (6,0), (2,6)} Find the range if the domain is {-4, -2, 0, 4}. 8) y = -2x + 1 9) f(x) = 3x – 7 10) y = x3 + 2
  • 9.
    Examples Model the rulewith a table and a graph. Use D={ -2, -1, 0, 1, 5} 11)f(x) = 3x + 4 12) f(x) = |x| - 1
  • 10.
    Examples Model the rulewith a table and a graph. Use D={ -2, -1, 0, 1, 5} 13) y = x2 – 1 14) y = 8 - x