SlideShare a Scribd company logo
Quantum Dots for High Temperature
                                                      Sensing
                                         Devin          Pugh-Thomas 1,2,                                     Brian M.                    Walsh 2,                 Mool C.                        Gupta1
1 University of Virginia, Charles L. Brown Department of Electrical and Computer Engineering, Charlottesville, VA 22904
                  2 NASA Langley Research Center, Laser Remote Sensing Branch, Hampton, VA 23681

 Abstract High temperature luminescence based sensing is demonstrated by embedding colloidal CdSe/ZnS
 quantum dots into a high temperature SiO2 dielectric matrix. The nanocomposite was solution fabricated. The
 CdSe/ZnS quantum dots in the nanocomposite show an absorption band at a wavelength of 600 nm. The room
 temperature photoluminescence peak was observed at 606 nm. Temperature–dependent spectral and intensity modes
 were investigated from 295-540 K. The sensor sensitivity is 0.11 nm/oC.


                      Introduction                           What are quantum dots?                                                                                                                               0.35

 Colloidal CdSe quantum dots have been                                                                                                                                                                                                                 CdSe (ZnS) 1mm film
                                                              Quantum dots are semiconductors whose excitons                                                                                                                                           CdSe (ZnS) 5mm film
 highlighted as one of the most distinguished                                                                                                                                                                     0.30   (a)                           CdSe (ZnS) solution
 photonic materials in nanotechnology. One driver             (electron-hole pairs) exhibit 3D quantum confinement.
 for such research is the potential for application of        They have properties between bulk semiconductors and




                                                                                                                                                                                             Absorption (A.U.)
                                                                                                                                                                                                                         (b)
 quantum dots (QDs) into next-generation                      atoms which allows wavelength tunability with particle                                                                                              0.25
 electronic and photonic devices. Due to quantum              size. Typical dimensions are 1-100 nm.
 confinement, QDs have unique optical properties                                                                                       CdSe/ZnS core-shell quantum dot.                                           0.20
 that resemble those of single molecules. The                                                                                                                                                                              (c)
 temperature dependence of photoluminescence
 (PL) was recently demonstrated using quantum                                                                                                                                                                     0.15
 dots, opening the field for thermometry
 applications [1-2] . The insensitivity of the
 emission to oxygen and other chemical species                                                                                                                                                                    0.10
 presages these materials for luminescence                                                                                                                                                                           450          500      550         600       650         700
 thermometry for aerospace applications.                                                                                                                                                                                                 Wavelength (nm)

 A step towards developing low cost opto-sensing                                                                                                                                         UV-vis absorption spectra of CdSe/ZnS:SiO2 quantum
 devices consists of immobilizing quantum dots in                                                                                                                                        dot nanocomposite (a) 1 mm film, (b) 5 mm film and
 solid support structures. When embedded into                                                                                                                                            (c) solution recorded at T=295K.
 select matrices, quantum dot-clusters exhibit
 stabilized emission and high quantum yield. For
 high temperature applications, the matrix must not                                                                                                                                                               635
 impede the luminescence and needs to be                                                                                                      AFM thin film morphology.
 chemically and thermally stable. In this work, a                                                                                                                                                                                  Ramp up
                                                                                                                                                                                                                                   Cool down
 CdSe(ZnS):SiO2 luminescence-based high                                                                                                                                                                           630
 temperature optical sensor is demonstrated.                                Band gap structure of CdSe/ZnS:SiO2 thin film.                                                                 Peak wavelength (nm)

                                                                                                                                                                                                                  625


                                                                                                                                                                                                                  620


                                                                                                                                                                                                                  615


                                                                                                                                                                                                                  610
                                                                                                                                                                                                                    250          300    350      400      450     500        550
                                                                                                                                                                                                                                         Temperatrue (K)

                                                                                                                                                                                                              Sensor stability under thermal cycling for
                                                                                                                                                                                                              the peak wavelength shift.



                                                                                                                                                                                                                     Conclusions
                                                                                                                                                                                       To realize low cost opto-sensing devices, we
                                                       Results                                                                                                                         synthesized nanocomposite thin films of thermally and
                                                                                                                                                                                       photochemically stable semiconductor quantum dots.
                                                                                                                                                                                       The emission peak is Stokes shifted and the FWHM
                      50                                                  140
                                                                                                                                                                                       increases with temperature. The temperature
                                                                                                                                   Theoretical Expression for the
                                                    295 K                                                                                                                              dependent spectral shift of the QD PL emission under
                                                                                                                                   Temperature dependent Linewidth:
                                                    300 K                            Experiment                                                                                        thermal cycle enables self-referenced intensity based
                      40                            315 K                 130        Theory
                                                    345 K
                                                                                                                                                                                       temperature measurements with 0.11 nm/oC
                                                                                                                                                                                  1
                                                    370 K                                                                                                          ELO             sensitivity. For the first time, we show a
                                                    395 K                                                                         (T )  inh   AC T  LO exp 
                                                                                                                                                                    k T   1
                                                                                                                                                                                      CdSe/ZnS:SiO2 luminescence-based high temperature
   Intensity (A.U.)




                                                             FWHM (meV)




                                                                          120                                                                                       B  
                      30                            425 K                                                                                                                             sensor. This CdSe/ZnS:SiO2 sensor can be applied in
                                                    450 K
                                                    480 K                                                                                                                              combination with other luminescent indicators for
                      20
                                                    525 K                 110                                                        inh − inhomogeneous linewidth                    multi-sensing applications using the same
                                                                                                                                     AC − exciton-acoustic phonon                     immobilization chemistry.
                                                                                                        inh= 52.5 meV                    scattering coefficient
                                                                          100
                                                                                                        AC = 0.031 meV/K
                      10                                                                                                             LO −exciton-LO phonon coupling
                                                                                                        LO= 50 meV
                                                                                                                                           coefficient                                                                                 References
                                                                           90                           ELO= 25 meV
                                                                                                                                     ELO − LO phonon energy                            1.) G. W. Walker, V.C. Sundar, C. M. Rudzinski, D. M. Wun, G.
                       0                                                                                                                                                               Bawendi, D. G. Nocera, Appl. Phys. Lett. 83, 3555-3557, 2003.
                                                                                                                                     kB − Boltzmann constant
                       570 580 590 600 610 620 630 640 650                  250    300   350      400   450      500        550                                                        2.) G. De Bastida, F. J. Arregui, J. Goicoechea, I. R. Matias,
                                  Wavelength (nm)                                          Temperature (K)                                                                             Sensors, 6, 1378-1379, 2006

   Temperature response of the CdSe/ZnS:SiO2                              Variation in the full width at half maximum                                                                  Contact: Devin Pugh-Thomas
   photoluminescence from room temperature to 525 K.                      (FWHM) with respect to temperature.                                                                          Phone: (757) 864-3854, E-mail: dmp4t@virginia.edu

More Related Content

What's hot

Quantum dots and their applications
Quantum dots and their applicationsQuantum dots and their applications
Quantum dots and their applications
Dragon5588
 
Graphene Quantum Dots
Graphene Quantum DotsGraphene Quantum Dots
Graphene Quantum Dots
Ricardo Camacho Sánchez
 
Quantum dot laser
Quantum dot laserQuantum dot laser
Quantum dot laser
Ahmed Amer
 
Case study presentation
Case study presentationCase study presentation
Case study presentation
Lucyhague
 
Nanotechnology: Quantum Dots
Nanotechnology: Quantum DotsNanotechnology: Quantum Dots
Nanotechnology: Quantum Dots
Marija Nedelkovska
 
Quantum electronic devices
Quantum electronic devicesQuantum electronic devices
Quantum electronic devices
ThanmaiYadav
 
What We Do In My Lab
What We Do In My LabWhat We Do In My Lab
What We Do In My Lab
M. Faisal Halim
 
20120406183244644
2012040618324464420120406183244644
20120406183244644
Mantosh Gpt
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic DeviceAnalysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
M. Faisal Halim
 
Quantum dots
Quantum dotsQuantum dots
Quantum dots
Sidhu Taran
 
Quantum dot LED (QLED)
Quantum dot LED (QLED)Quantum dot LED (QLED)
Quantum dot LED (QLED)
Shrirang Pathak
 
Quantum dot solar cell
Quantum dot solar cellQuantum dot solar cell
Quantum dot solar cell
Rohil Kumar
 
ACS QD April 2013
ACS QD April 2013ACS QD April 2013
ACS QD April 2013
Michael Smith
 
Quantum Dots
Quantum DotsQuantum Dots
Quantum Dots
Quantum DotsQuantum Dots
Quantum Dots
Gavin McLean
 
Nanotechnology & its Nanowires Application (By-Saquib Khan)
Nanotechnology & its Nanowires Application (By-Saquib Khan)Nanotechnology & its Nanowires Application (By-Saquib Khan)
Nanotechnology & its Nanowires Application (By-Saquib Khan)
SAQUIB KHAN
 
Nanowire Solar Cells
Nanowire Solar CellsNanowire Solar Cells
Nanowire Solar Cells
University of Kentucky
 
Quantum dots 1
Quantum dots 1Quantum dots 1
Quantum dots 1
Ashraf Ali
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
Vasanth Victor
 
nanowires
nanowires nanowires
nanowires
Nitish Prajapati
 

What's hot (20)

Quantum dots and their applications
Quantum dots and their applicationsQuantum dots and their applications
Quantum dots and their applications
 
Graphene Quantum Dots
Graphene Quantum DotsGraphene Quantum Dots
Graphene Quantum Dots
 
Quantum dot laser
Quantum dot laserQuantum dot laser
Quantum dot laser
 
Case study presentation
Case study presentationCase study presentation
Case study presentation
 
Nanotechnology: Quantum Dots
Nanotechnology: Quantum DotsNanotechnology: Quantum Dots
Nanotechnology: Quantum Dots
 
Quantum electronic devices
Quantum electronic devicesQuantum electronic devices
Quantum electronic devices
 
What We Do In My Lab
What We Do In My LabWhat We Do In My Lab
What We Do In My Lab
 
20120406183244644
2012040618324464420120406183244644
20120406183244644
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic DeviceAnalysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device
 
Quantum dots
Quantum dotsQuantum dots
Quantum dots
 
Quantum dot LED (QLED)
Quantum dot LED (QLED)Quantum dot LED (QLED)
Quantum dot LED (QLED)
 
Quantum dot solar cell
Quantum dot solar cellQuantum dot solar cell
Quantum dot solar cell
 
ACS QD April 2013
ACS QD April 2013ACS QD April 2013
ACS QD April 2013
 
Quantum Dots
Quantum DotsQuantum Dots
Quantum Dots
 
Quantum Dots
Quantum DotsQuantum Dots
Quantum Dots
 
Nanotechnology & its Nanowires Application (By-Saquib Khan)
Nanotechnology & its Nanowires Application (By-Saquib Khan)Nanotechnology & its Nanowires Application (By-Saquib Khan)
Nanotechnology & its Nanowires Application (By-Saquib Khan)
 
Nanowire Solar Cells
Nanowire Solar CellsNanowire Solar Cells
Nanowire Solar Cells
 
Quantum dots 1
Quantum dots 1Quantum dots 1
Quantum dots 1
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
nanowires
nanowires nanowires
nanowires
 

Similar to Quantum Dots for High Temperature Sensing

CHEMISTRY OF NANOSCALE MATERIALS
CHEMISTRY OF NANOSCALE MATERIALSCHEMISTRY OF NANOSCALE MATERIALS
CHEMISTRY OF NANOSCALE MATERIALS
INSTITUTO TECNOLÓGICO DE SONORA
 
Nano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed AnwarNano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed Anwar
Engr Mansoor Mirza
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
Sergey Sozykin
 
84999635
8499963584999635
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
nirupam12
 
zagros
zagroszagros
Final-Investigation into interlayer interactions in MoSe2
Final-Investigation into interlayer interactions in MoSe2Final-Investigation into interlayer interactions in MoSe2
Final-Investigation into interlayer interactions in MoSe2
André Mengel
 
Jo2416561659
Jo2416561659Jo2416561659
Jo2416561659
IJERA Editor
 
Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012
The Air Force Office of Scientific Research
 
Diagnostic line ratios_in_the_ic1805_optical_gas_complex
Diagnostic line ratios_in_the_ic1805_optical_gas_complexDiagnostic line ratios_in_the_ic1805_optical_gas_complex
Diagnostic line ratios_in_the_ic1805_optical_gas_complex
Sérgio Sacani
 
Makram thesis presentation
Makram thesis presentationMakram thesis presentation
Makram thesis presentation
abdelqad
 
11.m. kamruzzaman 117 124
11.m. kamruzzaman  117 12411.m. kamruzzaman  117 124
11.m. kamruzzaman 117 124
Alexander Decker
 
Quantum dot
Quantum dotQuantum dot
Quantum dot
Subhasis Shit
 
Spintronics
SpintronicsSpintronics
Spintronics
jusangpark71
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
M. Faisal Halim
 
Microstrip antennas
Microstrip antennasMicrostrip antennas
Microstrip antennas
Suresh Khaleri
 
Mh2420342042
Mh2420342042Mh2420342042
Mh2420342042
IJERA Editor
 
Application Note: Simple Method of Measuring the Band Gap Energy Value of TiO...
Application Note: Simple Method of Measuring the Band Gap Energy Value of TiO...Application Note: Simple Method of Measuring the Band Gap Energy Value of TiO...
Application Note: Simple Method of Measuring the Band Gap Energy Value of TiO...
PerkinElmer, Inc.
 
Velez reyes 2 b
Velez reyes 2 bVelez reyes 2 b
Velez reyes 2 b
Michael Chastain
 
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
Reenergize
 

Similar to Quantum Dots for High Temperature Sensing (20)

CHEMISTRY OF NANOSCALE MATERIALS
CHEMISTRY OF NANOSCALE MATERIALSCHEMISTRY OF NANOSCALE MATERIALS
CHEMISTRY OF NANOSCALE MATERIALS
 
Nano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed AnwarNano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed Anwar
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
 
84999635
8499963584999635
84999635
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
zagros
zagroszagros
zagros
 
Final-Investigation into interlayer interactions in MoSe2
Final-Investigation into interlayer interactions in MoSe2Final-Investigation into interlayer interactions in MoSe2
Final-Investigation into interlayer interactions in MoSe2
 
Jo2416561659
Jo2416561659Jo2416561659
Jo2416561659
 
Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012
 
Diagnostic line ratios_in_the_ic1805_optical_gas_complex
Diagnostic line ratios_in_the_ic1805_optical_gas_complexDiagnostic line ratios_in_the_ic1805_optical_gas_complex
Diagnostic line ratios_in_the_ic1805_optical_gas_complex
 
Makram thesis presentation
Makram thesis presentationMakram thesis presentation
Makram thesis presentation
 
11.m. kamruzzaman 117 124
11.m. kamruzzaman  117 12411.m. kamruzzaman  117 124
11.m. kamruzzaman 117 124
 
Quantum dot
Quantum dotQuantum dot
Quantum dot
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
 
Microstrip antennas
Microstrip antennasMicrostrip antennas
Microstrip antennas
 
Mh2420342042
Mh2420342042Mh2420342042
Mh2420342042
 
Application Note: Simple Method of Measuring the Band Gap Energy Value of TiO...
Application Note: Simple Method of Measuring the Band Gap Energy Value of TiO...Application Note: Simple Method of Measuring the Band Gap Energy Value of TiO...
Application Note: Simple Method of Measuring the Band Gap Energy Value of TiO...
 
Velez reyes 2 b
Velez reyes 2 bVelez reyes 2 b
Velez reyes 2 b
 
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
 

Quantum Dots for High Temperature Sensing

  • 1. Quantum Dots for High Temperature Sensing Devin Pugh-Thomas 1,2, Brian M. Walsh 2, Mool C. Gupta1 1 University of Virginia, Charles L. Brown Department of Electrical and Computer Engineering, Charlottesville, VA 22904 2 NASA Langley Research Center, Laser Remote Sensing Branch, Hampton, VA 23681 Abstract High temperature luminescence based sensing is demonstrated by embedding colloidal CdSe/ZnS quantum dots into a high temperature SiO2 dielectric matrix. The nanocomposite was solution fabricated. The CdSe/ZnS quantum dots in the nanocomposite show an absorption band at a wavelength of 600 nm. The room temperature photoluminescence peak was observed at 606 nm. Temperature–dependent spectral and intensity modes were investigated from 295-540 K. The sensor sensitivity is 0.11 nm/oC. Introduction What are quantum dots? 0.35 Colloidal CdSe quantum dots have been CdSe (ZnS) 1mm film Quantum dots are semiconductors whose excitons CdSe (ZnS) 5mm film highlighted as one of the most distinguished 0.30 (a) CdSe (ZnS) solution photonic materials in nanotechnology. One driver (electron-hole pairs) exhibit 3D quantum confinement. for such research is the potential for application of They have properties between bulk semiconductors and Absorption (A.U.) (b) quantum dots (QDs) into next-generation atoms which allows wavelength tunability with particle 0.25 electronic and photonic devices. Due to quantum size. Typical dimensions are 1-100 nm. confinement, QDs have unique optical properties CdSe/ZnS core-shell quantum dot. 0.20 that resemble those of single molecules. The (c) temperature dependence of photoluminescence (PL) was recently demonstrated using quantum 0.15 dots, opening the field for thermometry applications [1-2] . The insensitivity of the emission to oxygen and other chemical species 0.10 presages these materials for luminescence 450 500 550 600 650 700 thermometry for aerospace applications. Wavelength (nm) A step towards developing low cost opto-sensing UV-vis absorption spectra of CdSe/ZnS:SiO2 quantum devices consists of immobilizing quantum dots in dot nanocomposite (a) 1 mm film, (b) 5 mm film and solid support structures. When embedded into (c) solution recorded at T=295K. select matrices, quantum dot-clusters exhibit stabilized emission and high quantum yield. For high temperature applications, the matrix must not 635 impede the luminescence and needs to be AFM thin film morphology. chemically and thermally stable. In this work, a Ramp up Cool down CdSe(ZnS):SiO2 luminescence-based high 630 temperature optical sensor is demonstrated. Band gap structure of CdSe/ZnS:SiO2 thin film. Peak wavelength (nm) 625 620 615 610 250 300 350 400 450 500 550 Temperatrue (K) Sensor stability under thermal cycling for the peak wavelength shift. Conclusions To realize low cost opto-sensing devices, we Results synthesized nanocomposite thin films of thermally and photochemically stable semiconductor quantum dots. The emission peak is Stokes shifted and the FWHM 50 140 increases with temperature. The temperature Theoretical Expression for the 295 K dependent spectral shift of the QD PL emission under Temperature dependent Linewidth: 300 K Experiment thermal cycle enables self-referenced intensity based 40 315 K 130 Theory 345 K temperature measurements with 0.11 nm/oC 1 370 K   ELO   sensitivity. For the first time, we show a 395 K (T )  inh   AC T  LO exp   k T   1  CdSe/ZnS:SiO2 luminescence-based high temperature Intensity (A.U.) FWHM (meV) 120  B   30 425 K  sensor. This CdSe/ZnS:SiO2 sensor can be applied in 450 K 480 K combination with other luminescent indicators for 20 525 K 110 inh − inhomogeneous linewidth multi-sensing applications using the same AC − exciton-acoustic phonon immobilization chemistry. inh= 52.5 meV scattering coefficient 100 AC = 0.031 meV/K 10 LO −exciton-LO phonon coupling LO= 50 meV coefficient References 90 ELO= 25 meV ELO − LO phonon energy 1.) G. W. Walker, V.C. Sundar, C. M. Rudzinski, D. M. Wun, G. 0 Bawendi, D. G. Nocera, Appl. Phys. Lett. 83, 3555-3557, 2003. kB − Boltzmann constant 570 580 590 600 610 620 630 640 650 250 300 350 400 450 500 550 2.) G. De Bastida, F. J. Arregui, J. Goicoechea, I. R. Matias, Wavelength (nm) Temperature (K) Sensors, 6, 1378-1379, 2006 Temperature response of the CdSe/ZnS:SiO2 Variation in the full width at half maximum Contact: Devin Pugh-Thomas photoluminescence from room temperature to 525 K. (FWHM) with respect to temperature. Phone: (757) 864-3854, E-mail: dmp4t@virginia.edu