SlideShare a Scribd company logo
1 of 63
Евгений Пузырёв
                    Sokrates T. Pantelides group
                    Университет Вандербильт,
                          Теннесси США
 Collaborators

 Kalman Varga, Kirill Bolotin, Physics & Astronomy Vanderbilt University
 Dan Fleetwood, Ron Schrimpf, EECS Vanderbilt University
 Umesh Mishra, EECS University of California At Santa Barbara
 Xiaoguang Zhang, CNMS, G. E. Ice, MST, Oak Ridge National Lab
 and many more others

SiO2                                        Graphene
1. Обзор методов вычислительной физики
   Много-масштабное моделирование: от дефектов к
ошибкам в приборах

2. Локальная структура металлических сплавов:
диффузионное рассеяние и атомные смещения.

3. Дефекты в полупроводниках и поведение приборов:
GaN, SiC и AlSb.

4. Проблемы функциональности материалов для
мемристора TiO2 и ZnO.

5. Графен,- материал будущего или поиск ниши для
применения.
Много-масштабное моделирование
Практическое применение функционала плотности
Основные методы
     много-масштабного моделирования
I Применение функционала плотности
1.  Расчеты возбужденных состояний 10-100 атомов
    а) Ширина запрещенной зоны
    б) Положение электронного уровня дефекта
LDA+U
Hybrid functional
GW, absorption spectrum T(100 atoms) = 100 000 MPP

2.  Расчеты из первых принципов 100-1000 атомов
    a) Атомные координаты и электронная
    б) Проводимость
LDA (VASP, Quantum ESPRESSO, SIESTA)

II Применение полу-эмпирических потенциалов
Молекулярная динамика и расчеты методом Монте-Карло
10000-1000000 атомов
Классическая механика (LAMMPS, NAMD)
Introduction: Ion-Induced Leakage Currents
                                              Metallization burnout after SEGR

   Heavy-Ion strikes degrade
   or destroy dielectric layers


I-V following biased irradiation of
     3.3 nm SiO2 capacitors



                                                                        Lum, et al., IEEE TNS 51 3263 (2004)

                                                      Distinct Electrical degradation modes:
                                                            Rupture (Hard breakdown, HB)
                                                                    Soft breakdown (SB)
                                                    Long-term reliability degradation (LTRD)
Massengill, et al., IEEE TNS 48 1904 (2001)
Отдача при низких энергиях

TRIM Calculations:

 Sample geometry:




   Only atomic recoils occurring
         IN the SiO2 layer!


High-LET ions generate O(100) eV
   recoils in thin oxide layers!
Methods


• Quantum Mechanical MD                             Dynamical atomic and
   –   DFT-LDA for energy and forces                 electronic structures
   –   Classical mechanics for ions
   –   Cell sizes: 200-1000 atoms                    Fully QM transport calculations for
                                                        underlying transport physics
   –   Calculation times: 0-1000 fs
• Quantum Mechanical Transport Calculations
   – Complex-valued potentials at boundaries as “source” and “sink”
   – Non-equilibrium Green’s function method for transport properties
   – Orbital basis set: LaGrange functions
• Percolation Theory
   – Mott defect-to-defect tunneling
                                                 Physically motivated, QM and
   – Node-to-node percolation model         experimentally parameterized model for
                                                  realistic device structures!
Много-масштабное моделирование:
                   От дефектов к ошибкам в приборах

Arbitrary Materials System                      Arbitrary Device geometry
                                                      (~1 nm)           (~0.1 micron)


                                        QM Transport


 Time-dependent atomic
       QM Dynamics
 and electronic structure
                                                          Percolation Transport

          Materials Response
           Defect Structure     I-V Characteristics

Beck, et al., IEEE TNS
  55, 3025 (2008)




         Ab Initio calculation of experimentally measureable device properties!
Вычислительный Метод
  Молекулярная динамика из первых пртципов

• Применение функционала плотности             Highest fidelity for bond-
   – DFT-LDA for energy and forces
                                               breaking/forming during
                                                  low-energy events
• Классическая механика для атомных смещений
• Размер ячейки 200-1000 атомов
• Время 0-1000 fs

Atomic AND electronic structure!



        Apply KE to primary atom…
              …evolve system!
Отдача при низких энергиях

    …Correlates with formation of electronic defect states in band gap!




                                                                                     1



                                                                                     0




0                               29                         58         femtoseconds
                                        after recoil




          Beck, et al., IEEE TNS 55, 3025 (2008)
Current Results: Multi-scale Model

Arbitrary Materials System                            Arbitrary Device geometry
                                                            (~1 nm)           (~0.1 micron)


                                               QM Transport


           QM Dynamics
        Time-dependent atomic                                              Time-dependent atomic
        and electronic structure                                Percolation and electronic structure
                                                                            Transport

            Materials Response
             Defect Structure         I-V Characteristics

Beck, et al., IEEE TNS 55,
      3025 (2008)




                Ab Initio calculation of experimentally measureable device properties!
Defect: single oxygen vacancy




                                    EF


                           defect




Nikolai Sergueev
Defect: single oxygen vacancy


                                                     2.0

                                                     1.5




                                      Current (µA)
                      EF                             1.0

                                                     0.5

                                                     0
                                                         0   0.5    1.0     1.5   2.0
                                                             Bias voltage (V)
            Transport energy window
              from -Vb/2 to +Vb/2


Nikolai Sergueev
Amorphous SiO2 leakage currents

   Creating defects in a-SiO2

   Number of oxygen to be removed:
      from 1 to 6




                                         16.24 Å
              6        1   3
          2
                   4
                           5


                                     556 atoms in
                                     scattering region   16.24 Å
Nikolai Sergueev
structure
   Mol. Dyn. QM Calculations                         First Principles Transport QM Model

                         Electrode               a-SiO2             Electrode




        Theoretical formalism           Bias voltage Vb

        Tuning the model: crystalline SiO2 system
        Leakage currents in thin amorphous SiO2
Nikolai Sergueev
Density Functional Theory + “Source and sink” method
     Conventional transport methods:
             scattering theory, open infinite system


                                                                  Infinite
              …                        a-SiO2                 …   system


       Our formalism:
K. Varga and S.T. Pantelides,
PRL 98, 076804 (2007)                                              Finite
                   Source              a-SiO2          Sink       system


     complex potential                                 complex potential
Nikolai Sergueev
Flow-chart:
                      Solve diagonalization problem:


    W=Wsource+Wsink

                      Compute Green’s functions:




                      Calculate charge density:




                       Compute leakage current:




Nikolai Sergueev
Initial model calculations
  Crystalline SiO2 – computationally fast


                        Al (100)    SiO2      Al (100)


                                      d



            Can we compute device related property ?


       How does conductance of SiO2 depend on oxide thickness d ?




Nikolai Sergueev
Conductance versus thickness of SiO2
                                                              Not defected
                                                              structure yet!




   Conductance: exponential dependence as expected from tunneling


Nikolai Sergueev
Applying bias voltage across the device …
                             Calculations                                        Experiment
             109
                       0.54 nm
             108
                           0.8 nm
Current (A/cm2)




             107                 1.07 nm

             106                     1.35 nm
                                            1.61 nm
             105

             104
             103
                   0       0.5      1.0     1.5            2.0
                             Bias voltage (V)
                                                                                 M. Fukuda et al,
                                                                                 Jpn. J. Appl. Phys. (1998)
              We used standard               EF
                                                      Al                    Al
                Hamiltonian                                      ~ 4.5 eV

                                                                  SiO2
Nikolai Sergueev
Our formalism allows:
          --- not only to compute current and conductance
          --- but also to analyze the transport mechanism




                                           EF
                                                                           Oxide states




               PDOS – density of states that has an amplitude on oxide atoms
               Transmission – describes the tunneling efficiency

Nikolai Sergueev
Increasing number of defects …



                            1                                  4
Transmission




                                                Transmission
                            2                                  5


                            3                                  6


                         Energy (eV)                           Energy (eV)


         Nikolai Sergueev
1 defect
       Current (µA)




                      Bias voltage (V)
Nikolai Sergueev
2 defects
       Current (µA)




                      Bias voltage (V)
Nikolai Sergueev
3 defects
       Current (µA)




                      Bias voltage (V)
Nikolai Sergueev
4 defects
       Current (µA)




                      Bias voltage (V)
Nikolai Sergueev
5 defects
       Current (µA)




                      Bias voltage (V)
Nikolai Sergueev
6 defects
       Current (µA)




                      Bias voltage (V)
Nikolai Sergueev
Results: QM Transport Calculations
Al      a-SiO2             Al         …introduce defect states with specific
                                         energy levels and localizations




                                QM Tunneling Probability:
                                Convolution of electronic
     Individual defects…            DOS and spatial
                                      information




                                       QM calculated I-V characteristics showing
                                       activation of discrete tunneling paths!
We performed first principles quantum mechanical
   transport calculations and we obtained the following:

              conductance vs. oxide thickness dependence is correct
              current-voltage dependence qualitatively agrees with experiment

              the defects result in the step-like functions of the IV

              current increases with number of defects


    Going from atomic-scale to mesoscale description …


                                             parameters
First Principles Transport QM Model                            Percolation Model




Nikolai Sergueev
Current Results: Multi-scale Model

Arbitrary Materials System                          Arbitrary Device geometry
                                                          (~1 nm)           (~0.1 micron)


                                             QM Transport


         QM Dynamics
      Time-dependent atomic
      and electronic structure
                                                                     Percolation Transport

          Materials Response
           Defect Structure         I-V Characteristics

Beck, et al., IEEE TNS
  55, 3025 (2008)




              Ab Initio calculation of experimentally measureable device properties!
Results: Percolation Model
                     Parameterize defect atoms with:
From QM MD calculation          Position
                              Eigenvalue           From QM DOS calculation



                                             Defect levels from SHI-induced defects!
Mott defect-to-defect tunneling
            æ        ö         é      ù
                                       
De        = çe - e ÷ + qE êe x ×(r - r )ú
    i® j    è j     iø         ë      j   i û
          ì
                     æ   ö
                                                                   J = ν0Σij(σiboundary-σj)
          ï          ç- r -r ÷
          ï
          ï     exp ç j i ÷,                    De      £0
                     ç     r       ÷               i® j              ν0 = 1.15 × 1013 s–1
          ï          ç             ÷
          ï          è      0
                                   ø
P       =í
 i® j     ï       æ  
                                           ö
          ï       ç- r -r          -De       ÷
                                        i® j÷
          ï exp ç      j      i
                                 +             , De        >0
          ï       ç    r              kT ÷   ÷       i® j
          ï       ç      0
                  è                          ø
          î
                   é    æ          ö             æ      ö      ù
  j         j
               å
s s + 1 = s s + ês s ç1- s s ÷ P
                   ë i è          jø i® j
                                          - s s ç1- s s ÷ P
                                                jè
                                                               ú
                                                      i ø j ® iû
                i
                ri – defect position
Defects
                E – external field
   DOS          εi - energy level relative to EF
                σi – site occupancy, [0, 1], at boundary σ=0.5
                ν0- Mott’s escape frequency
                   Iterative procedure for occupancies until Δσi < 10-7
                                     S. Simeonov et al. Physica Status Solidi, 13, 2004
Defect-to-defect tunneling


• L =1.4 nm                                  Defects      DOS
• Defect energy levels
• Defect atomistic map                       ri, εi ,σi



       time = 78fs
       22 defects


                         L


                                         E
Defect-to-defect tunneling
            ri, εi ,σi
Leakage Current Temperature Dependence
        4     2
  Current, nA
-2     0-4
        -6




             -20.0       -10.0    0.0        10.0   20.0
                                 qE, MV/cm
Leakage Current Time Dependence
       6    4
Current, nA
   2   0
       -2




         -10.0   -5.0   0.0        5.0    10.0   15.0   20.0
                              qE, MV/cm
Model results in real-time
defect evolution and transient currents
Defect time evolution
10 15 20 25
Number of defects




                                                    Energy

                                                    Space
         5




                                                   Transient current
  Current, nA
0.0 4.0 8.0




                                                   Keeps going



                0   200    400       500   600
                          time, fs
Results: Calculated I-V Characteristics

         4

                                   Thermal smoothing
               2
   Current, nA
        0




                   Asymmetric: Defect             Steps showing activation of
                    level dependence               discrete tunneling paths
-2       -4
         -6




             -20            -10         0.0            10            20
                                        qE, MV/cm
Results: Transient I-V Characteristics
6 fs                   32 fs              58 fs




  Thresholds in time and applied field!
Results: Transient Leakage

     Defects and current peaks           Defects and current persists
     within ~200 fs of recoil            on the ns time-scale




                          E=3 V


                          E=1.5 V       Roughness of curve due to
                                     exponential dependence on atomic
                                         and electronic structure!

Transient defect-induced weakness!
As a result of the calculation
            we have direct comparison
            with experiment for the gate
            current as a function of gate
            voltage!




                       Quantitative
                       agreement!


Massengill, et al., IEEE TNS 48 1904 (2001)
Graphene device degradation




• Graphene fabricated by mechanical
  exfoliation from Kish graphite
• Sweep VG with VDS=5mV
Motivation and Outline

 Experiment [1]
   o Graphene’s resistivity response to x-ray radiation,

      ozone exposure, annealing.

   o Defect related Raman D-peak appears after

        x-ray irradiation in air

        ozone exposure, decreases after annealing.


 Theory: behavior of impurities on graphene
   o Temperature and concentration dependence.

   o Need to remove oxygen without vacancy formation (would H help?)


                             [1] E.-X. Zhang et al, IEEE Trans. Nucl. Sci. 58, 2961 (2011)
Graphene device degradation

Two-probe resistances measured on

    •   10 keV irradiated graphene
    •   pristine graphene
    •   ozone exposed graphene (1 min)
    •   annealed (300C for 2 hrs in 200 sccm Ar)
Graphene device degradation
                                                                                                   Ozone exposure




a)                                                                             80

                             8000
                                                                               60
 Integrated intensity Area




                                          G-Peak
                             6000
                                                                                    ID/IG (100%)




                                                                               40                      Defect related D-peak
                             4000

                                                                               20                          • increases x-ray exposure
                             2000
                                               D-Peak                                                      • decreases after temperature anneal
                               0                                               0
                                    Pre    8 Mrad(SiO2) 15 Mrad(SiO2) Anneal
                                             10-keV X-ray Dose
 b)
Theoretical Approach


O                         O desorption   Density Functional Theory
        O migration                                 DFT
                                         •   Defect formation energies
                                         •   Migration/desorption barriers


    O dimer
                                             Kinetic Monte-Carlo
                                                     KMC
                                             Defect dynamics
                                             • Temperature
                                             • Initial concentration
Oxygen Removal and Vacancy Generation

                  1.3 eV         Oxygen: clustering behavior
         0.5 eV

                 0.8 eV          Removal of oxygen
     Bridge 1.3 eV               • Pairs     O2
                                 • Triplets    CO, CO2, VC
            Top
                                 Device degradation

1.1 eV               CO, CO2   1.1 eV            O2
High-temperature Annealing




     Vacancy
                         Concentration of vacancies exceeds
Residual oxygen atom     concentration of residual O
High vs Low Temperature Anneal




             T, oC

             T
Temperature Anneal
                   Initial Defect Concentration Dependence
                                                    High O concentration
                                                                  Lo


                                        vacancy
surface coverage




                                                    Low O, High V concentration

                                      oxygen



                                 T
                   initial O surface coverage

      High T: Removal of oxygen > 0.05 initial surface coverage leads to vacancy formation
      Low T: Oxygen stays on the surface and forms clusters
          Decrease of D-peak, Increase in resistivity

          Method to prevent defect formation during irradiation/annealing?
Oxygen and Hydrogen on Graphene:
Binding energies, Migration and Reaction Barriers

                              O-H is most likely to desorb
            O                   from graphene surface
                 H
                              Leaves carbon network intact
Effect of Hydrogen On
                         Oxygen Annealing
Oxygen/Hydrogen Low                     High
 Concentrations

Low                                     2% O, 10% H
                        @ T = 300 C

                        Final defect
                      concentrations?

High                     15% O, 1% H            15% O, 10% H
Effect of Hydrogen On Oxygen Annealing

Higher Oxygen concentration       Higher Hydrogen concentration
Hydrogen is removed t ~ 0.001 s    Oxygen is removed   t ~ 0.0001 s




                         t~1s                              t~1s




   Removal of residual Oxygen           Residual Hydrogen
    Causes formation of large        Forms clusters L ~ 0.5 nm
      amount of Vacancies            No Vacancies are formed
High O, High H concentrations

              Hydrogen is removed first,
              Removal of residual Oxygen
              Causes formation of Vacancies




              Effect of Hydrogen On Oxygen Annealing
Электронная плотность

                        Разложение по функциям Гаусса

                                                  æ q ö
                                                                      
  
r r =()
              N atoms

              å
                            
                             (
                                
                        rn r - Rn    )         (      )             (
                                             rn r - Rn = ç1- n ÷ r0A r - Rn
                                                         ç Q ÷
                                                         è   Aø
                                                                              )
               n=1




        Перенос заряда
          M gauss

        ()
rn r = hr å cme
         2         -g m r 2

                         m=1

             
 ò
Wcell
          (              )
        rn r - Rn d 3r = QA - qn
                               *
Полная энергия


                                                             
 Etotal =
            W
                 ò           é
                             ë () ()
                         W r êr r
                                    ù
                                    ú
                                    û           W
                                                       ê
                                                       ë    () ()
                                      r r d 3r + ò W q ér q ù r q d 3q + Eion-ion
                                                            ú
                                                            û
                volume                          volume




                                              
     é
 W r êr r
     ë      ()       ù é
                     ú = T êr r
                     û ë        ()    ù
                                      ú
                                      û
                                             é
                                                ()ù
                                        +Vex êr r ú
                                             ë    û

                           
     é    ù
            ()
 W q êr q ú =Vps q +Vhartree q
     ë    û                   ()             ()          Vps q   S q wpseudo q
Кинетическая энергия
                                                                corr corr
                                        T TWang       Teter   TLDA Tatom

                                                 5 
             é
              ()   ù 45
                         ( )              () ( ) ( )
                                 2

                                     òò
                                         5
 TWang-Teter êr r ú =     3p 2     3
                                        r 6 r w1 r - r ' r 6 r ' d 3rd 3r '-
             ë     û 128
                                                                   
                       ( )             ()       () ()
                             2
                                  ò  r 3 r d r - ò r 2 r Ñ r 2 r d 3r
                     21               5         1       1         1
                  -     3p 2   3            3                 2

                    250                         2

Теория линейного отклика


      5      1        3 2     3              1     q2 4          2 q
 w1     w        q      q       , and w                       ln
      8               4       5              2       8q          2 q
            ì6
                  N grid         ü
        ()                         ()
                      ï           ï
TLDA ér r    ù=
                  å íåcnDr ri ý
                            n
  corr                        2
       ê
       ë     ú
             û    i=1 ï n=1
                      î           ï
                                  þ

                           3
              6 æp ö 2  æ k2 ö
     ()
Tatom k = å cn ç ÷ exp ç -
  corr
                çx ÷
                è nø
                        ç 4x ÷
                        è
                               ÷
            n=1               nø
                 
                  
            æ k ö        
                           
   ()
S A ki = å ç1- a ÷ exp -ika iRa
              ç N ÷
         a ÎA è    a ø
                               (        )
λ=1   upper limit von Weizsäcker
λ=1/9 gradient expansion second order
λ=1/5 computational Hartree-Fock
1. Phase Diagram

2. Elastic Properties

3. Defect Formation Energies
Ширина запрещенной зоны
G0W0                             GaN

More Related Content

What's hot

Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...ABDERRAHMANE REGGAD
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentationbinzhao2004
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesnirupam12
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2SinYK
 
Optical Characterization of Inorganic Semiconductors
Optical Characterization of Inorganic SemiconductorsOptical Characterization of Inorganic Semiconductors
Optical Characterization of Inorganic SemiconductorsUniversity of Liverpool
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsTuong Do
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
study of conductivity of fe2o3 using impedance spectroscopy
study of conductivity of fe2o3 using impedance spectroscopystudy of conductivity of fe2o3 using impedance spectroscopy
study of conductivity of fe2o3 using impedance spectroscopyPriyanka Suri
 
Glover stanford nov 14 2011
Glover stanford nov 14 2011Glover stanford nov 14 2011
Glover stanford nov 14 2011tegslides
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Tuong Do
 
Advances in Atomic Data for Neutron-Capture Elements
Advances in Atomic Data for Neutron-Capture ElementsAdvances in Atomic Data for Neutron-Capture Elements
Advances in Atomic Data for Neutron-Capture ElementsAstroAtom
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsClaudio Attaccalite
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Tuong Do
 
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...Sanjay Ram
 
Charge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsCharge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsAstroAtom
 
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...Sanjay Ram
 
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsTuong Do
 

What's hot (20)

Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
 
227th ACS BZ Oral Presentation
227th ACS  BZ Oral Presentation227th ACS  BZ Oral Presentation
227th ACS BZ Oral Presentation
 
Charge, spin and orbitals in oxides
Charge, spin and orbitals in oxidesCharge, spin and orbitals in oxides
Charge, spin and orbitals in oxides
 
Chapter 1 pt 2
Chapter 1 pt 2Chapter 1 pt 2
Chapter 1 pt 2
 
Optical Characterization of Inorganic Semiconductors
Optical Characterization of Inorganic SemiconductorsOptical Characterization of Inorganic Semiconductors
Optical Characterization of Inorganic Semiconductors
 
Lecture 5: Junctions
Lecture 5: JunctionsLecture 5: Junctions
Lecture 5: Junctions
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
study of conductivity of fe2o3 using impedance spectroscopy
study of conductivity of fe2o3 using impedance spectroscopystudy of conductivity of fe2o3 using impedance spectroscopy
study of conductivity of fe2o3 using impedance spectroscopy
 
Glover stanford nov 14 2011
Glover stanford nov 14 2011Glover stanford nov 14 2011
Glover stanford nov 14 2011
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
 
Advances in Atomic Data for Neutron-Capture Elements
Advances in Atomic Data for Neutron-Capture ElementsAdvances in Atomic Data for Neutron-Capture Elements
Advances in Atomic Data for Neutron-Capture Elements
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materials
 
Velez reyes 2 b
Velez reyes 2 bVelez reyes 2 b
Velez reyes 2 b
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
 
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
My Thesis: Influence of Microstructure on the Electronic Transport Behavior o...
 
Charge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ionsCharge exchange and spectroscopy with isolated highly-charged ions
Charge exchange and spectroscopy with isolated highly-charged ions
 
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
MNR & Anti MNR In Conductivity Of Highly Crystallized Undoped Microcrystallin...
 
Chapter11
Chapter11Chapter11
Chapter11
 
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar CellsSolar Cells Lecture 2: Physics of Crystalline Solar Cells
Solar Cells Lecture 2: Physics of Crystalline Solar Cells
 

Similar to лекция 1 обзор методов вычислительной физики

Nano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed AnwarNano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed AnwarEngr Mansoor Mirza
 
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-ReyesReenergize
 
Swift Heavy Ion Irradiation
Swift Heavy Ion IrradiationSwift Heavy Ion Irradiation
Swift Heavy Ion Irradiationkrishslide
 
1 2 syllabus 2010-2011
1 2 syllabus 2010-20111 2 syllabus 2010-2011
1 2 syllabus 2010-2011sandeepb8
 
Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...
Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...
Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...The Ohio State University
 
Dielectrics 2015
Dielectrics 2015Dielectrics 2015
Dielectrics 2015Chris Bowen
 
11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dotsAlexander Decker
 
Electronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsElectronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsAlexander Decker
 
ANSYS Emag 8.0 Capabilities.ppt
ANSYS Emag 8.0 Capabilities.pptANSYS Emag 8.0 Capabilities.ppt
ANSYS Emag 8.0 Capabilities.pptDavidEscudero
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsMohammadreza Nematollahi
 
Implantation introduction
Implantation  introductionImplantation  introduction
Implantation introductionKamalakkannan K
 
Lecture 2 edm wedm and medm
Lecture 2 edm wedm and medmLecture 2 edm wedm and medm
Lecture 2 edm wedm and medmVJTI Production
 
nano%20tutorial%20pt1.pdf
nano%20tutorial%20pt1.pdfnano%20tutorial%20pt1.pdf
nano%20tutorial%20pt1.pdfSoumenDhara3
 

Similar to лекция 1 обзор методов вычислительной физики (20)

Nano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed AnwarNano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed Anwar
 
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
 
Nano-electronics
Nano-electronicsNano-electronics
Nano-electronics
 
Swift Heavy Ion Irradiation
Swift Heavy Ion IrradiationSwift Heavy Ion Irradiation
Swift Heavy Ion Irradiation
 
Properties Of Cnt
Properties Of CntProperties Of Cnt
Properties Of Cnt
 
1 2 syllabus 2010-2011
1 2 syllabus 2010-20111 2 syllabus 2010-2011
1 2 syllabus 2010-2011
 
Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...
Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...
Center for Superconducting and Magnetic Materials (CSMM), Research and Facili...
 
Dielectrics 2015
Dielectrics 2015Dielectrics 2015
Dielectrics 2015
 
11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots11.electronic properties of nanostructured quantum dots
11.electronic properties of nanostructured quantum dots
 
Electronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dotsElectronic properties of nanostructured quantum dots
Electronic properties of nanostructured quantum dots
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
ANSYS Emag 8.0 Capabilities.ppt
ANSYS Emag 8.0 Capabilities.pptANSYS Emag 8.0 Capabilities.ppt
ANSYS Emag 8.0 Capabilities.ppt
 
10 sinton sinton instruments
10 sinton sinton instruments10 sinton sinton instruments
10 sinton sinton instruments
 
Highly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronicsHighly mismatched alloys for optoelectronics
Highly mismatched alloys for optoelectronics
 
Scanning Electron Microscope
Scanning Electron MicroscopeScanning Electron Microscope
Scanning Electron Microscope
 
Project_Overview_Chernyavskiy
Project_Overview_ChernyavskiyProject_Overview_Chernyavskiy
Project_Overview_Chernyavskiy
 
Implantation introduction
Implantation  introductionImplantation  introduction
Implantation introduction
 
Lecture 2 edm wedm and medm
Lecture 2 edm wedm and medmLecture 2 edm wedm and medm
Lecture 2 edm wedm and medm
 
nano%20tutorial%20pt1.pdf
nano%20tutorial%20pt1.pdfnano%20tutorial%20pt1.pdf
nano%20tutorial%20pt1.pdf
 

More from Sergey Sozykin

Application of Al alloys
Application of Al alloysApplication of Al alloys
Application of Al alloysSergey Sozykin
 
Ab initio temperature phonons group theory
Ab initio temperature phonons group theoryAb initio temperature phonons group theory
Ab initio temperature phonons group theorySergey Sozykin
 
Misfit layered compounds PbTa2
Misfit layered compounds PbTa2Misfit layered compounds PbTa2
Misfit layered compounds PbTa2Sergey Sozykin
 
Electrochemistry perovskites defects
Electrochemistry perovskites defectsElectrochemistry perovskites defects
Electrochemistry perovskites defectsSergey Sozykin
 
Susu seminar summer_2012
Susu seminar summer_2012Susu seminar summer_2012
Susu seminar summer_2012Sergey Sozykin
 
лекция 5 graphen
лекция 5 graphenлекция 5 graphen
лекция 5 graphenSergey Sozykin
 
лекция 5 memristor
лекция 5 memristorлекция 5 memristor
лекция 5 memristorSergey Sozykin
 

More from Sergey Sozykin (10)

Materials informatics
Materials informaticsMaterials informatics
Materials informatics
 
Application of Al alloys
Application of Al alloysApplication of Al alloys
Application of Al alloys
 
Binary sigma phases
Binary sigma phasesBinary sigma phases
Binary sigma phases
 
Ab initio temperature phonons group theory
Ab initio temperature phonons group theoryAb initio temperature phonons group theory
Ab initio temperature phonons group theory
 
Misfit layered compounds PbTa2
Misfit layered compounds PbTa2Misfit layered compounds PbTa2
Misfit layered compounds PbTa2
 
Electrochemistry perovskites defects
Electrochemistry perovskites defectsElectrochemistry perovskites defects
Electrochemistry perovskites defects
 
Vaulin pohang 2010
Vaulin pohang 2010Vaulin pohang 2010
Vaulin pohang 2010
 
Susu seminar summer_2012
Susu seminar summer_2012Susu seminar summer_2012
Susu seminar summer_2012
 
лекция 5 graphen
лекция 5 graphenлекция 5 graphen
лекция 5 graphen
 
лекция 5 memristor
лекция 5 memristorлекция 5 memristor
лекция 5 memristor
 

Recently uploaded

Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 

Recently uploaded (20)

Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 

лекция 1 обзор методов вычислительной физики

  • 1. Евгений Пузырёв Sokrates T. Pantelides group Университет Вандербильт, Теннесси США Collaborators Kalman Varga, Kirill Bolotin, Physics & Astronomy Vanderbilt University Dan Fleetwood, Ron Schrimpf, EECS Vanderbilt University Umesh Mishra, EECS University of California At Santa Barbara Xiaoguang Zhang, CNMS, G. E. Ice, MST, Oak Ridge National Lab and many more others SiO2 Graphene
  • 2. 1. Обзор методов вычислительной физики Много-масштабное моделирование: от дефектов к ошибкам в приборах 2. Локальная структура металлических сплавов: диффузионное рассеяние и атомные смещения. 3. Дефекты в полупроводниках и поведение приборов: GaN, SiC и AlSb. 4. Проблемы функциональности материалов для мемристора TiO2 и ZnO. 5. Графен,- материал будущего или поиск ниши для применения.
  • 4. Основные методы много-масштабного моделирования I Применение функционала плотности 1. Расчеты возбужденных состояний 10-100 атомов а) Ширина запрещенной зоны б) Положение электронного уровня дефекта LDA+U Hybrid functional GW, absorption spectrum T(100 atoms) = 100 000 MPP 2. Расчеты из первых принципов 100-1000 атомов a) Атомные координаты и электронная б) Проводимость LDA (VASP, Quantum ESPRESSO, SIESTA) II Применение полу-эмпирических потенциалов Молекулярная динамика и расчеты методом Монте-Карло 10000-1000000 атомов Классическая механика (LAMMPS, NAMD)
  • 5. Introduction: Ion-Induced Leakage Currents Metallization burnout after SEGR Heavy-Ion strikes degrade or destroy dielectric layers I-V following biased irradiation of 3.3 nm SiO2 capacitors Lum, et al., IEEE TNS 51 3263 (2004) Distinct Electrical degradation modes: Rupture (Hard breakdown, HB) Soft breakdown (SB) Long-term reliability degradation (LTRD) Massengill, et al., IEEE TNS 48 1904 (2001)
  • 6. Отдача при низких энергиях TRIM Calculations: Sample geometry: Only atomic recoils occurring IN the SiO2 layer! High-LET ions generate O(100) eV recoils in thin oxide layers!
  • 7. Methods • Quantum Mechanical MD Dynamical atomic and – DFT-LDA for energy and forces electronic structures – Classical mechanics for ions – Cell sizes: 200-1000 atoms Fully QM transport calculations for underlying transport physics – Calculation times: 0-1000 fs • Quantum Mechanical Transport Calculations – Complex-valued potentials at boundaries as “source” and “sink” – Non-equilibrium Green’s function method for transport properties – Orbital basis set: LaGrange functions • Percolation Theory – Mott defect-to-defect tunneling Physically motivated, QM and – Node-to-node percolation model experimentally parameterized model for realistic device structures!
  • 8. Много-масштабное моделирование: От дефектов к ошибкам в приборах Arbitrary Materials System Arbitrary Device geometry (~1 nm) (~0.1 micron) QM Transport Time-dependent atomic QM Dynamics and electronic structure Percolation Transport Materials Response Defect Structure I-V Characteristics Beck, et al., IEEE TNS 55, 3025 (2008) Ab Initio calculation of experimentally measureable device properties!
  • 9. Вычислительный Метод Молекулярная динамика из первых пртципов • Применение функционала плотности Highest fidelity for bond- – DFT-LDA for energy and forces breaking/forming during low-energy events • Классическая механика для атомных смещений • Размер ячейки 200-1000 атомов • Время 0-1000 fs Atomic AND electronic structure! Apply KE to primary atom… …evolve system!
  • 10. Отдача при низких энергиях …Correlates with formation of electronic defect states in band gap! 1 0 0 29 58 femtoseconds after recoil Beck, et al., IEEE TNS 55, 3025 (2008)
  • 11. Current Results: Multi-scale Model Arbitrary Materials System Arbitrary Device geometry (~1 nm) (~0.1 micron) QM Transport QM Dynamics Time-dependent atomic Time-dependent atomic and electronic structure Percolation and electronic structure Transport Materials Response Defect Structure I-V Characteristics Beck, et al., IEEE TNS 55, 3025 (2008) Ab Initio calculation of experimentally measureable device properties!
  • 12. Defect: single oxygen vacancy EF defect Nikolai Sergueev
  • 13. Defect: single oxygen vacancy 2.0 1.5 Current (µA) EF 1.0 0.5 0 0 0.5 1.0 1.5 2.0 Bias voltage (V) Transport energy window from -Vb/2 to +Vb/2 Nikolai Sergueev
  • 14. Amorphous SiO2 leakage currents Creating defects in a-SiO2 Number of oxygen to be removed: from 1 to 6 16.24 Å 6 1 3 2 4 5 556 atoms in scattering region 16.24 Å Nikolai Sergueev
  • 15. structure Mol. Dyn. QM Calculations First Principles Transport QM Model Electrode a-SiO2 Electrode Theoretical formalism Bias voltage Vb Tuning the model: crystalline SiO2 system Leakage currents in thin amorphous SiO2 Nikolai Sergueev
  • 16. Density Functional Theory + “Source and sink” method Conventional transport methods: scattering theory, open infinite system Infinite … a-SiO2 … system Our formalism: K. Varga and S.T. Pantelides, PRL 98, 076804 (2007) Finite Source a-SiO2 Sink system complex potential complex potential Nikolai Sergueev
  • 17. Flow-chart: Solve diagonalization problem: W=Wsource+Wsink Compute Green’s functions: Calculate charge density: Compute leakage current: Nikolai Sergueev
  • 18. Initial model calculations Crystalline SiO2 – computationally fast Al (100) SiO2 Al (100) d Can we compute device related property ? How does conductance of SiO2 depend on oxide thickness d ? Nikolai Sergueev
  • 19. Conductance versus thickness of SiO2 Not defected structure yet! Conductance: exponential dependence as expected from tunneling Nikolai Sergueev
  • 20. Applying bias voltage across the device … Calculations Experiment 109 0.54 nm 108 0.8 nm Current (A/cm2) 107 1.07 nm 106 1.35 nm 1.61 nm 105 104 103 0 0.5 1.0 1.5 2.0 Bias voltage (V) M. Fukuda et al, Jpn. J. Appl. Phys. (1998) We used standard EF Al Al Hamiltonian ~ 4.5 eV SiO2 Nikolai Sergueev
  • 21. Our formalism allows: --- not only to compute current and conductance --- but also to analyze the transport mechanism EF Oxide states PDOS – density of states that has an amplitude on oxide atoms Transmission – describes the tunneling efficiency Nikolai Sergueev
  • 22. Increasing number of defects … 1 4 Transmission Transmission 2 5 3 6 Energy (eV) Energy (eV) Nikolai Sergueev
  • 23. 1 defect Current (µA) Bias voltage (V) Nikolai Sergueev
  • 24. 2 defects Current (µA) Bias voltage (V) Nikolai Sergueev
  • 25. 3 defects Current (µA) Bias voltage (V) Nikolai Sergueev
  • 26. 4 defects Current (µA) Bias voltage (V) Nikolai Sergueev
  • 27. 5 defects Current (µA) Bias voltage (V) Nikolai Sergueev
  • 28. 6 defects Current (µA) Bias voltage (V) Nikolai Sergueev
  • 29. Results: QM Transport Calculations Al a-SiO2 Al …introduce defect states with specific energy levels and localizations QM Tunneling Probability: Convolution of electronic Individual defects… DOS and spatial information QM calculated I-V characteristics showing activation of discrete tunneling paths!
  • 30. We performed first principles quantum mechanical transport calculations and we obtained the following: conductance vs. oxide thickness dependence is correct current-voltage dependence qualitatively agrees with experiment the defects result in the step-like functions of the IV current increases with number of defects Going from atomic-scale to mesoscale description … parameters First Principles Transport QM Model Percolation Model Nikolai Sergueev
  • 31. Current Results: Multi-scale Model Arbitrary Materials System Arbitrary Device geometry (~1 nm) (~0.1 micron) QM Transport QM Dynamics Time-dependent atomic and electronic structure Percolation Transport Materials Response Defect Structure I-V Characteristics Beck, et al., IEEE TNS 55, 3025 (2008) Ab Initio calculation of experimentally measureable device properties!
  • 32. Results: Percolation Model Parameterize defect atoms with: From QM MD calculation Position Eigenvalue From QM DOS calculation Defect levels from SHI-induced defects!
  • 33. Mott defect-to-defect tunneling æ ö é   ù   De = çe - e ÷ + qE êe x ×(r - r )ú i® j è j iø ë j i û ì æ   ö   J = ν0Σij(σiboundary-σj) ï ç- r -r ÷ ï ï exp ç j i ÷, De £0 ç r ÷ i® j ν0 = 1.15 × 1013 s–1 ï ç ÷ ï è 0 ø P =í i® j ï æ     ö ï ç- r -r -De ÷ i® j÷ ï exp ç j i + , De >0 ï ç r kT ÷ ÷ i® j ï ç 0 è ø î é æ ö æ ö ù j j å s s + 1 = s s + ês s ç1- s s ÷ P ë i è jø i® j - s s ç1- s s ÷ P jè ú i ø j ® iû i ri – defect position Defects E – external field DOS εi - energy level relative to EF σi – site occupancy, [0, 1], at boundary σ=0.5 ν0- Mott’s escape frequency Iterative procedure for occupancies until Δσi < 10-7 S. Simeonov et al. Physica Status Solidi, 13, 2004
  • 34. Defect-to-defect tunneling • L =1.4 nm Defects DOS • Defect energy levels • Defect atomistic map ri, εi ,σi time = 78fs 22 defects L E
  • 36. Leakage Current Temperature Dependence 4 2 Current, nA -2 0-4 -6 -20.0 -10.0 0.0 10.0 20.0 qE, MV/cm
  • 37. Leakage Current Time Dependence 6 4 Current, nA 2 0 -2 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 qE, MV/cm
  • 38. Model results in real-time defect evolution and transient currents
  • 39. Defect time evolution 10 15 20 25 Number of defects Energy Space 5 Transient current Current, nA 0.0 4.0 8.0 Keeps going 0 200 400 500 600 time, fs
  • 40. Results: Calculated I-V Characteristics 4 Thermal smoothing 2 Current, nA 0 Asymmetric: Defect Steps showing activation of level dependence discrete tunneling paths -2 -4 -6 -20 -10 0.0 10 20 qE, MV/cm
  • 41. Results: Transient I-V Characteristics 6 fs 32 fs 58 fs Thresholds in time and applied field!
  • 42. Results: Transient Leakage Defects and current peaks Defects and current persists within ~200 fs of recoil on the ns time-scale E=3 V E=1.5 V Roughness of curve due to exponential dependence on atomic and electronic structure! Transient defect-induced weakness!
  • 43. As a result of the calculation we have direct comparison with experiment for the gate current as a function of gate voltage! Quantitative agreement! Massengill, et al., IEEE TNS 48 1904 (2001)
  • 44. Graphene device degradation • Graphene fabricated by mechanical exfoliation from Kish graphite • Sweep VG with VDS=5mV
  • 45. Motivation and Outline  Experiment [1] o Graphene’s resistivity response to x-ray radiation, ozone exposure, annealing. o Defect related Raman D-peak appears after  x-ray irradiation in air  ozone exposure, decreases after annealing.  Theory: behavior of impurities on graphene o Temperature and concentration dependence. o Need to remove oxygen without vacancy formation (would H help?) [1] E.-X. Zhang et al, IEEE Trans. Nucl. Sci. 58, 2961 (2011)
  • 46. Graphene device degradation Two-probe resistances measured on • 10 keV irradiated graphene • pristine graphene • ozone exposed graphene (1 min) • annealed (300C for 2 hrs in 200 sccm Ar)
  • 47. Graphene device degradation Ozone exposure a) 80 8000 60 Integrated intensity Area G-Peak 6000 ID/IG (100%) 40 Defect related D-peak 4000 20 • increases x-ray exposure 2000 D-Peak • decreases after temperature anneal 0 0 Pre 8 Mrad(SiO2) 15 Mrad(SiO2) Anneal 10-keV X-ray Dose b)
  • 48. Theoretical Approach O O desorption Density Functional Theory O migration DFT • Defect formation energies • Migration/desorption barriers O dimer Kinetic Monte-Carlo KMC Defect dynamics • Temperature • Initial concentration
  • 49. Oxygen Removal and Vacancy Generation 1.3 eV Oxygen: clustering behavior 0.5 eV 0.8 eV Removal of oxygen Bridge 1.3 eV • Pairs O2 • Triplets CO, CO2, VC Top Device degradation 1.1 eV CO, CO2 1.1 eV O2
  • 50. High-temperature Annealing Vacancy Concentration of vacancies exceeds Residual oxygen atom concentration of residual O
  • 51. High vs Low Temperature Anneal T, oC T
  • 52. Temperature Anneal Initial Defect Concentration Dependence High O concentration Lo vacancy surface coverage Low O, High V concentration oxygen T initial O surface coverage High T: Removal of oxygen > 0.05 initial surface coverage leads to vacancy formation Low T: Oxygen stays on the surface and forms clusters Decrease of D-peak, Increase in resistivity Method to prevent defect formation during irradiation/annealing?
  • 53. Oxygen and Hydrogen on Graphene: Binding energies, Migration and Reaction Barriers O-H is most likely to desorb O from graphene surface H Leaves carbon network intact
  • 54. Effect of Hydrogen On Oxygen Annealing Oxygen/Hydrogen Low High Concentrations Low 2% O, 10% H @ T = 300 C Final defect concentrations? High 15% O, 1% H 15% O, 10% H
  • 55. Effect of Hydrogen On Oxygen Annealing Higher Oxygen concentration Higher Hydrogen concentration Hydrogen is removed t ~ 0.001 s Oxygen is removed t ~ 0.0001 s t~1s t~1s Removal of residual Oxygen Residual Hydrogen Causes formation of large Forms clusters L ~ 0.5 nm amount of Vacancies No Vacancies are formed
  • 56. High O, High H concentrations Hydrogen is removed first, Removal of residual Oxygen Causes formation of Vacancies Effect of Hydrogen On Oxygen Annealing
  • 57. Электронная плотность Разложение по функциям Гаусса   æ q ö      r r =() N atoms å   (  rn r - Rn ) ( ) ( rn r - Rn = ç1- n ÷ r0A r - Rn ç Q ÷ è Aø ) n=1 Перенос заряда  M gauss () rn r = hr å cme 2 -g m r 2 m=1    ò Wcell ( ) rn r - Rn d 3r = QA - qn *
  • 58. Полная энергия     Etotal = W ò é ë () () W r êr r ù ú û W ê ë () () r r d 3r + ò W q ér q ù r q d 3q + Eion-ion ú û volume volume    é W r êr r ë () ù é ú = T êr r û ë () ù ú û é ()ù +Vex êr r ú ë û    é ù () W q êr q ú =Vps q +Vhartree q ë û () () Vps q S q wpseudo q
  • 59. Кинетическая энергия corr corr T TWang Teter TLDA Tatom     5  é () ù 45 ( ) () ( ) ( ) 2 òò 5 TWang-Teter êr r ú = 3p 2 3 r 6 r w1 r - r ' r 6 r ' d 3rd 3r '- ë û 128    ( ) () () () 2 ò r 3 r d r - ò r 2 r Ñ r 2 r d 3r 21 5 1 1 1 - 3p 2 3 3 2 250 2 Теория линейного отклика 5 1 3 2 3 1 q2 4 2 q w1 w q q , and w ln 8 4 5 2 8q 2 q
  • 60. ì6 N grid  ü () () ï ï TLDA ér r ù= å íåcnDr ri ý n corr 2 ê ë ú û i=1 ï n=1 î ï þ 3 6 æp ö 2 æ k2 ö () Tatom k = å cn ç ÷ exp ç - corr çx ÷ è nø ç 4x ÷ è ÷ n=1 nø    æ k ö    () S A ki = å ç1- a ÷ exp -ika iRa ç N ÷ a ÎA è a ø ( )
  • 61. λ=1 upper limit von Weizsäcker λ=1/9 gradient expansion second order λ=1/5 computational Hartree-Fock
  • 62. 1. Phase Diagram 2. Elastic Properties 3. Defect Formation Energies

Editor's Notes

  1. Разрушение прибора, именно конденсаторов. Бомбардировка (облучение) ионами
  2. Need to better introduce that QM calcs study physics and ab initio parameterize the perc model… then the perc model can be used to study “real devices”.For Yevgeniy, highlight time evolution!!! Make sure to hit 78 fs time point… and indicate defect explosion, followed by relaxation.Can you better set up Yevgeniy’s connection to the Massengill RSB data?Add DOS plot to Yevgeniy’s time evolution to highlight the complex dependence on num defs and eigenvalues and geometry…Can we show the connections visually as in Yevgeniy’s here…
  3. Need to better introduce that QM calcs study physics and ab initio parameterize the perc model… then the perc model can be used to study “real devices”.For Yevgeniy, highlight time evolution!!! Make sure to hit 78 fs time point… and indicate defect explosion, followed by relaxation.Can you better set up Yevgeniy’s connection to the Massengill RSB data?Add DOS plot to Yevgeniy’s time evolution to highlight the complex dependence on num defs and eigenvalues and geometry…Can we show the connections visually as in Yevgeniy’s here…
  4. Need to better introduce that QM calcs study physics and ab initio parameterize the perc model… then the perc model can be used to study “real devices”.For Yevgeniy, highlight time evolution!!! Make sure to hit 78 fs time point… and indicate defect explosion, followed by relaxation.Can you better set up Yevgeniy’s connection to the Massengill RSB data?Add DOS plot to Yevgeniy’s time evolution to highlight the complex dependence on num defs and eigenvalues and geometry…Can we show the connections visually as in Yevgeniy’s here…
  5. The peak in conductivity occurs due to the n- and p- doping by changing Vg and at some point crossing neutrality point, that brings electron density to 0, resulting in the peak in resistivity, which should to to infinity in principle. Shift of the peak position is due to the hole or electron doping due to the adsorption of various species.----- Meeting Notes (7/17/12 14:31) -----No Dirac point...
  6. X-ray generate significant concentrations of ozone, that provides reactive oxygen atoms on the surface. The structural integrity of graphene is probed by Raman spectra an defect peaks D and D’ are taken as indication of defect formation. Since oxygen seems to cause degradation, we need to see if the there is a regime where it can be removed without causing damage.Go faster and don’t give out the whole presentation prematurely
  7. Here we see electrical characteristics similarities as both shifts has similar magnitude and resistance increase is also of the same value. Annealing causes further increase in resistance, while it should in principle remove defects.
  8. Here we need to notice a relative change of ratio between D and D’ peaks, as well as the peak intensity ratios as a function of exposure and annealing. The peak can have several responsible mechanisms that drive it up.
  9. Key value required to set up dynamics are the energy barriers, that describe absorption and clustering mechanisms of the impurities on the graphene surface.
  10. Oxygen tends to form clusters and a particular pair and triplets formation leads to a desorption of O2 or CO, CO2 with formation of vacancies. C is removed either causing damage to the structure or leaving surface pristine.
  11. Describe the chemistry. Figures scale and label
  12. The higher initial concentration of O atoms, the higher the concentration of vacancies
  13. Here we show that the barriers for H dynamics on the graphene surface is very different than that of oxygen, and their interaction may provide a way of removing O as OH without damage to the surface. Now, the question is whether O, or/and H are mobile enough to lead to desorption, or ?
  14. Since there is no real way to probe the surface concentrations, we consider possible scenarios of initial concentrations and dynamics of the atoms on the surface.
  15. Rolling along the scenarios. Case 2
  16. Rolling along the scenarios. Case 3. Most interesting from theory point of view as it illustrates what happens on the surface.