Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory

852 views

Published on

The SEENET-MTP Workshop BW2011
Particle Physics from TeV to Plank Scale
28 August – 1 September 2011, Donji Milanovac, Serbia

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory

  1. 1. A twisted look on kappa-Minkowski: U(1) gauge theory Larisa Jonke Rudjer Boˇkovi´ Institute, Zagreb s c Based on: M. Dimitrijevi´ and L. Jonke, arXiv:1107.3475[hep-th], cM. Dimitrijevi´, L. Jonke and L. M¨ller, JHEP 0509 (2005) 068. c o Donji Milanovac, August 2011
  2. 2. Overview Introduction Kappa-Minkowski via twist U(1) gauge theory Conclusions & Outlook
  3. 3. Introduction Classical concepts of space and time are expected to break down at the Planck scale due to the interplay between gravity and quantum mechanics. Q: How to modify space-time structure? Direct geometrical construction (e.g. triangulation models). Non-local fundamental observables (strings, loops). Deform algebra of functions on ’noncommutative space-time’.
  4. 4. Describe manifold using C ∗ algebra of functions on manifold, deform commutative C ∗ algebra into noncommutative algebra, and forget about manifold. Noncommutative geometry ∼ noncommutative algebra. Deform Hopf algebra of symmetry Lie algebra. Noncommutative space-time defined through representations ofdeformed Hopf algebra. Use framework of deformation quantization using star-product and (formal) power series expansion. Noncommutative space-time lost, new kinematics/dynamics ineffective field theory.
  5. 5. Here: κ-Minkowski space-time: i j [ˆ0 , x j ] = x ˆ x , [ˆi , x j ] = 0. ˆ x ˆ κ Dimensionful deformation of the global Poincar´ group, the e κ-Poincar´ group [Lukierski, Nowicki, Ruegg, ’92]. e An arena for formulating new physical concepts: Double Special Relativity [Amelino-Camelia ’02], The principle of relative locality [Amelino-Camelia, Freidel, Kowalski-Glikman, Smolin, ’11] Potentially interesting phenomenology.
  6. 6. We are interested in the construction of gauge field theory onκ-Minkowski as a step towards extracting observable consequencesof underlying noncommutative structure. Existing results [Dimitrijevi´, Jonke, M¨ller, ’05] consistent, but with c o ambiguities. No geometric formulation of gauge theory. Use twist formalism [Drinfel’d ’85].
  7. 7. Kappa-Minkowski via twist Deformation of symmetry Lie algebra g by an bidifferential operator F acting on symmetry Hopf algebra. Cannot express κ-Poincar´ by twist, we choose twist to e reproduce κ-Minkowski commutation relations and to obtain hermitean star product. i ia F = exp − θab Xa ⊗ Xb = exp − (∂0 ⊗ x j ∂j − x j ∂j ⊗ ∂0 ) 2 2 Abelian twist, vector fields X1 = ∂0 and X2 = x j ∂j commute. The vector field X2 not in universal enveloping algebra of Poincar´ algebra, we enlarge it to get twisted igl(1, 4) [Borowiec, e Pachol, ’09].
  8. 8. Star-product (a ≡ a0 = 1/κ) : ia jf g = µ{F −1 f ⊗ g } = f · g + x (∂0 f )∂j g − (∂j f )∂0 g + O(a2 ) 2 Differential calculus: df = (∂µ f )dx µ = (∂µ f ) dx µ dx µ ∧ dx ν = −dx ν ∧ dx µ f dx j = dx j e ia∂n f i ∂j = e − 2 a∂n ∂j , ∂j (f g ) = (∂j f ) e −ia∂n g + f (∂j g ) Integral: ω1 ∧ ω2 = (−1)d1 +d2 ω2 ∧ ω1 , d1 + d2 = m + 1dm+1 x := dx 0 ∧ dx 1 ∧ . . . dx m = dx 0 ∧ dx 1 ∧ . . . dx m = dm+1 x.
  9. 9. U(1) gauge theory The covariant derivative Dψ is defined Dψ = dψ − iA ψ = Dµ ψ dx µ D0 = ∂0 ψ − iA0 ψ, Dj = ∂j ψ − iAj e −ia∂0 ψ where the noncommutative connection is A = Aµ dx µ The transformation law of the covaraint derivative δα Dψ = iΛα Dψ defines the transformation law of the noncommutative connection. It is given by δα A = dα + i[Λα , A] or in the components δα A0 = ∂n Λα + i[Λα , A0 ] δα Aj = ∂j Λα + iΛα Aj − iAj e −ia∂n Λα
  10. 10. The field-strength tensor is a two-form given by 1 F = Fµν dx µ ∧ dx ν = dA − iA ∧ A 2or in components F0j = ∂0 Aj − ∂j A0 − iA0 Aj + iAj e −ia∂0 A0 Fij = ∂i Aj − ∂j Ai − iAi e −ia∂0 Aj + iAj e −ia∂0 AiOne can check that field-strength tensor transforms covariantly: δα F = i[Λ , F ]
  11. 11. The noncommutative gauge field action S∝ F ∧ (∗F )where ∗F is the noncommutative Hodge dual. The obvious guess 1 αβ ∗F = µναβ F dx µ ∧ dx ν 2does not work since it does not transform covariantly. Assume that∗F has the form 1 ∗F := µναβ X αβ dx µ ∧ dx ν , 2where X αβ components are determined demanding δα (∗F ) = i[Λα , ∗F ]Up to first order we obtain X 0j = F 0j − aA0 F 0j , X jk = F jk + aA0 F jk .
  12. 12. Action Gauge fields Sg ∝ F ∧ (∗F ) 1 Sg = − 2F0j e −ia∂0 X 0j + Fij e −2ia∂0 X ij d4 x. 4 Fermions Sm ∝ (Dψ)B ¯ ψA − ψB (Dψ)A ∧ (V ∧ V ∧ V γ5 )BA , V = Vµ dx µ = Vµ γa dx µ = δµ γa dx µ = γµ dx µ , a a After tracing over spinor indices 1 ¯ ¯ Sm = ψ (iγ µ Dµ − m)ψ − (iDµ ψγ µ + mψ) ψ d4 x. 2
  13. 13. Seiberg-Witten map We construct the SW map relating noncommutative and commutative degrees of freedom from the consistency relation for gauge transformations: (δα δβ − δβ δα )ψ(x) = δ−i[α,β] ψ and assuming the noncommutative gauge transformations are induced by commutative ones: δα ψ = iΛα ψ(x), δα A = dΛα + i[Λα , A], These relations are solved order by order in deformation parameter a. The solutions for the fields have free parameters, e.g. 1 ρσ ρσ ψ = ψ 0 − Cλ x λ A0 (∂σ ψ 0 ) + id1 Cλ x λ Fρσ ψ 0 + d2 aD0 ψ 0 . ρ 0 0 2
  14. 14. Expanded action The action expanded up to first order in a, expanding -product and using SW map. (1) 1 1 ρσ Sg = − d4 x Fµν F 0µν − Cλ x λ F 0µν Fµν Fρσ + 0 0 0 4 2 ρσ +2Cλ x λ F 0µν Fµρ Fνσ 0 0 (1) 1 ¯ a Sm = d4 x ψ 0 iγ µ Dµ ψ 0 − mψ 0 + γ j D0 Dj0 ψ 0 + 0 0 2 2 i ρσ + Cλ x λ γ µ Fρµ (Dσ ψ 0 ) − 0 2 0 ¯ a 0 i ρσ 0 − iDµ ψ γ µ + mψ 0 − D0 Dj ψ γ j + Cλ x λ Dσ ψ γ µ Fρµ ψ 0 0 2 2
  15. 15. Equation of motion fermions: a i ρσ iγ µ (Dµ − m)ψ 0 + γ j D0 Dj0 ψ 0 + Cλ x λ γ µ Fρµ (Dσ ψ 0 ) = 0 0 0 0 2 2 gauge field: a α ρσ ∂µ F 0αµ + δ0 F 0µν Fµν + 2aF 0αµ F0µ − Cλ x λ ∂µ (Fρ Fσ )+ 0 0 0µ 0α 4 ¯ i ρσ 0 + Fµσ (∂ρ F 0µα ) = ψ 0 γ α ψ 0 + Cλ x λ Dσ ψ γ α (Dρ ψ)0 + 0 2 ¯ 0 ia α ¯ 0 +ia ψ 0 γ α (D0 ψ)0 − D0 ψ γ α ψ 0 + δ0 ψ 0 γ 0 (D0 ψ)0 − D0 ψ γ 0 ψ 0 2 conserved U(1) current up to first order in a ¯ a 0 ¯ ia ¯ j 0 = ψ 0 γ 0 ψ 0 − x j Fjσ ψ 0 γ σ ψ 0 − ψ 0 γ j Dj0 ψ 0 , 2 2 k j =ψ ¯0 γ k ψ 0 + a x k F 0 ψ 0 γ σ ψ 0 + ia D 0 ψ 0 γ k ψ 0 . ¯ 0σ 2 2 0
  16. 16. Conclusions In the twist formalism we have Unique four-dimensional differential calculus. Integral with trace property, no need to introduce additional measure function. Constructed the action for the gauge and matter fields in a geometric way, as an integral of a maximal form. No ambiguities coming from the Seiberg-Witten map in the action expanded up to the first order in the deformation parameter. In the twist formalism we do not have κ-Poincar´ symmetry: e Use five-dimensional differential calculus [Sitarz ’95]. Use nonassociative differential algebra [Beggs, Majid ’06].
  17. 17. Outlook Generically, the noncommutative geometrical structure prevents decoupling of translation and gauge symmetries. Here we see it in construction of the Hodge dual, a relation which introduces (geo)metric degrees of freedom in U(1) gauge theory. In the framework of Yang-Mills type matrix models [Steinacker ’10], U(1) part of general U(N) gauge group is interpreted as induced gravity coupling to the remaining SU(N). Check models with larger gauge group. Geometric interpretation of x-dependent terms in action.

×