SlideShare a Scribd company logo
1 of 1
National Institute Of Standards and Technology
Boulder Colorado
Enhancing the Performance of Quantum-Dot Based Single-Photon Detectors
using Resonant RLC Circuitry
Dean’s Distinguished Fellowship – Summer 2013
QDOGFET detectors use QDs embedded
in transistors to count single photons of
light.
Previous work has been done at low
detection rates and low operating
temperatures.
For practical application, high operating
temperatures and detection rates are
desired.
Here, we discuss the technique of
integrating the QDOGFET detector into
an RLC Bandpass Filter to remove
unwanted electrical noise from our
signal
Intro QDOGFET Design and Concept
-2 -1 0
0
20
40
60
80
DVgate
DIds
N=3
Vgate (V)
Ids(mA)
• Ni/Au/Ge Source and Drain
Ohmic Contacts
SEM Image
• QD Density: 400-500 QDs/mm2
• Semitransparent Pt Gate
2DEG
CB
VB
InGaAs QDs Si d-doping
GaAs
Al0.2Ga0.8As
Source
Al0.2Ga0.8As
Drain
Gate
GaAs
QDOGFET Noise
Vout(a.u.)
Time (ms)
Electrical Noise
The main problem when analyzing our
signal is the electrical noise.
When we look at the noise in the
frequency domain, we observe a fine
structure. Our studies have shown that
noise is of the form:
10
2
10
3
10
4
10
5
10
-26
10
-25
10
-24
10
-23
10
-22
10
-21
10
-20
10
-19
7K
11K
18K
30K
43K
60K
10 20 30 40 50 60
0
1
2
NI(A2/Hz)
B(A)
Frequency (kHz)
Temperature (K)
The noise increases with
temperature.
Filtering the Noise with a Band Pass Filter
We can minimize the noise by using a RLC Band Pass Filter, using our QDOGFET
as the resistive element.
Capacitor
Inductor
VBP
Vout
RQ
Vgate
18 20 22 24 26 28
0
10
20
30
40
50
60
70
Frequency (kHz)
Conclusions and Future Work
Understanding the noise features and their temperature dependence is
critical in identifying the sources of noise
Identifying the noise mechanisms is necessary for:
 Engineering better performing devices
 Determining maximum detection rates
Determine operating temperature limitations
Still to come:
 Increased detection efficiency
 Improved photon-number resolution
 Modified structures for communications wavelengths (1310 and 1550 nm)
What we achieved:
QD Detector
Photon-Number Resolution at 4K
Laser
l = 804 nm
LHe Cryostat
4 K
Attenuating
Filter
N=2 N=0 N=1 N=0 N=2 N=1
E. J. Gansen et al., Nature Photonics 1, 585 (2007).
We use Poisson statistics of highly attenuated laser pulses to
show photon counting capabilities.
0.0 0.4 0.8
0.0
0.4
N = 1
Histogram of Step Heights
N=0
N=1
N=2
N=3
DIds (nA)
Data
Fit
0 250 500
16.246
16.247
16.248
16.249
Time (ms)
ResetLaser
DIds
Ids(mA)
With the new filtering technique the device should be able to reach
signal to noise ratios of over 20:1.
Signal to Noise with the filter
Counts(x1000)
Response to Single Pulse
25
20
15
10
5
0 50 100 150 200 250 300
3:1 S/N Line
Temperature (k)
•23:1 at 4k (Liquid
Helium)
•7:1 at 77k (Liquid
Nitrogen)
•3:1 at 222k
(Thermoelectric
Cooling)
•2.3:1 at 296k (Room
Temperature)
Filtered Photo-Response at 6K
Histogram of Step Heights
Laser Pulse
ΔVout
Response to Single Pulse
We looked at the amplitude of Vout while illuminating the device
with 804 nm laser.
Each photon changes the resistivity of
the QDOGFET, which changes the
resonant conditions of the RLC circuit.
As a result, it causes measurable
changes in the amplitude of Vout .
We can analyze the
changes in |Vout |by
using our histogram.
A mathematical fit
helps us determine
regions of detection
of photons (N=0,
N=1 etc…).
-1.5 -1.0 -0.5 0.0
50
55
60
65
DVgate
DVout
N=1
|Vout|(mV)
|Vgate|(V)
15000 15500 16000 16500 17000
0.0
0.2
0.4
0.6
0.8
1.0
3 photons
2 photons
1 photon
0 photon
We simulated the behavior of the
amplitude of Vout as a function of
frequency.
Experiment Experiment
Simulation
Frequency (kHz)
|Vout| (mV)
fresonant
-0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10
0
200
400
600
Counts |DVout|(V)
Data
Fit
N=0 N=1 N=2 N=3
In a second time, we experimentally
characterized the RLC circuit at 6K.
|Vout|(mV)
S/N
Photons of light cause
measurable changes in
the amplitude of Vout. We
average |Vout | before
and after the pulse of
light in order to build a
histogram
UW-L : Yann Talhouarne, Andrew Prudhom, Tyler Nickel, Richard Allenby, Eric Gansen (Advisor)
NIST : Mary Rowe, Shelley Etzel, Sae Woo Nam, and Richard Mirin

More Related Content

What's hot

5. radioactive decay nuclear medicine
5. radioactive decay nuclear medicine5. radioactive decay nuclear medicine
5. radioactive decay nuclear medicineCHERUDUGASE
 
Discovery Presentation 101014
Discovery Presentation 101014Discovery Presentation 101014
Discovery Presentation 101014Abhay Joshi
 
Av02 2315en datasheet
Av02 2315en datasheetAv02 2315en datasheet
Av02 2315en datasheetEdwin Aguilar
 
Pei zhang the influence of cooldown conditions at transition temperature on...
Pei zhang   the influence of cooldown conditions at transition temperature on...Pei zhang   the influence of cooldown conditions at transition temperature on...
Pei zhang the influence of cooldown conditions at transition temperature on...thinfilmsworkshop
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentationShinichiro Yano
 
Why are my s parameters so noisy?
Why are my s parameters so noisy?Why are my s parameters so noisy?
Why are my s parameters so noisy?NMDG NV
 
MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統CHENHuiMei
 
Sebastian keckert status of the hzb quadrupole resonator
Sebastian keckert   status of the hzb quadrupole resonatorSebastian keckert   status of the hzb quadrupole resonator
Sebastian keckert status of the hzb quadrupole resonatorthinfilmsworkshop
 
Joe Kelleher Presentation (May 27th 2014)
Joe Kelleher Presentation (May 27th 2014)Joe Kelleher Presentation (May 27th 2014)
Joe Kelleher Presentation (May 27th 2014)Roadshow2014
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsClaudio Attaccalite
 
Particle flow calorimeter with ASIC readout
Particle flow calorimeter with ASIC readoutParticle flow calorimeter with ASIC readout
Particle flow calorimeter with ASIC readouteguliyev
 
Nanoripples for anisotropic electrical conduction
Nanoripples for anisotropic electrical conductionNanoripples for anisotropic electrical conduction
Nanoripples for anisotropic electrical conductionDr. Basanta Kumar Parida
 

What's hot (15)

Final_Thesis_Presentation
Final_Thesis_PresentationFinal_Thesis_Presentation
Final_Thesis_Presentation
 
SPIE2014-Chirp
SPIE2014-ChirpSPIE2014-Chirp
SPIE2014-Chirp
 
5. radioactive decay nuclear medicine
5. radioactive decay nuclear medicine5. radioactive decay nuclear medicine
5. radioactive decay nuclear medicine
 
Discovery Presentation 101014
Discovery Presentation 101014Discovery Presentation 101014
Discovery Presentation 101014
 
Av02 2315en datasheet
Av02 2315en datasheetAv02 2315en datasheet
Av02 2315en datasheet
 
Pei zhang the influence of cooldown conditions at transition temperature on...
Pei zhang   the influence of cooldown conditions at transition temperature on...Pei zhang   the influence of cooldown conditions at transition temperature on...
Pei zhang the influence of cooldown conditions at transition temperature on...
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentation
 
Why are my s parameters so noisy?
Why are my s parameters so noisy?Why are my s parameters so noisy?
Why are my s parameters so noisy?
 
MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統
 
Sebastian keckert status of the hzb quadrupole resonator
Sebastian keckert   status of the hzb quadrupole resonatorSebastian keckert   status of the hzb quadrupole resonator
Sebastian keckert status of the hzb quadrupole resonator
 
5.1.seyler
5.1.seyler5.1.seyler
5.1.seyler
 
Joe Kelleher Presentation (May 27th 2014)
Joe Kelleher Presentation (May 27th 2014)Joe Kelleher Presentation (May 27th 2014)
Joe Kelleher Presentation (May 27th 2014)
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materials
 
Particle flow calorimeter with ASIC readout
Particle flow calorimeter with ASIC readoutParticle flow calorimeter with ASIC readout
Particle flow calorimeter with ASIC readout
 
Nanoripples for anisotropic electrical conduction
Nanoripples for anisotropic electrical conductionNanoripples for anisotropic electrical conduction
Nanoripples for anisotropic electrical conduction
 

Viewers also liked

Mi ppt fi print this
Mi ppt fi print thisMi ppt fi print this
Mi ppt fi print thisRuta Angel
 
Photodiode & LED Discription
Photodiode & LED DiscriptionPhotodiode & LED Discription
Photodiode & LED DiscriptionAyush Upadhyay
 
Fluroscopic imaging ppt
Fluroscopic imaging pptFluroscopic imaging ppt
Fluroscopic imaging pptRuta Angel
 
Charged coupled device
Charged coupled deviceCharged coupled device
Charged coupled devicePrachi Dave
 
Photodiode working principle characteristics and applications
Photodiode working principle characteristics and applicationsPhotodiode working principle characteristics and applications
Photodiode working principle characteristics and applicationsEdgefxkits & Solutions
 
Charge coupled device(ccd)
Charge coupled device(ccd)Charge coupled device(ccd)
Charge coupled device(ccd)Darshil Shah
 
Photoelectric transducer
Photoelectric transducerPhotoelectric transducer
Photoelectric transducervickeysv
 
CCD (Charge Coupled Device)
CCD (Charge Coupled Device)CCD (Charge Coupled Device)
CCD (Charge Coupled Device)Sagar Reddy
 
Spectroscopy - principle, procedure & application
Spectroscopy - principle, procedure & application Spectroscopy - principle, procedure & application
Spectroscopy - principle, procedure & application naren
 
Fluoroscopy presentation
Fluoroscopy presentationFluoroscopy presentation
Fluoroscopy presentationHuzaifa Oxford
 
Chapter 3 photoelectric effect
Chapter 3 photoelectric effectChapter 3 photoelectric effect
Chapter 3 photoelectric effectMiza Kamaruzzaman
 
Lect12 photodiode detectors
Lect12 photodiode detectorsLect12 photodiode detectors
Lect12 photodiode detectorswtyru1989
 

Viewers also liked (20)

rina Detector 1
rina Detector 1rina Detector 1
rina Detector 1
 
Transducer
TransducerTransducer
Transducer
 
Mi ppt fi print this
Mi ppt fi print thisMi ppt fi print this
Mi ppt fi print this
 
Photodiode & LED Discription
Photodiode & LED DiscriptionPhotodiode & LED Discription
Photodiode & LED Discription
 
Fluroscopic imaging ppt
Fluroscopic imaging pptFluroscopic imaging ppt
Fluroscopic imaging ppt
 
Television
TelevisionTelevision
Television
 
Charged coupled device
Charged coupled deviceCharged coupled device
Charged coupled device
 
Transducers lk
Transducers lkTransducers lk
Transducers lk
 
Transducers
Transducers  Transducers
Transducers
 
Photodiode working principle characteristics and applications
Photodiode working principle characteristics and applicationsPhotodiode working principle characteristics and applications
Photodiode working principle characteristics and applications
 
Charge coupled device(ccd)
Charge coupled device(ccd)Charge coupled device(ccd)
Charge coupled device(ccd)
 
Photoelectric transducer
Photoelectric transducerPhotoelectric transducer
Photoelectric transducer
 
CCD (Charge Coupled Device)
CCD (Charge Coupled Device)CCD (Charge Coupled Device)
CCD (Charge Coupled Device)
 
Spectroscopy - principle, procedure & application
Spectroscopy - principle, procedure & application Spectroscopy - principle, procedure & application
Spectroscopy - principle, procedure & application
 
Fluoroscopy presentation
Fluoroscopy presentationFluoroscopy presentation
Fluoroscopy presentation
 
Chapter 3 photoelectric effect
Chapter 3 photoelectric effectChapter 3 photoelectric effect
Chapter 3 photoelectric effect
 
photodiode
photodiodephotodiode
photodiode
 
Television
TelevisionTelevision
Television
 
Lect12 photodiode detectors
Lect12 photodiode detectorsLect12 photodiode detectors
Lect12 photodiode detectors
 
UV visible spectroscopy
UV visible spectroscopyUV visible spectroscopy
UV visible spectroscopy
 

Similar to Poster

Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013Analog Devices, Inc.
 
Fast Thermo-Optic Optimization of High-Order SOI Microring Optical Filters be...
Fast Thermo-Optic Optimization of High-Order SOI Microring Optical Filters be...Fast Thermo-Optic Optimization of High-Order SOI Microring Optical Filters be...
Fast Thermo-Optic Optimization of High-Order SOI Microring Optical Filters be...TylerJamesZimmerling
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Finalimranbashir
 
Design, Development and Simulation of Front End Electronics for Nuclear Detec...
Design, Development and Simulation of Front End Electronics for Nuclear Detec...Design, Development and Simulation of Front End Electronics for Nuclear Detec...
Design, Development and Simulation of Front End Electronics for Nuclear Detec...ijtsrd
 
FR1.T03.5 IGARSS_2011_Albers_22JUL2011.ppt
FR1.T03.5 IGARSS_2011_Albers_22JUL2011.pptFR1.T03.5 IGARSS_2011_Albers_22JUL2011.ppt
FR1.T03.5 IGARSS_2011_Albers_22JUL2011.pptgrssieee
 
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloTrends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloCPqD
 
20GHz DQPSK Optical Modulator Electrical Bias Optimiser
20GHz DQPSK Optical Modulator Electrical Bias Optimiser20GHz DQPSK Optical Modulator Electrical Bias Optimiser
20GHz DQPSK Optical Modulator Electrical Bias OptimiserBen Larcombe
 
Original N-CHANNEL MOSFET MMF60R360PTH 60R360 11A 600V TO-220F New Magnachips
Original N-CHANNEL MOSFET MMF60R360PTH 60R360 11A 600V TO-220F New MagnachipsOriginal N-CHANNEL MOSFET MMF60R360PTH 60R360 11A 600V TO-220F New Magnachips
Original N-CHANNEL MOSFET MMF60R360PTH 60R360 11A 600V TO-220F New MagnachipsAUTHELECTRONIC
 
Amvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsAmvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsNiket Chandrashekar
 
PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005David Dahan
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosSimen Li
 

Similar to Poster (20)

Tcs230 datasheet
Tcs230 datasheetTcs230 datasheet
Tcs230 datasheet
 
Tcs230
Tcs230Tcs230
Tcs230
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013Instrumentation: Test and Measurement Methods and Solutions - VE2013
Instrumentation: Test and Measurement Methods and Solutions - VE2013
 
Fast Thermo-Optic Optimization of High-Order SOI Microring Optical Filters be...
Fast Thermo-Optic Optimization of High-Order SOI Microring Optical Filters be...Fast Thermo-Optic Optimization of High-Order SOI Microring Optical Filters be...
Fast Thermo-Optic Optimization of High-Order SOI Microring Optical Filters be...
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
Optical receivers
Optical receiversOptical receivers
Optical receivers
 
Design, Development and Simulation of Front End Electronics for Nuclear Detec...
Design, Development and Simulation of Front End Electronics for Nuclear Detec...Design, Development and Simulation of Front End Electronics for Nuclear Detec...
Design, Development and Simulation of Front End Electronics for Nuclear Detec...
 
FR1.T03.5 IGARSS_2011_Albers_22JUL2011.ppt
FR1.T03.5 IGARSS_2011_Albers_22JUL2011.pptFR1.T03.5 IGARSS_2011_Albers_22JUL2011.ppt
FR1.T03.5 IGARSS_2011_Albers_22JUL2011.ppt
 
Unit 6.pptx
Unit 6.pptxUnit 6.pptx
Unit 6.pptx
 
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato RabeloTrends in Future CommunicationsInternational Workshop - Renato Rabelo
Trends in Future CommunicationsInternational Workshop - Renato Rabelo
 
20GHz DQPSK Optical Modulator Electrical Bias Optimiser
20GHz DQPSK Optical Modulator Electrical Bias Optimiser20GHz DQPSK Optical Modulator Electrical Bias Optimiser
20GHz DQPSK Optical Modulator Electrical Bias Optimiser
 
Original N-CHANNEL MOSFET MMF60R360PTH 60R360 11A 600V TO-220F New Magnachips
Original N-CHANNEL MOSFET MMF60R360PTH 60R360 11A 600V TO-220F New MagnachipsOriginal N-CHANNEL MOSFET MMF60R360PTH 60R360 11A 600V TO-220F New Magnachips
Original N-CHANNEL MOSFET MMF60R360PTH 60R360 11A 600V TO-220F New Magnachips
 
LMV221 sdx
LMV221 sdxLMV221 sdx
LMV221 sdx
 
Amvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsAmvdd Data Converter Fundamentals
Amvdd Data Converter Fundamentals
 
PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
SAR_ADC__Resumo
SAR_ADC__ResumoSAR_ADC__Resumo
SAR_ADC__Resumo
 
IDEAS IC
IDEAS ICIDEAS IC
IDEAS IC
 
PhD_seminar_final
PhD_seminar_finalPhD_seminar_final
PhD_seminar_final
 

Poster

  • 1. National Institute Of Standards and Technology Boulder Colorado Enhancing the Performance of Quantum-Dot Based Single-Photon Detectors using Resonant RLC Circuitry Dean’s Distinguished Fellowship – Summer 2013 QDOGFET detectors use QDs embedded in transistors to count single photons of light. Previous work has been done at low detection rates and low operating temperatures. For practical application, high operating temperatures and detection rates are desired. Here, we discuss the technique of integrating the QDOGFET detector into an RLC Bandpass Filter to remove unwanted electrical noise from our signal Intro QDOGFET Design and Concept -2 -1 0 0 20 40 60 80 DVgate DIds N=3 Vgate (V) Ids(mA) • Ni/Au/Ge Source and Drain Ohmic Contacts SEM Image • QD Density: 400-500 QDs/mm2 • Semitransparent Pt Gate 2DEG CB VB InGaAs QDs Si d-doping GaAs Al0.2Ga0.8As Source Al0.2Ga0.8As Drain Gate GaAs QDOGFET Noise Vout(a.u.) Time (ms) Electrical Noise The main problem when analyzing our signal is the electrical noise. When we look at the noise in the frequency domain, we observe a fine structure. Our studies have shown that noise is of the form: 10 2 10 3 10 4 10 5 10 -26 10 -25 10 -24 10 -23 10 -22 10 -21 10 -20 10 -19 7K 11K 18K 30K 43K 60K 10 20 30 40 50 60 0 1 2 NI(A2/Hz) B(A) Frequency (kHz) Temperature (K) The noise increases with temperature. Filtering the Noise with a Band Pass Filter We can minimize the noise by using a RLC Band Pass Filter, using our QDOGFET as the resistive element. Capacitor Inductor VBP Vout RQ Vgate 18 20 22 24 26 28 0 10 20 30 40 50 60 70 Frequency (kHz) Conclusions and Future Work Understanding the noise features and their temperature dependence is critical in identifying the sources of noise Identifying the noise mechanisms is necessary for:  Engineering better performing devices  Determining maximum detection rates Determine operating temperature limitations Still to come:  Increased detection efficiency  Improved photon-number resolution  Modified structures for communications wavelengths (1310 and 1550 nm) What we achieved: QD Detector Photon-Number Resolution at 4K Laser l = 804 nm LHe Cryostat 4 K Attenuating Filter N=2 N=0 N=1 N=0 N=2 N=1 E. J. Gansen et al., Nature Photonics 1, 585 (2007). We use Poisson statistics of highly attenuated laser pulses to show photon counting capabilities. 0.0 0.4 0.8 0.0 0.4 N = 1 Histogram of Step Heights N=0 N=1 N=2 N=3 DIds (nA) Data Fit 0 250 500 16.246 16.247 16.248 16.249 Time (ms) ResetLaser DIds Ids(mA) With the new filtering technique the device should be able to reach signal to noise ratios of over 20:1. Signal to Noise with the filter Counts(x1000) Response to Single Pulse 25 20 15 10 5 0 50 100 150 200 250 300 3:1 S/N Line Temperature (k) •23:1 at 4k (Liquid Helium) •7:1 at 77k (Liquid Nitrogen) •3:1 at 222k (Thermoelectric Cooling) •2.3:1 at 296k (Room Temperature) Filtered Photo-Response at 6K Histogram of Step Heights Laser Pulse ΔVout Response to Single Pulse We looked at the amplitude of Vout while illuminating the device with 804 nm laser. Each photon changes the resistivity of the QDOGFET, which changes the resonant conditions of the RLC circuit. As a result, it causes measurable changes in the amplitude of Vout . We can analyze the changes in |Vout |by using our histogram. A mathematical fit helps us determine regions of detection of photons (N=0, N=1 etc…). -1.5 -1.0 -0.5 0.0 50 55 60 65 DVgate DVout N=1 |Vout|(mV) |Vgate|(V) 15000 15500 16000 16500 17000 0.0 0.2 0.4 0.6 0.8 1.0 3 photons 2 photons 1 photon 0 photon We simulated the behavior of the amplitude of Vout as a function of frequency. Experiment Experiment Simulation Frequency (kHz) |Vout| (mV) fresonant -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0 200 400 600 Counts |DVout|(V) Data Fit N=0 N=1 N=2 N=3 In a second time, we experimentally characterized the RLC circuit at 6K. |Vout|(mV) S/N Photons of light cause measurable changes in the amplitude of Vout. We average |Vout | before and after the pulse of light in order to build a histogram UW-L : Yann Talhouarne, Andrew Prudhom, Tyler Nickel, Richard Allenby, Eric Gansen (Advisor) NIST : Mary Rowe, Shelley Etzel, Sae Woo Nam, and Richard Mirin