This document discusses pattern recognition. It defines a pattern as a set of measurements describing a physical object and a pattern class as a set of patterns sharing common attributes. Pattern recognition involves relating perceived patterns to previously perceived patterns to classify them. The goals are to put patterns into categories and learn to distinguish patterns of interest. Examples of pattern recognition applications include optical character recognition, biometrics, medical diagnosis, and military target recognition. Common approaches to pattern recognition are statistical, neural networks, and structural. The process involves data acquisition, pre-processing, feature extraction, classification, and post-processing. An example of classifying fish into salmon and sea bass is provided.