SlideShare a Scribd company logo
1 of 58
NETWORK ANALYSIS
CONTENTS
2.STEADY STATE ANALYSIS OF AC CIRCUITS
2.1 Response to Sinusoidal Excitation-Pure Resistance
2.2 Response to Sinusoidal Excitation-Pure Inductance
2.3 Response to Sinusoidal Excitation-Pure Capacitance
2.4 Impedance concept and phase angle
2.5 Series Circuits-RL,RC,RLC
2.6 Steady state AC Mesh Analysis
2.7 Steady state AC Nodal Analysis
2.8 Star-Delta &Delta-Star Transformation
2.STEADY STATE ANALYSIS OFAC CIRCUITS
2.1 Response to Sinusoidal Excitation-Pure Resistance :
β€’ The circuit which contains only a resistance of R ohms in
the AC circuit is known as Pure Resistive AC Circuit.
β€’ Let a sinusoidal alternating voltage is
applied across a pure resistance as shown in the Fig.2.1(a).
𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘
β€’ The current flowing through the resistance R is
𝑖(𝑑) =
)𝑣(𝑑
𝑅
=
π‘‰π‘š
𝑅
sinπœ”π‘‘
where
β€’ The current flowing through the resistance is also
sinusoidal and it is in phase with the applied voltage.
β€’ The phase angle between voltage and current is zero.
β€’ In pure resistance, current and voltage are in phase.
i. Instantaneous power
𝑖(𝑑) = 𝐼 π‘šsinπœ”π‘‘
𝐼 π‘š =
π‘‰π‘š
𝑅
)𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
𝑝(𝑑) = π‘‰π‘š 𝐼 π‘šsin2
πœ”π‘‘
The average power is given by
π‘ƒπ‘Žπ‘£ =
1
𝑇
0
𝑇
𝑝(𝑑)𝑑𝑑
=
1
𝑇
0
𝑇
π‘‰π‘š 𝐼 π‘š
2
βˆ’
π‘‰π‘š 𝐼 π‘š
2
cos2πœ”π‘‘ 𝑑 𝑑
=
π‘‰π‘š 𝐼 π‘š
2
=
π‘‰π‘š
2
𝐼 π‘š
2
π‘ƒπ‘Žπ‘£ = π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠
Where Pav is average power
Vr.m.s is root mean square value of supply voltage
Ir.m.s is root mean square value of the current
Example 2.1 A sinusoidal voltage is applied to the resistive circuit shown in
Fig.2.1(d).Determine the following values
(a) (b) (c) (d)πΌπ‘Ÿπ‘šπ‘  𝐼 π‘Žπ‘£ 𝐼 𝑝 𝐼 𝑝𝑝
Solution The function given to the circuit shown is
The current passing through the resistor is
𝑣(𝑑) = 𝑉𝑝sinπœ”π‘‘ = 20sinπœ”π‘‘
𝑖(𝑑) =
)𝑣(𝑑
𝑅
=
20
2 Γ— 103
sinπœ”π‘‘ = 10 Γ— 10βˆ’3sinπœ”π‘‘
Peak value
Peak to peak value
Rms value = 0.707Γ—10 mA=7.07 mA
𝐼 𝑝=10 mA
𝐼 𝑝𝑝=20 mA
πΌπ‘Ÿπ‘šπ‘ =
𝐼 𝑝
2
Average Value =
1
πœ‹
0
πœ‹
𝐼 𝑝sinπœ”π‘‘ π‘‘πœ”π‘‘πΌ π‘Žπ‘£
𝐼 π‘Žπ‘£ =
1
πœ‹
βˆ’πΌ 𝑝cosπœ”π‘‘
0
πœ‹
= 0.637 𝐼 𝑃
= 0.637 Γ— 10π‘šπ΄ = 6.37π‘šπ΄
2.2 Response to Sinusoidal Excitation-Pure Inductance :
β€’ The circuit which contains only inductance (L) in the
Circuit is called a Pure inductive circuit.
β€’ Let a sinusoidal alternating voltage is
applied across a pure inductance as shown in the
Fig.2.2(a).
𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘
β€’ As a result, an alternating current i(t) flows through the inductance which induces an
emf in it.
𝑒 = βˆ’πΏ
𝑑𝑖
𝑑𝑑
β€’ The emf which is induced in the circuit is equal and opposite to the applied voltage
𝑣 = βˆ’π‘’ = βˆ’ βˆ’πΏ
𝑑𝑖
𝑑𝑑
π‘‰π‘šsinπœ”π‘‘ = 𝐿
𝑑𝑖
𝑑𝑑
𝑑𝑖 =
π‘‰π‘š
𝐿
sinπœ”π‘‘ 𝑑𝑑
𝑖 = 𝑑𝑖 =
π‘‰π‘š
𝐿
sinπœ”π‘‘ 𝑑𝑑 =
π‘‰π‘š
𝐿
βˆ’cosπœ”π‘‘
πœ”
= βˆ’
π‘‰π‘š
πœ”πΏ
sin
πœ‹
2
βˆ’ πœ”π‘‘ =
π‘‰π‘š
πœ”πΏ
sin πœ”π‘‘ βˆ’
πœ‹
2
𝑖 = 𝐼 π‘šsin πœ”π‘‘ βˆ’
πœ‹
2
Where
𝐼 π‘š =
π‘‰π‘š
ω𝐿
=
π‘‰π‘š
𝑋 𝐿
Where
𝑋 𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ Ξ©
β€’ In pure inductance circuit, current flowing through the inductor lags
the voltage by 90 degrees.
i. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
= π‘‰π‘šsinπœ”π‘‘ Γ— 𝐼 π‘šsin ω𝑑 βˆ’
πœ‹
2
= βˆ’π‘‰π‘š 𝐼 π‘šsin πœ”π‘‘ cos πœ”π‘‘
𝑃(𝑑) = βˆ’
π‘‰π‘š 𝐼 π‘š
2
sin 2πœ”π‘‘
The average power is given by
π‘ƒπ‘Žπ‘£ =
1
T 0
𝑇
βˆ’
π‘‰π‘š 𝐼 π‘š
2
sin 2πœ”π‘‘ 𝑑 𝑑 = 0
ii. The energy stored in a pure inductor is obtained by integrating power expression
over a positive half cycle of power variation.
Energy Stored
=
π‘‰π‘š 𝐼 π‘š
2πœ”
=
1
2
𝐿𝐼 π‘š
2
Energy stored in a pure inductor =
1
2
𝐿𝐼 π‘š
2 π½π‘œπ‘’π‘™π‘’π‘ 
= βˆ’
π‘‰π‘š 𝐼 π‘š
2
βˆ’cos2πœ”π‘‘
2πœ” 𝑇
2
𝑇
π‘Š =
𝑇
2
𝑇
𝑃 𝑑 𝑑𝑑 = βˆ’
π‘‰π‘š 𝐼 π‘š
2
𝑇
2
𝑇
sin2πœ”π‘‘ 𝑑𝑑
Example 2.2 Determine the rms current in the circuit shown in Fig 2.2(d)
Solution Inductive reactance 𝑋 𝐿 = 2πœ‹π‘“πΏ
= 2πœ‹ Γ— 10 Γ— 103
Γ— 50 Γ— 10βˆ’3
𝑋 𝐿 = 3.141π‘˜π›Ί
πΌπ‘Ÿπ‘šπ‘  =
π‘‰π‘Ÿπ‘šπ‘ 
𝑋 𝐿
πΌπ‘Ÿπ‘šπ‘  =
10
3.141 Γ— 103
= 3.18 mA
2.3 Response to Sinusoidal Excitation-Pure Capacitance :
β€’ The circuit which contains only a pure capacitor of
capacitance C farads is known as a Pure Capacitor
Circuit.
β€’ Let a sinusoidal alternating voltage is
applied across a pure capacitance as shown in the
Fig.2.3(a).
𝑣 𝑑 = π‘‰π‘šsinπœ”π‘‘
β€’ Current flowing through the circuit is given by the equation
𝑖(𝑑) =
π‘‘π‘ž
𝑑𝑑
=
)𝑑(𝐢𝑉
𝑑𝑑
𝑖(𝑑) = πœ”πΆπ‘‰π‘šcosπœ”π‘‘
= 𝐼 π‘šsin πœ”π‘‘ +
πœ‹
2
𝐼 π‘š = πœ”πΆπ‘‰π‘š
π‘‰π‘š
𝐼 π‘š
=
1
πœ”πΆ
=
1
2πœ‹π‘“πΆ
= 𝑋 𝐢
β€’ In the pure Capacitor circuit, the current flowing through the
capacitor leads the voltage by an angle of 90 degrees.
i. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
= π‘‰π‘šsinπœ”π‘‘ Γ— 𝐼 π‘šsin ω𝑑 +
πœ‹
2
= π‘‰π‘š 𝐼 π‘šsinπœ”π‘‘cosπœ”π‘‘
𝑝(𝑑) =
π‘‰π‘š 𝐼 π‘š
2
sin2πœ”π‘‘
The average power is given by
π‘ƒπ‘Žπ‘£ =
1
𝑇 0
T
π‘‰π‘š 𝐼 π‘š
2
sin 2πœ”π‘‘ 𝑑 πœ”π‘‘ = 0
ii. The energy stored in a pure capacitor is obtained by integrating power
expression over a positive half cycle of power variation.
Energy Stored = π‘Š =
0
𝑇 2
)𝑝(𝑑 𝑑𝑑 =
π‘‰π‘š 𝐼 π‘š
2
0
𝑇 2
sin2πœ”π‘‘ 𝑑𝑑
=
π‘‰π‘š 𝐼 π‘š
2πœ”
=
1
2
πΆπ‘‰π‘š
2
Energy stored in a pure capacitor=
1
2
πΆπ‘‰π‘š
2 Joules
Example 2.3 Determine the rms current in the circuit shown in Fig 2.3(d)
Solution Capacitive reactance 𝑋 𝐢 =
1
2πœ‹π‘“πΆ
=
1
2πœ‹ Γ— 5 Γ— 103 Γ— 0.01 Γ— 10βˆ’6
𝑋 𝐢 = 3.18𝐾𝛺
πΌπ‘Ÿπ‘šπ‘  =
π‘‰π‘Ÿπ‘šπ‘ 
𝑋 𝐢
πΌπ‘Ÿπ‘šπ‘  =
5
3.18𝐾
= 1.57 mA
2.4 Impedance and Phase angle :
β€’ Impedance is defined as the opposition offered by the circuit elements to the flow
of alternating current.
β€’ It can also be defined as the ratio of voltage function to current function and it is
denoted with Z.
β€’ If voltage and current are both sinusoidal functions of time, the phase difference
between voltage and current is called phase angle.
Impedance=Z=
π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›
πΆπ‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›
𝑍 =
𝑣
𝑖
=
𝑉 π‘š
𝐼 π‘š
=
𝑉 𝑅𝑀𝑆
𝐼 𝑅𝑀𝑆
ohms
Impedance Table for R,L and C Elements:
2.5.1 Series RL Circuit :
β€’ Consider a circuit consisting of pure resistance
connected in series with pure inductance.
β€’ Let a sinusoidal alternating voltage is applied across a
series RL circuit as shown in the Fig.2.5(a).
By applying Kirchhoff’s voltage law to the circuit
shown in Fig.2.5(a)
We get,
𝑉 = 𝑉𝑅 + 𝑉𝐿
𝑉 = 𝐼𝑅 + 𝐼𝑋 𝐿
β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the
phasor diagram is shown in the Fig.2.5(b).
Steps to draw Phasor diagram:
1. Take current as a reference phasor.
2. In case of resistance, voltage and current are in phase, so
VR will be along current phasor.
3. In case of inductance, current lags voltage by 90 degrees.
4. Supply voltage is obtained by the vector sum of VL and
VR .
𝑉 = 𝑉𝑅
2 + 𝑉𝐿
2 = 𝐼𝑅 2 + 𝐼 Γ— 𝑋 𝐿
2
= 𝐼 𝑅 2 + 𝑋 𝐿
2
𝑉𝑆 =
Consider the right angle triangle OAB,
𝑉 = 𝐼𝑍
𝑍 = 𝑅 2 + 𝑋 𝐿
2Impedance,
From impedance triangle,
tanπœ™ =
𝑋 𝐿
𝑅
In polar form, impedance can be represented as
𝑍 = |𝑍|βˆ πœ™
𝑍 = 𝑅 + 𝑗𝑋 𝐿
In rectangular form, impedance can be represented as
|𝑍| = 𝑅 2 + 𝑋 𝐿
2 πœ™ = tanβˆ’1
𝑋 𝐿
𝑅and
𝑅 = 𝑍cosπœ™, 𝑋 𝐿 = 𝑍sinπœ™
Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
Where and𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ )𝑖(𝑑) = 𝐼 π‘šsin(πœ”π‘‘ βˆ’ πœ™
𝑝(𝑑) = π‘‰π‘šsinπœ”π‘‘ Γ— )𝐼 π‘šsin(πœ”π‘‘ βˆ’ πœ™
𝑝(𝑑) =
π‘‰π‘š 𝐼 π‘š
2
2sin πœ”π‘‘ βˆ’ πœ™ sinπœ”π‘‘
𝑝(𝑑) =
π‘‰π‘š
2
𝐼 π‘š
2
)cosπœ™ βˆ’ cos(2πœ”π‘‘ βˆ’ πœ™
𝑝(𝑑) =
π‘‰π‘š
2
𝐼 π‘š
2
cosπœ™ βˆ’
π‘‰π‘š
2
𝐼 π‘š
2
cos 2πœ”π‘‘ βˆ’ πœ™
The average power consumed in the circuit over one complete cycle is given by
π‘ƒπ‘Žπ‘£ =
1
𝑇
0
𝑇
𝑝(𝑑)𝑑 𝑑 =
π‘‰π‘š 𝐼 π‘š
2𝑇
0
𝑇
cosπœ™ βˆ’ cos 2πœ”π‘‘ βˆ’ πœ™ 𝑑 𝑑
= π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠cosπœ™ = 𝑉𝐼cosπœ™π‘ƒπ‘Žπ‘£ =
π‘‰π‘š
2
𝐼 π‘š
2
cosπœ™
Example 2.4 To the circuit shown in the Fig.2.5(e),consisting a 1KW resistor connected
in series with a 50mH coil, a 10Vrms,10KHZ signal is applied. Find impedance Z,current
I, phase angle ,voltage across the resistance and the voltage across the inductance .𝑉𝑅 𝑉𝐿
Solution Inductive reactance
In rectangular form,
Total impedance
𝑋 𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ = 6.28 104 50 Γ— 10βˆ’3 = 3140𝛺
𝑍 = 1000 + 𝑗3140 𝛺
= 𝑅2 + 𝑋 𝐿
2 = 1000 2 + 3140 2 = 3295.4𝛺
πœƒ
Current
Phase angle
Therefore, in polar form in total impedance
Voltage across the resistance
Voltage across the inductance
𝐼 =
𝑉𝑆
𝑍
=
10
3295.4
= 3.03π‘šπ΄
πœƒ = tanβˆ’1
𝑋 𝐿
𝑅
= tanβˆ’1
3140
1000
= 72.330
𝑍 = 3295.4∠72.330
𝑉𝑅 = 𝐼𝑅 = 3.03 Γ— 10βˆ’3
Γ— 1000 = 3.03𝑉
𝑉𝐿 = 𝐼𝑋 𝐿 = 3.03 Γ— 10βˆ’3 Γ— 3140 = 9.51𝑉
Example 2.5 Determine the source voltage and the phase angle, if voltage across the
resistance is 70V and the voltage across the inductance is 20V as shown in Fig.
Solution Source voltage is given by 𝑉𝑆 = 𝑉𝑅
2
+ 𝑉𝐿
2
= 70 2 + 20 2 = 72.8𝑉
The angle between the current and source voltage is
πœƒ = tanβˆ’1
20
70
= 15.940
2.5.2 Series RC Circuit :
β€’ Consider a circuit consisting of pure resistance R ohms
connected in series with a pure capacitor of capacitance C
farads.
β€’ Let a sinusoidal alternating voltage is applied across a series
RC circuit as shown in the Fig.2.6(a).
By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.6(a)
𝑉 = 𝑉𝑅 + 𝑉𝐢
𝑉 = 𝐼𝑅 + 𝐼𝑋 𝐢
β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the
phasor diagram is shown in the Fig.2.6(b).
Steps to draw Phasor diagram:
1. Take current as a reference phasor.
2. In case of resistance, voltage and current are in phase, so VR
will be along current phasor.
3. In case of pure capacitance, current leads the voltage by 90
degrees.
4. Supply voltage is attained by the vector sum of VC and VR .
Consider the right angle triangle OAB,
𝑉 = 𝑉𝑅
2 + 𝑉𝐢
2 = 𝐼𝑅 2 + 𝐼 Γ— 𝑋 𝐢
2𝑉𝑆 =
= 𝐼 𝑅 2 + 𝑋 𝐢
2
𝑉 = 𝐼𝑍
𝑍 = 𝑅 2 + 𝑋 𝐢
2Impedance,
From impedance triangle,
tanπœ™ =
𝑋 𝐢
𝑅
In rectangular form, impedance can be represented as
𝑍 = 𝑅 βˆ’ 𝑗𝑋 𝐢
𝑅 = 𝑍cosπœ™, 𝑋 𝐢 = 𝑍sinπœ™where
In polar form, impedance can be represented as
𝑍 = |𝑍|βˆ πœ™
|𝑍| = 𝑅 2 + 𝑋 𝐢
2 and πœ™ = tanβˆ’1
𝑋 𝐢
𝑅
Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑
Where and𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ )𝑖(𝑑) = 𝐼 π‘šsin(πœ”π‘‘ + πœ™
𝑝(𝑑) = π‘‰π‘šsinπœ”π‘‘ Γ— )𝐼 π‘šsin(πœ”π‘‘ + πœ™
𝑝(𝑑) =
π‘‰π‘š 𝐼 π‘š
2
2sin πœ”π‘‘ + πœ™ sinπœ”π‘‘
𝑝(𝑑) =
π‘‰π‘š
2
𝐼 π‘š
2
)cosπœ™ βˆ’ cos(2πœ”π‘‘ + πœ™
The average power consumed in the circuit over one complete cycle is given by
π‘ƒπ‘Žπ‘£ =
1
𝑇
0
𝑇
𝑝(𝑑)𝑑 πœ”π‘‘ =
π‘‰π‘š 𝐼 π‘š
2𝑇
0
𝑇
cosπœ™ βˆ’ cos 2πœ”π‘‘ + πœ™ 𝑑 πœ”π‘‘
= π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠cosπœ™ = 𝑉𝐼cosπœ™π‘ƒπ‘Žπ‘£ =
π‘‰π‘š
2
𝐼 π‘š
2
cosπœ™
Example 2.6 Determine the source voltage and phase angle when the voltage across the
Resistor is 20V and the capacitor is 30V as shown in Fig.
Solution Source voltage is given by
𝑉𝑆 = 𝑉𝑅
2
+ 𝑉𝐢
2
= 20 2 + 30 2 = 36𝑉
The angle between the current and source voltage is
πœƒ = tanβˆ’1
30
20
= 56.30
Example 2.7 A sine wave generator supplies a 500Hz,10V rms signal to a 2kΞ© resistor in
Series with a 0.1ΞΌF capacitor as shown in Fig.Determine the
total impedance Z,current I, phase angle Ο΄,capacitive voltage
and resistive voltage .𝑉𝐢 𝑉𝑅
Solution Capacitive reactance
𝑋 𝐢 =
1
2πœ‹π‘“πΆ
=
1
6.28 Γ— 500 Γ— 0.1 Γ— 10βˆ’6
= 3184.7𝛺
Total impedance 𝑍 = 2000 βˆ’ 𝑗3184.7 𝛺
𝑍 = 2000 2 + 3184.7 2 = 3760.6𝛺
Phase angle πœƒ = tanβˆ’1
βˆ’π‘‹ 𝐢
𝑅
= tanβˆ’1
βˆ’3184.7
2000
= βˆ’57.870
Current 𝐼 =
𝑉𝑆
𝑍
=
10
3760.6
= 2.66π‘šπ΄
Capacitive Voltage 𝑉𝐢 = 𝐼𝑋 𝐢 = 2.66 Γ— 10βˆ’3 Γ— 3184.7 = 8.47𝑉
Resistive Voltage 𝑉𝑅 = 𝐼𝑅 = 2.66 Γ— 10βˆ’3 Γ— 2000 = 5.32𝑉
Total applied voltage in rectangular form, 𝑉𝑆 = 5.32 βˆ’ 𝑗8.47𝑉
Total applied voltage in polar form, 𝑉𝑆 = 10∠ βˆ’ 57.870 𝑉
2.5.3 Series RLC Circuit :
β€’ Consider a circuit consisting of a pure resistance R
ohms, a pure inductance L Henry and a pure
capacitor of capacitance C farads are connected in
series.
β€’ Let a sinusoidal alternating voltage is applied across a series RLC circuit as shown in the
Fig.2.7(a)
By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.7(a)
𝑉 = 𝑉𝑅 + 𝑉𝐿 + 𝑉𝐢
β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the phasor
diagram is shown in the Fig.2.7(b).
Steps to draw Phasor diagram:
1.Take current as reference.
2. is in phase with I.
3. leads current I by
𝑉𝑅
𝑉𝐿 900
4. Lags current I by
5. Obtain the resultant of and .Both and are in phase opposition ( out of phase).
6.Add that with by law of parallelogram to get the supply voltage.
𝑉𝐢 900
𝑉𝐿 𝑉𝐢 𝑉𝐿 𝑉𝐢 1800
𝑉𝑅
i) :𝑿 𝑳 > 𝑿 π‘ͺ
𝑉 = 𝑉𝑅
2 + 𝑉𝐿 βˆ’ 𝑉𝐢
2 = 𝐼𝑅 2 + 𝐼𝑋 𝐿 βˆ’ 𝐼𝑋 𝐢
2
= 𝐼 𝑅 2 + 𝑋 𝐿 βˆ’ 𝑋 𝐢
2
From the Voltage triangle,
𝑉 = 𝐼𝑍
𝑍 = 𝑅 2 + 𝑋 𝐿 βˆ’ 𝑋 𝐢
2
𝑿 𝑳 < 𝑿 π‘ͺii) :
From the Voltage triangle, 𝑉 = 𝑉𝑅
2 + 𝑉𝐢 βˆ’ 𝑉𝐿
2 = 𝐼𝑅 2 + 𝐼𝑋 𝐢 βˆ’ 𝐼𝑋 𝐿
2
= 𝐼 𝑅 2 + 𝑋 𝐢 βˆ’ 𝑋 𝐿
2
𝑉 = 𝐼𝑍
𝑍 = 𝑅 2 + 𝑋 𝐢 βˆ’ 𝑋 𝐿
2
iii) :𝑿 𝑳 = 𝑿 π‘ͺ
𝑉 = 𝑉𝑅
From the phasor diagram,
𝑉 = 𝐼𝑅
𝑉 = 𝐼𝑍
𝑍 = 𝑅
2.6 Steady State AC Mesh Analysis:
A mesh is defined as a loop which does not contain any other loops within it.
Number of equations=branches-(nodes-1)
M=B-(N-1)
By applying Kirchhoff’s voltage law around the first mesh
𝑉1 = 𝐼1 𝑍1 + 𝐼1 βˆ’ 𝐼2 𝑍2
By applying Kirchhoff’s voltage law around the second mesh
𝑍2 𝐼2 βˆ’ 𝐼1 + 𝑍3 𝐼2 = 0
3
b aV V
Z
ο€­
𝑉𝑆 = 3.29∠185.450Ans:
2.7 Steady State AC Nodal Analysis:
β€’ In general, in a N node circuit, one of the nodes is choosen as reference or datum node,
then it is possible to write N-1 nodal equations by assuming N-1 node voltages.
β€’ The node voltage is the voltage of a given node with respect to one particular node,
called the reference node (which is assumed at zero potential).
π‘‰π‘Ž βˆ’ 𝑉1
𝑍1
+
π‘‰π‘Ž
𝑍2
+
π‘‰π‘Ž βˆ’ 𝑉𝑏
𝑍3
= 0
βˆ’π‘‰1
𝑍1
+ π‘‰π‘Ž
1
𝑍1
+
1
𝑍2
+
1
𝑍3
βˆ’
𝑉𝑏
𝑍3
= 0 … … … (1)
𝑉𝑏 βˆ’ π‘‰π‘Ž
𝑍3
+
𝑉𝑏
𝑍4
+
𝑉𝑏
𝑍5 + 𝑍6
= 0
βˆ’
π‘‰π‘Ž
𝑍3
+ 𝑉𝑏
1
𝑍3
+
1
𝑍4
+
1
𝑍5 + 𝑍6
= 0 … … … (2)
2.8 Delta-Star transformation:
Three resistances may be connected in star (or Y) and delta(or Ξ”) connection as shown
in figure
In the star connection,
𝑅 π‘Žπ‘ = 𝑅 π‘Ž + 𝑅 𝑏 … … … (1)
𝑅 𝑏𝑐 = 𝑅 𝑏 + 𝑅 𝑐 … … … (2)
𝑅 π‘π‘Ž = 𝑅 𝑐 + 𝑅 π‘Ž … … … (3)
Similarly in delta connection, the resistance seen from
ab,bc and ca are given by
𝑅 π‘Žπ‘ = 𝑅1|| 𝑅2 + 𝑅3 … … … (4)
𝑅 𝑏𝑐 = 𝑅2|| 𝑅1 + 𝑅3 … … … (5)
𝑅 π‘π‘Ž = 𝑅3|| 𝑅1 + 𝑅2 … … … (6)
𝑅 π‘Žπ‘ + 𝑅 𝑏𝑐 + 𝑅 π‘π‘Ž = 2 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝑐 … … … (7)
Adding the equations 1,2 and 3 we get
Similarly, adding the equations 4,5 and 6,we get
𝑅 π‘Žπ‘ + 𝑅 𝑏𝑐 + 𝑅 π‘π‘Ž =
2 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1
𝑅1 + 𝑅2 + 𝑅3
… … … (8)
From equations 7 and 8
2 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝑐 =
2 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1
𝑅1 + 𝑅2 + 𝑅3
𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝐢 =
𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1
𝑅1 + 𝑅2 + 𝑅3
… … … (9)
Subtracting equation 5 from 9
𝑅 π‘Ž =
𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1
𝑅1 + 𝑅2 + 𝑅3
βˆ’
𝑅2 𝑅1 + 𝑅3
𝑅1 + 𝑅2 + 𝑅3
𝑅 π‘Ž =
𝑅1 𝑅3
𝑅1 + 𝑅2 + 𝑅3
… … … (10)
𝑅 𝑏 =
𝑅1 𝑅2
𝑅1 + 𝑅2 + 𝑅3
… … … (11)
𝑅 𝑐 =
𝑅2 𝑅3
𝑅1 + 𝑅2 + 𝑅3
… … … (12)
Star-Delta transformation:
Multiplying the equations 10 and 11,11 and 12 and 12 and 10
𝑅 π‘Ž 𝑅 𝑏 =
𝑅1
2
𝑅2 𝑅3
𝑅1 + 𝑅2 + 𝑅3
2
… … … (13)
𝑅 𝑏 𝑅 𝑐 =
𝑅1 𝑅2
2
𝑅3
𝑅1 + 𝑅2 + 𝑅3
2
… … … (14)
𝑅 𝑐 𝑅 π‘Ž =
𝑅1 𝑅2 𝑅3
2
𝑅1 + 𝑅2 + 𝑅3
2
… … … (15)
Adding equations 13,14 and 15,we get
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž =
𝑅1 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3
𝑅1 + 𝑅2 + 𝑅3
2
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž =
𝑅1 𝑅2 𝑅3
𝑅1 + 𝑅2 + 𝑅3
… … … (16)
Dividing equation 16 by 12,we get
𝑅1 =
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž
𝑅 𝑐
𝑅2 =
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž
𝑅 π‘Ž
𝑅3 =
𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž
𝑅 𝑏
Ans:4Ξ©
Ans:28.94Ξ©

More Related Content

What's hot

Thevenin theorem
Thevenin theoremThevenin theorem
Thevenin theoremRajni Maurya
Β 
Design of substation (with Transformer Design)
Design of substation (with Transformer Design) Design of substation (with Transformer Design)
Design of substation (with Transformer Design) SayanSarkar55
Β 
Z bus building algorithm
Z bus building algorithmZ bus building algorithm
Z bus building algorithmKaransinh Parmar
Β 
Chapter 2 transmission line parameters
Chapter 2  transmission line parametersChapter 2  transmission line parameters
Chapter 2 transmission line parametersfiraoltemesgen1
Β 
Thevenin's theorem
Thevenin's theoremThevenin's theorem
Thevenin's theoremKalpanaTiwari14
Β 
Power system voltage stability
Power system voltage stabilityPower system voltage stability
Power system voltage stabilityAkash Choudhary
Β 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15Shiwam Isrie
Β 
Superposition theorem
Superposition theoremSuperposition theorem
Superposition theoremNisarg Amin
Β 
Buck converter
Buck converterBuck converter
Buck converterAhsanZareen2
Β 
Conserto smps 12 a 24 v
Conserto smps 12 a 24 vConserto smps 12 a 24 v
Conserto smps 12 a 24 vWholer
Β 
Mechanical design of overhead lines
Mechanical design of overhead linesMechanical design of overhead lines
Mechanical design of overhead linesMd. Rimon Mia
Β 
Nodal Analysis.pptx
 Nodal Analysis.pptx Nodal Analysis.pptx
Nodal Analysis.pptxKisorS1
Β 
Power systems symmetrical components
Power systems symmetrical componentsPower systems symmetrical components
Power systems symmetrical componentsanoopeluvathingal
Β 
Analysis of Phasor Diagram
Analysis of Phasor Diagram Analysis of Phasor Diagram
Analysis of Phasor Diagram Abhishek Choksi
Β 
Network Theorems.ppt
Network Theorems.pptNetwork Theorems.ppt
Network Theorems.pptbhanupratap_11
Β 
Mains operated under voltage over voltage trip switch
Mains operated under voltage over voltage trip switchMains operated under voltage over voltage trip switch
Mains operated under voltage over voltage trip switchEdgefxkits & Solutions
Β 
Semi conductor diode
Semi conductor diodeSemi conductor diode
Semi conductor diodeSidharth Sharma
Β 

What's hot (20)

Thevenin theorem
Thevenin theoremThevenin theorem
Thevenin theorem
Β 
thevenin's theorem
thevenin's theoremthevenin's theorem
thevenin's theorem
Β 
Design of substation (with Transformer Design)
Design of substation (with Transformer Design) Design of substation (with Transformer Design)
Design of substation (with Transformer Design)
Β 
Z bus building algorithm
Z bus building algorithmZ bus building algorithm
Z bus building algorithm
Β 
Chapter 2 transmission line parameters
Chapter 2  transmission line parametersChapter 2  transmission line parameters
Chapter 2 transmission line parameters
Β 
Thevenin's theorem
Thevenin's theoremThevenin's theorem
Thevenin's theorem
Β 
Power system voltage stability
Power system voltage stabilityPower system voltage stability
Power system voltage stability
Β 
Pashen's law
Pashen's lawPashen's law
Pashen's law
Β 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-15
Β 
Superposition theorem
Superposition theoremSuperposition theorem
Superposition theorem
Β 
Buck converter
Buck converterBuck converter
Buck converter
Β 
Conserto smps 12 a 24 v
Conserto smps 12 a 24 vConserto smps 12 a 24 v
Conserto smps 12 a 24 v
Β 
Mechanical design of overhead lines
Mechanical design of overhead linesMechanical design of overhead lines
Mechanical design of overhead lines
Β 
Nodal Analysis.pptx
 Nodal Analysis.pptx Nodal Analysis.pptx
Nodal Analysis.pptx
Β 
Power systems symmetrical components
Power systems symmetrical componentsPower systems symmetrical components
Power systems symmetrical components
Β 
Analysis of Phasor Diagram
Analysis of Phasor Diagram Analysis of Phasor Diagram
Analysis of Phasor Diagram
Β 
Network Theorems.ppt
Network Theorems.pptNetwork Theorems.ppt
Network Theorems.ppt
Β 
Mains operated under voltage over voltage trip switch
Mains operated under voltage over voltage trip switchMains operated under voltage over voltage trip switch
Mains operated under voltage over voltage trip switch
Β 
Semi conductor diode
Semi conductor diodeSemi conductor diode
Semi conductor diode
Β 
load flow 1
 load flow 1 load flow 1
load flow 1
Β 

Similar to Network analysis unit 2

AC.pptx
AC.pptxAC.pptx
AC.pptxxdarlord
Β 
Electrical Circuits
Electrical CircuitsElectrical Circuits
Electrical CircuitsKC College
Β 
Power in AC circuits.pdf
Power in AC circuits.pdfPower in AC circuits.pdf
Power in AC circuits.pdfMTharunKumar3
Β 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatVIVEK AHLAWAT
Β 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
Β 
Experiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingExperiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingvimala elumalai
Β 
Compensation using power electronic devices
Compensation using power electronic devicesCompensation using power electronic devices
Compensation using power electronic devicesTribhuvan University
Β 
Bridge rectifier
Bridge rectifierBridge rectifier
Bridge rectifierDenis Simiyu
Β 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdfMTharunKumar3
Β 
lec7 (1).pptx
lec7 (1).pptxlec7 (1).pptx
lec7 (1).pptxDevesh39220
Β 
PHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentPHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentstudy material
Β 
CLASS X SCIENCE STUDY MATERIAL
CLASS X SCIENCE STUDY MATERIALCLASS X SCIENCE STUDY MATERIAL
CLASS X SCIENCE STUDY MATERIALRc Os
Β 

Similar to Network analysis unit 2 (20)

AC.pptx
AC.pptxAC.pptx
AC.pptx
Β 
Electrical Circuits
Electrical CircuitsElectrical Circuits
Electrical Circuits
Β 
Resonance.pdf
Resonance.pdfResonance.pdf
Resonance.pdf
Β 
Power in AC circuits.pdf
Power in AC circuits.pdfPower in AC circuits.pdf
Power in AC circuits.pdf
Β 
Three Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek AhlawatThree Phase Rectifier By Vivek Ahlawat
Three Phase Rectifier By Vivek Ahlawat
Β 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
Β 
Experiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processingExperiment 3 on DIgital Signal processing
Experiment 3 on DIgital Signal processing
Β 
G1013238
G1013238G1013238
G1013238
Β 
Compensation using power electronic devices
Compensation using power electronic devicesCompensation using power electronic devices
Compensation using power electronic devices
Β 
Reactive Power Concepts
Reactive Power ConceptsReactive Power Concepts
Reactive Power Concepts
Β 
Bridge rectifier
Bridge rectifierBridge rectifier
Bridge rectifier
Β 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdf
Β 
PP+for+Ch+31.pdf
PP+for+Ch+31.pdfPP+for+Ch+31.pdf
PP+for+Ch+31.pdf
Β 
lec7 (1).pptx
lec7 (1).pptxlec7 (1).pptx
lec7 (1).pptx
Β 
PHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating currentPHY PUC 2 Notes-Alternating current
PHY PUC 2 Notes-Alternating current
Β 
L7%20AC.pdf
L7%20AC.pdfL7%20AC.pdf
L7%20AC.pdf
Β 
CLASS X SCIENCE STUDY MATERIAL
CLASS X SCIENCE STUDY MATERIALCLASS X SCIENCE STUDY MATERIAL
CLASS X SCIENCE STUDY MATERIAL
Β 
12 seri rlc
12 seri rlc12 seri rlc
12 seri rlc
Β 
Impedanc matching
Impedanc matchingImpedanc matching
Impedanc matching
Β 
report of power electronics
report of power electronicsreport of power electronics
report of power electronics
Β 

Recently uploaded

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerAnamika Sarkar
Β 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
Β 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 

Recently uploaded (20)

Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Β 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
Β 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
Β 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
Β 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 

Network analysis unit 2

  • 2. CONTENTS 2.STEADY STATE ANALYSIS OF AC CIRCUITS 2.1 Response to Sinusoidal Excitation-Pure Resistance 2.2 Response to Sinusoidal Excitation-Pure Inductance 2.3 Response to Sinusoidal Excitation-Pure Capacitance 2.4 Impedance concept and phase angle 2.5 Series Circuits-RL,RC,RLC 2.6 Steady state AC Mesh Analysis 2.7 Steady state AC Nodal Analysis 2.8 Star-Delta &Delta-Star Transformation
  • 3. 2.STEADY STATE ANALYSIS OFAC CIRCUITS 2.1 Response to Sinusoidal Excitation-Pure Resistance : β€’ The circuit which contains only a resistance of R ohms in the AC circuit is known as Pure Resistive AC Circuit. β€’ Let a sinusoidal alternating voltage is applied across a pure resistance as shown in the Fig.2.1(a). 𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ β€’ The current flowing through the resistance R is 𝑖(𝑑) = )𝑣(𝑑 𝑅 = π‘‰π‘š 𝑅 sinπœ”π‘‘
  • 4. where β€’ The current flowing through the resistance is also sinusoidal and it is in phase with the applied voltage. β€’ The phase angle between voltage and current is zero. β€’ In pure resistance, current and voltage are in phase. i. Instantaneous power 𝑖(𝑑) = 𝐼 π‘šsinπœ”π‘‘ 𝐼 π‘š = π‘‰π‘š 𝑅 )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 𝑝(𝑑) = π‘‰π‘š 𝐼 π‘šsin2 πœ”π‘‘ The average power is given by
  • 5. π‘ƒπ‘Žπ‘£ = 1 𝑇 0 𝑇 𝑝(𝑑)𝑑𝑑 = 1 𝑇 0 𝑇 π‘‰π‘š 𝐼 π‘š 2 βˆ’ π‘‰π‘š 𝐼 π‘š 2 cos2πœ”π‘‘ 𝑑 𝑑 = π‘‰π‘š 𝐼 π‘š 2 = π‘‰π‘š 2 𝐼 π‘š 2 π‘ƒπ‘Žπ‘£ = π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠 Where Pav is average power Vr.m.s is root mean square value of supply voltage Ir.m.s is root mean square value of the current
  • 6. Example 2.1 A sinusoidal voltage is applied to the resistive circuit shown in Fig.2.1(d).Determine the following values (a) (b) (c) (d)πΌπ‘Ÿπ‘šπ‘  𝐼 π‘Žπ‘£ 𝐼 𝑝 𝐼 𝑝𝑝 Solution The function given to the circuit shown is The current passing through the resistor is 𝑣(𝑑) = 𝑉𝑝sinπœ”π‘‘ = 20sinπœ”π‘‘ 𝑖(𝑑) = )𝑣(𝑑 𝑅 = 20 2 Γ— 103 sinπœ”π‘‘ = 10 Γ— 10βˆ’3sinπœ”π‘‘
  • 7. Peak value Peak to peak value Rms value = 0.707Γ—10 mA=7.07 mA 𝐼 𝑝=10 mA 𝐼 𝑝𝑝=20 mA πΌπ‘Ÿπ‘šπ‘ = 𝐼 𝑝 2 Average Value = 1 πœ‹ 0 πœ‹ 𝐼 𝑝sinπœ”π‘‘ π‘‘πœ”π‘‘πΌ π‘Žπ‘£ 𝐼 π‘Žπ‘£ = 1 πœ‹ βˆ’πΌ 𝑝cosπœ”π‘‘ 0 πœ‹ = 0.637 𝐼 𝑃 = 0.637 Γ— 10π‘šπ΄ = 6.37π‘šπ΄
  • 8. 2.2 Response to Sinusoidal Excitation-Pure Inductance : β€’ The circuit which contains only inductance (L) in the Circuit is called a Pure inductive circuit. β€’ Let a sinusoidal alternating voltage is applied across a pure inductance as shown in the Fig.2.2(a). 𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ β€’ As a result, an alternating current i(t) flows through the inductance which induces an emf in it. 𝑒 = βˆ’πΏ 𝑑𝑖 𝑑𝑑 β€’ The emf which is induced in the circuit is equal and opposite to the applied voltage
  • 9. 𝑣 = βˆ’π‘’ = βˆ’ βˆ’πΏ 𝑑𝑖 𝑑𝑑 π‘‰π‘šsinπœ”π‘‘ = 𝐿 𝑑𝑖 𝑑𝑑 𝑑𝑖 = π‘‰π‘š 𝐿 sinπœ”π‘‘ 𝑑𝑑 𝑖 = 𝑑𝑖 = π‘‰π‘š 𝐿 sinπœ”π‘‘ 𝑑𝑑 = π‘‰π‘š 𝐿 βˆ’cosπœ”π‘‘ πœ” = βˆ’ π‘‰π‘š πœ”πΏ sin πœ‹ 2 βˆ’ πœ”π‘‘ = π‘‰π‘š πœ”πΏ sin πœ”π‘‘ βˆ’ πœ‹ 2 𝑖 = 𝐼 π‘šsin πœ”π‘‘ βˆ’ πœ‹ 2
  • 10. Where 𝐼 π‘š = π‘‰π‘š ω𝐿 = π‘‰π‘š 𝑋 𝐿 Where 𝑋 𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ Ξ© β€’ In pure inductance circuit, current flowing through the inductor lags the voltage by 90 degrees. i. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 = π‘‰π‘šsinπœ”π‘‘ Γ— 𝐼 π‘šsin ω𝑑 βˆ’ πœ‹ 2 = βˆ’π‘‰π‘š 𝐼 π‘šsin πœ”π‘‘ cos πœ”π‘‘ 𝑃(𝑑) = βˆ’ π‘‰π‘š 𝐼 π‘š 2 sin 2πœ”π‘‘ The average power is given by π‘ƒπ‘Žπ‘£ = 1 T 0 𝑇 βˆ’ π‘‰π‘š 𝐼 π‘š 2 sin 2πœ”π‘‘ 𝑑 𝑑 = 0
  • 11. ii. The energy stored in a pure inductor is obtained by integrating power expression over a positive half cycle of power variation. Energy Stored = π‘‰π‘š 𝐼 π‘š 2πœ” = 1 2 𝐿𝐼 π‘š 2 Energy stored in a pure inductor = 1 2 𝐿𝐼 π‘š 2 π½π‘œπ‘’π‘™π‘’π‘  = βˆ’ π‘‰π‘š 𝐼 π‘š 2 βˆ’cos2πœ”π‘‘ 2πœ” 𝑇 2 𝑇 π‘Š = 𝑇 2 𝑇 𝑃 𝑑 𝑑𝑑 = βˆ’ π‘‰π‘š 𝐼 π‘š 2 𝑇 2 𝑇 sin2πœ”π‘‘ 𝑑𝑑
  • 12. Example 2.2 Determine the rms current in the circuit shown in Fig 2.2(d) Solution Inductive reactance 𝑋 𝐿 = 2πœ‹π‘“πΏ = 2πœ‹ Γ— 10 Γ— 103 Γ— 50 Γ— 10βˆ’3 𝑋 𝐿 = 3.141π‘˜π›Ί πΌπ‘Ÿπ‘šπ‘  = π‘‰π‘Ÿπ‘šπ‘  𝑋 𝐿 πΌπ‘Ÿπ‘šπ‘  = 10 3.141 Γ— 103 = 3.18 mA
  • 13. 2.3 Response to Sinusoidal Excitation-Pure Capacitance : β€’ The circuit which contains only a pure capacitor of capacitance C farads is known as a Pure Capacitor Circuit. β€’ Let a sinusoidal alternating voltage is applied across a pure capacitance as shown in the Fig.2.3(a). 𝑣 𝑑 = π‘‰π‘šsinπœ”π‘‘ β€’ Current flowing through the circuit is given by the equation 𝑖(𝑑) = π‘‘π‘ž 𝑑𝑑 = )𝑑(𝐢𝑉 𝑑𝑑
  • 14. 𝑖(𝑑) = πœ”πΆπ‘‰π‘šcosπœ”π‘‘ = 𝐼 π‘šsin πœ”π‘‘ + πœ‹ 2 𝐼 π‘š = πœ”πΆπ‘‰π‘š π‘‰π‘š 𝐼 π‘š = 1 πœ”πΆ = 1 2πœ‹π‘“πΆ = 𝑋 𝐢 β€’ In the pure Capacitor circuit, the current flowing through the capacitor leads the voltage by an angle of 90 degrees. i. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 = π‘‰π‘šsinπœ”π‘‘ Γ— 𝐼 π‘šsin ω𝑑 + πœ‹ 2 = π‘‰π‘š 𝐼 π‘šsinπœ”π‘‘cosπœ”π‘‘
  • 15. 𝑝(𝑑) = π‘‰π‘š 𝐼 π‘š 2 sin2πœ”π‘‘ The average power is given by π‘ƒπ‘Žπ‘£ = 1 𝑇 0 T π‘‰π‘š 𝐼 π‘š 2 sin 2πœ”π‘‘ 𝑑 πœ”π‘‘ = 0 ii. The energy stored in a pure capacitor is obtained by integrating power expression over a positive half cycle of power variation. Energy Stored = π‘Š = 0 𝑇 2 )𝑝(𝑑 𝑑𝑑 = π‘‰π‘š 𝐼 π‘š 2 0 𝑇 2 sin2πœ”π‘‘ 𝑑𝑑 = π‘‰π‘š 𝐼 π‘š 2πœ” = 1 2 πΆπ‘‰π‘š 2 Energy stored in a pure capacitor= 1 2 πΆπ‘‰π‘š 2 Joules
  • 16. Example 2.3 Determine the rms current in the circuit shown in Fig 2.3(d) Solution Capacitive reactance 𝑋 𝐢 = 1 2πœ‹π‘“πΆ = 1 2πœ‹ Γ— 5 Γ— 103 Γ— 0.01 Γ— 10βˆ’6 𝑋 𝐢 = 3.18𝐾𝛺 πΌπ‘Ÿπ‘šπ‘  = π‘‰π‘Ÿπ‘šπ‘  𝑋 𝐢 πΌπ‘Ÿπ‘šπ‘  = 5 3.18𝐾 = 1.57 mA
  • 17. 2.4 Impedance and Phase angle : β€’ Impedance is defined as the opposition offered by the circuit elements to the flow of alternating current. β€’ It can also be defined as the ratio of voltage function to current function and it is denoted with Z. β€’ If voltage and current are both sinusoidal functions of time, the phase difference between voltage and current is called phase angle. Impedance=Z= π‘‰π‘œπ‘™π‘‘π‘Žπ‘”π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› πΆπ‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘‘ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑍 = 𝑣 𝑖 = 𝑉 π‘š 𝐼 π‘š = 𝑉 𝑅𝑀𝑆 𝐼 𝑅𝑀𝑆 ohms
  • 18. Impedance Table for R,L and C Elements:
  • 19. 2.5.1 Series RL Circuit : β€’ Consider a circuit consisting of pure resistance connected in series with pure inductance. β€’ Let a sinusoidal alternating voltage is applied across a series RL circuit as shown in the Fig.2.5(a). By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.5(a) We get, 𝑉 = 𝑉𝑅 + 𝑉𝐿 𝑉 = 𝐼𝑅 + 𝐼𝑋 𝐿 β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the phasor diagram is shown in the Fig.2.5(b).
  • 20. Steps to draw Phasor diagram: 1. Take current as a reference phasor. 2. In case of resistance, voltage and current are in phase, so VR will be along current phasor. 3. In case of inductance, current lags voltage by 90 degrees. 4. Supply voltage is obtained by the vector sum of VL and VR . 𝑉 = 𝑉𝑅 2 + 𝑉𝐿 2 = 𝐼𝑅 2 + 𝐼 Γ— 𝑋 𝐿 2 = 𝐼 𝑅 2 + 𝑋 𝐿 2 𝑉𝑆 = Consider the right angle triangle OAB,
  • 21. 𝑉 = 𝐼𝑍 𝑍 = 𝑅 2 + 𝑋 𝐿 2Impedance, From impedance triangle, tanπœ™ = 𝑋 𝐿 𝑅 In polar form, impedance can be represented as 𝑍 = |𝑍|βˆ πœ™ 𝑍 = 𝑅 + 𝑗𝑋 𝐿 In rectangular form, impedance can be represented as |𝑍| = 𝑅 2 + 𝑋 𝐿 2 πœ™ = tanβˆ’1 𝑋 𝐿 𝑅and 𝑅 = 𝑍cosπœ™, 𝑋 𝐿 = 𝑍sinπœ™
  • 22. Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 Where and𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ )𝑖(𝑑) = 𝐼 π‘šsin(πœ”π‘‘ βˆ’ πœ™ 𝑝(𝑑) = π‘‰π‘šsinπœ”π‘‘ Γ— )𝐼 π‘šsin(πœ”π‘‘ βˆ’ πœ™ 𝑝(𝑑) = π‘‰π‘š 𝐼 π‘š 2 2sin πœ”π‘‘ βˆ’ πœ™ sinπœ”π‘‘ 𝑝(𝑑) = π‘‰π‘š 2 𝐼 π‘š 2 )cosπœ™ βˆ’ cos(2πœ”π‘‘ βˆ’ πœ™ 𝑝(𝑑) = π‘‰π‘š 2 𝐼 π‘š 2 cosπœ™ βˆ’ π‘‰π‘š 2 𝐼 π‘š 2 cos 2πœ”π‘‘ βˆ’ πœ™ The average power consumed in the circuit over one complete cycle is given by
  • 23. π‘ƒπ‘Žπ‘£ = 1 𝑇 0 𝑇 𝑝(𝑑)𝑑 𝑑 = π‘‰π‘š 𝐼 π‘š 2𝑇 0 𝑇 cosπœ™ βˆ’ cos 2πœ”π‘‘ βˆ’ πœ™ 𝑑 𝑑 = π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠cosπœ™ = 𝑉𝐼cosπœ™π‘ƒπ‘Žπ‘£ = π‘‰π‘š 2 𝐼 π‘š 2 cosπœ™ Example 2.4 To the circuit shown in the Fig.2.5(e),consisting a 1KW resistor connected in series with a 50mH coil, a 10Vrms,10KHZ signal is applied. Find impedance Z,current I, phase angle ,voltage across the resistance and the voltage across the inductance .𝑉𝑅 𝑉𝐿 Solution Inductive reactance In rectangular form, Total impedance 𝑋 𝐿 = πœ”πΏ = 2πœ‹π‘“πΏ = 6.28 104 50 Γ— 10βˆ’3 = 3140𝛺 𝑍 = 1000 + 𝑗3140 𝛺 = 𝑅2 + 𝑋 𝐿 2 = 1000 2 + 3140 2 = 3295.4𝛺 πœƒ
  • 24. Current Phase angle Therefore, in polar form in total impedance Voltage across the resistance Voltage across the inductance 𝐼 = 𝑉𝑆 𝑍 = 10 3295.4 = 3.03π‘šπ΄ πœƒ = tanβˆ’1 𝑋 𝐿 𝑅 = tanβˆ’1 3140 1000 = 72.330 𝑍 = 3295.4∠72.330 𝑉𝑅 = 𝐼𝑅 = 3.03 Γ— 10βˆ’3 Γ— 1000 = 3.03𝑉 𝑉𝐿 = 𝐼𝑋 𝐿 = 3.03 Γ— 10βˆ’3 Γ— 3140 = 9.51𝑉 Example 2.5 Determine the source voltage and the phase angle, if voltage across the resistance is 70V and the voltage across the inductance is 20V as shown in Fig. Solution Source voltage is given by 𝑉𝑆 = 𝑉𝑅 2 + 𝑉𝐿 2 = 70 2 + 20 2 = 72.8𝑉
  • 25. The angle between the current and source voltage is πœƒ = tanβˆ’1 20 70 = 15.940 2.5.2 Series RC Circuit : β€’ Consider a circuit consisting of pure resistance R ohms connected in series with a pure capacitor of capacitance C farads. β€’ Let a sinusoidal alternating voltage is applied across a series RC circuit as shown in the Fig.2.6(a). By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.6(a) 𝑉 = 𝑉𝑅 + 𝑉𝐢
  • 26. 𝑉 = 𝐼𝑅 + 𝐼𝑋 𝐢 β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the phasor diagram is shown in the Fig.2.6(b). Steps to draw Phasor diagram: 1. Take current as a reference phasor. 2. In case of resistance, voltage and current are in phase, so VR will be along current phasor. 3. In case of pure capacitance, current leads the voltage by 90 degrees. 4. Supply voltage is attained by the vector sum of VC and VR .
  • 27. Consider the right angle triangle OAB, 𝑉 = 𝑉𝑅 2 + 𝑉𝐢 2 = 𝐼𝑅 2 + 𝐼 Γ— 𝑋 𝐢 2𝑉𝑆 = = 𝐼 𝑅 2 + 𝑋 𝐢 2 𝑉 = 𝐼𝑍 𝑍 = 𝑅 2 + 𝑋 𝐢 2Impedance, From impedance triangle, tanπœ™ = 𝑋 𝐢 𝑅 In rectangular form, impedance can be represented as 𝑍 = 𝑅 βˆ’ 𝑗𝑋 𝐢 𝑅 = 𝑍cosπœ™, 𝑋 𝐢 = 𝑍sinπœ™where
  • 28. In polar form, impedance can be represented as 𝑍 = |𝑍|βˆ πœ™ |𝑍| = 𝑅 2 + 𝑋 𝐢 2 and πœ™ = tanβˆ’1 𝑋 𝐢 𝑅 Instantaneous power )𝑝(𝑑) = 𝑣(𝑑) Γ— 𝑖(𝑑 Where and𝑣(𝑑) = π‘‰π‘šsinπœ”π‘‘ )𝑖(𝑑) = 𝐼 π‘šsin(πœ”π‘‘ + πœ™ 𝑝(𝑑) = π‘‰π‘šsinπœ”π‘‘ Γ— )𝐼 π‘šsin(πœ”π‘‘ + πœ™ 𝑝(𝑑) = π‘‰π‘š 𝐼 π‘š 2 2sin πœ”π‘‘ + πœ™ sinπœ”π‘‘ 𝑝(𝑑) = π‘‰π‘š 2 𝐼 π‘š 2 )cosπœ™ βˆ’ cos(2πœ”π‘‘ + πœ™ The average power consumed in the circuit over one complete cycle is given by
  • 29. π‘ƒπ‘Žπ‘£ = 1 𝑇 0 𝑇 𝑝(𝑑)𝑑 πœ”π‘‘ = π‘‰π‘š 𝐼 π‘š 2𝑇 0 𝑇 cosπœ™ βˆ’ cos 2πœ”π‘‘ + πœ™ 𝑑 πœ”π‘‘ = π‘‰π‘Ÿ.π‘š.𝑠 πΌπ‘Ÿ.π‘š.𝑠cosπœ™ = 𝑉𝐼cosπœ™π‘ƒπ‘Žπ‘£ = π‘‰π‘š 2 𝐼 π‘š 2 cosπœ™ Example 2.6 Determine the source voltage and phase angle when the voltage across the Resistor is 20V and the capacitor is 30V as shown in Fig. Solution Source voltage is given by 𝑉𝑆 = 𝑉𝑅 2 + 𝑉𝐢 2 = 20 2 + 30 2 = 36𝑉 The angle between the current and source voltage is πœƒ = tanβˆ’1 30 20 = 56.30
  • 30. Example 2.7 A sine wave generator supplies a 500Hz,10V rms signal to a 2kΞ© resistor in Series with a 0.1ΞΌF capacitor as shown in Fig.Determine the total impedance Z,current I, phase angle Ο΄,capacitive voltage and resistive voltage .𝑉𝐢 𝑉𝑅 Solution Capacitive reactance 𝑋 𝐢 = 1 2πœ‹π‘“πΆ = 1 6.28 Γ— 500 Γ— 0.1 Γ— 10βˆ’6 = 3184.7𝛺 Total impedance 𝑍 = 2000 βˆ’ 𝑗3184.7 𝛺 𝑍 = 2000 2 + 3184.7 2 = 3760.6𝛺 Phase angle πœƒ = tanβˆ’1 βˆ’π‘‹ 𝐢 𝑅 = tanβˆ’1 βˆ’3184.7 2000 = βˆ’57.870
  • 31. Current 𝐼 = 𝑉𝑆 𝑍 = 10 3760.6 = 2.66π‘šπ΄ Capacitive Voltage 𝑉𝐢 = 𝐼𝑋 𝐢 = 2.66 Γ— 10βˆ’3 Γ— 3184.7 = 8.47𝑉 Resistive Voltage 𝑉𝑅 = 𝐼𝑅 = 2.66 Γ— 10βˆ’3 Γ— 2000 = 5.32𝑉 Total applied voltage in rectangular form, 𝑉𝑆 = 5.32 βˆ’ 𝑗8.47𝑉 Total applied voltage in polar form, 𝑉𝑆 = 10∠ βˆ’ 57.870 𝑉 2.5.3 Series RLC Circuit : β€’ Consider a circuit consisting of a pure resistance R ohms, a pure inductance L Henry and a pure capacitor of capacitance C farads are connected in series.
  • 32. β€’ Let a sinusoidal alternating voltage is applied across a series RLC circuit as shown in the Fig.2.7(a) By applying Kirchhoff’s voltage law to the circuit shown in Fig.2.7(a) 𝑉 = 𝑉𝑅 + 𝑉𝐿 + 𝑉𝐢 β€’ Generally, for series a.c. circuit, current is taken as the reference phasor and the phasor diagram is shown in the Fig.2.7(b). Steps to draw Phasor diagram: 1.Take current as reference. 2. is in phase with I. 3. leads current I by 𝑉𝑅 𝑉𝐿 900
  • 33. 4. Lags current I by 5. Obtain the resultant of and .Both and are in phase opposition ( out of phase). 6.Add that with by law of parallelogram to get the supply voltage. 𝑉𝐢 900 𝑉𝐿 𝑉𝐢 𝑉𝐿 𝑉𝐢 1800 𝑉𝑅 i) :𝑿 𝑳 > 𝑿 π‘ͺ 𝑉 = 𝑉𝑅 2 + 𝑉𝐿 βˆ’ 𝑉𝐢 2 = 𝐼𝑅 2 + 𝐼𝑋 𝐿 βˆ’ 𝐼𝑋 𝐢 2 = 𝐼 𝑅 2 + 𝑋 𝐿 βˆ’ 𝑋 𝐢 2 From the Voltage triangle,
  • 34. 𝑉 = 𝐼𝑍 𝑍 = 𝑅 2 + 𝑋 𝐿 βˆ’ 𝑋 𝐢 2 𝑿 𝑳 < 𝑿 π‘ͺii) : From the Voltage triangle, 𝑉 = 𝑉𝑅 2 + 𝑉𝐢 βˆ’ 𝑉𝐿 2 = 𝐼𝑅 2 + 𝐼𝑋 𝐢 βˆ’ 𝐼𝑋 𝐿 2 = 𝐼 𝑅 2 + 𝑋 𝐢 βˆ’ 𝑋 𝐿 2 𝑉 = 𝐼𝑍 𝑍 = 𝑅 2 + 𝑋 𝐢 βˆ’ 𝑋 𝐿 2
  • 35. iii) :𝑿 𝑳 = 𝑿 π‘ͺ 𝑉 = 𝑉𝑅 From the phasor diagram, 𝑉 = 𝐼𝑅 𝑉 = 𝐼𝑍 𝑍 = 𝑅
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43. 2.6 Steady State AC Mesh Analysis: A mesh is defined as a loop which does not contain any other loops within it. Number of equations=branches-(nodes-1) M=B-(N-1) By applying Kirchhoff’s voltage law around the first mesh 𝑉1 = 𝐼1 𝑍1 + 𝐼1 βˆ’ 𝐼2 𝑍2 By applying Kirchhoff’s voltage law around the second mesh 𝑍2 𝐼2 βˆ’ 𝐼1 + 𝑍3 𝐼2 = 0
  • 44.
  • 45.
  • 46. 3 b aV V Z ο€­ 𝑉𝑆 = 3.29∠185.450Ans:
  • 47. 2.7 Steady State AC Nodal Analysis: β€’ In general, in a N node circuit, one of the nodes is choosen as reference or datum node, then it is possible to write N-1 nodal equations by assuming N-1 node voltages. β€’ The node voltage is the voltage of a given node with respect to one particular node, called the reference node (which is assumed at zero potential). π‘‰π‘Ž βˆ’ 𝑉1 𝑍1 + π‘‰π‘Ž 𝑍2 + π‘‰π‘Ž βˆ’ 𝑉𝑏 𝑍3 = 0 βˆ’π‘‰1 𝑍1 + π‘‰π‘Ž 1 𝑍1 + 1 𝑍2 + 1 𝑍3 βˆ’ 𝑉𝑏 𝑍3 = 0 … … … (1) 𝑉𝑏 βˆ’ π‘‰π‘Ž 𝑍3 + 𝑉𝑏 𝑍4 + 𝑉𝑏 𝑍5 + 𝑍6 = 0 βˆ’ π‘‰π‘Ž 𝑍3 + 𝑉𝑏 1 𝑍3 + 1 𝑍4 + 1 𝑍5 + 𝑍6 = 0 … … … (2)
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53. 2.8 Delta-Star transformation: Three resistances may be connected in star (or Y) and delta(or Ξ”) connection as shown in figure In the star connection, 𝑅 π‘Žπ‘ = 𝑅 π‘Ž + 𝑅 𝑏 … … … (1) 𝑅 𝑏𝑐 = 𝑅 𝑏 + 𝑅 𝑐 … … … (2) 𝑅 π‘π‘Ž = 𝑅 𝑐 + 𝑅 π‘Ž … … … (3) Similarly in delta connection, the resistance seen from ab,bc and ca are given by 𝑅 π‘Žπ‘ = 𝑅1|| 𝑅2 + 𝑅3 … … … (4) 𝑅 𝑏𝑐 = 𝑅2|| 𝑅1 + 𝑅3 … … … (5) 𝑅 π‘π‘Ž = 𝑅3|| 𝑅1 + 𝑅2 … … … (6)
  • 54. 𝑅 π‘Žπ‘ + 𝑅 𝑏𝑐 + 𝑅 π‘π‘Ž = 2 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝑐 … … … (7) Adding the equations 1,2 and 3 we get Similarly, adding the equations 4,5 and 6,we get 𝑅 π‘Žπ‘ + 𝑅 𝑏𝑐 + 𝑅 π‘π‘Ž = 2 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1 𝑅1 + 𝑅2 + 𝑅3 … … … (8) From equations 7 and 8 2 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝑐 = 2 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1 𝑅1 + 𝑅2 + 𝑅3 𝑅 π‘Ž + 𝑅 𝑏 + 𝑅 𝐢 = 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1 𝑅1 + 𝑅2 + 𝑅3 … … … (9) Subtracting equation 5 from 9 𝑅 π‘Ž = 𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅3 𝑅1 𝑅1 + 𝑅2 + 𝑅3 βˆ’ 𝑅2 𝑅1 + 𝑅3 𝑅1 + 𝑅2 + 𝑅3
  • 55. 𝑅 π‘Ž = 𝑅1 𝑅3 𝑅1 + 𝑅2 + 𝑅3 … … … (10) 𝑅 𝑏 = 𝑅1 𝑅2 𝑅1 + 𝑅2 + 𝑅3 … … … (11) 𝑅 𝑐 = 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 … … … (12) Star-Delta transformation: Multiplying the equations 10 and 11,11 and 12 and 12 and 10 𝑅 π‘Ž 𝑅 𝑏 = 𝑅1 2 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 2 … … … (13) 𝑅 𝑏 𝑅 𝑐 = 𝑅1 𝑅2 2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 2 … … … (14)
  • 56. 𝑅 𝑐 𝑅 π‘Ž = 𝑅1 𝑅2 𝑅3 2 𝑅1 + 𝑅2 + 𝑅3 2 … … … (15) Adding equations 13,14 and 15,we get 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž = 𝑅1 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 𝑅1 + 𝑅2 + 𝑅3 2 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž = 𝑅1 𝑅2 𝑅3 𝑅1 + 𝑅2 + 𝑅3 … … … (16) Dividing equation 16 by 12,we get 𝑅1 = 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž 𝑅 𝑐 𝑅2 = 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž 𝑅 π‘Ž 𝑅3 = 𝑅 π‘Ž 𝑅 𝑏 + 𝑅 𝑏 𝑅 𝑐 + 𝑅 𝑐 𝑅 π‘Ž 𝑅 𝑏
  • 57.