SlideShare a Scribd company logo
Scilab Manual for
Optical Fiber Communication
by Prof Harsha Sanap
Others
Padmabhushan Vasantdada Patil
Pratishthan’s College of Engineering/Mumbai
University1
Solutions provided by
Prof RAJIV S. TAWDE
Others
Mumbai University/PVPPCOE
April 18, 2019
1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in
1
Contents
List of Scilab Solutions 3
1 To compute the Thermal noise,Signal to noise ratio and
Shot noise power for a PIN photodiode 4
2 To compute the responsivity,received optical power & the
number of photons received by a pn photodiode 6
3 Compute the resulting output voltage of a photodetector 8
4 Compute the acceptance angle for the optical fiber in water 10
5 Compute the numerical aperture and the critical angle at
the core cladding interface for the step index fiber 12
6 Computation of maximum bit rate for RZ & NRZ encoding
for the pulse spreading constants certain cable lengths 14
7 Computing overall signal attenuation,signal attenuation/km,overall
signal attenuation for 20km link with splices at 2km inter-
val 16
8 To compute the maximum link span for 4,8,16 channel;
2.5Gb/s channel optical link. 18
9 Compute the numerical aperture & the acceptance angle
for the fiber in air 20
10 Compute the absorption loss taking place in an optical fiber 22
2
List of Experiments
Solution 1.1 Experiment Number 1 . . . . . . . . . . . . . . . 4
Solution 2.1 Experiment Number 2 . . . . . . . . . . . . . . . 6
Solution 3.1 Experiment Number 3 . . . . . . . . . . . . . . . 8
Solution 4.1 Experiment Number 4 . . . . . . . . . . . . . . . 10
Solution 5.1 Experiment Number 5 . . . . . . . . . . . . . . . 12
Solution 6.1 Experiment Number 6 . . . . . . . . . . . . . . . 14
Solution 7.1 Experiment Number 7 . . . . . . . . . . . . . . . 16
Solution 8.1 Experiment Number 8 . . . . . . . . . . . . . . . 18
Solution 9.1 Experiment Number 9 . . . . . . . . . . . . . . . 20
Solution 10.1 Experiment Number 10 . . . . . . . . . . . . . . . 22
3
Experiment: 1
To compute the Thermal
noise,Signal to noise ratio and
Shot noise power for a PIN
photodiode
Scilab code Solution 1.1 Experiment Number 1
1 //AIM: To compute the Thermal noise , S i g n a l to n o i s e
r a t i o and Shot n o i s e power
2 // f o r a PIN photodiode
3
4 // Software v e r s i o n S c i l a b 5 . 5 . 2
5 //OS Windows 7
6 clc;
7 clear;
8 // Consider r e s p o n s i v i t y 0.5 A/W, load r e s i s t a n c e =2000
ohms , system
9 // bandwidth=50MHz, temperature =40 d e g r e e s c e n t i g r a d e
10 // ( a ) Thermal n o i s e :
11 T=40+273; //T=Temperature
12 disp( ’K ’ ,T, ’T= ’ )
13 delF =50*(10^3);// delF=Bandwidth
4
14 k=1.38*(10^ -23);//k=Boltzmann constant
15 e=1.6*(10^ -19);//E=Electron
16 RL =2000; //RL=Load r e s i s t a n c e
17 //PNT=4∗k∗T∗ delF where PNT=Thermal n o i s e
18 // I f shot n o i s e i s equal to thermal noise , then PNT=
PNS
19 //PNS i s the shot n o i s e power
20 //So , 4∗k∗T∗ delF=2∗e∗ iS ∗ delF ∗RL
21 // Hence iS =(2∗k∗T) /( e∗RL)
22 iS =(2*k*T)/(e*RL);// iS=s i g n a l photocurrent
23 disp( ’Amp ’ ,iS , ’ iS= ’ )
24 R=0.5; //R=r e s p o n s i v i t y =0.5
25 PR=iS/R;
26 disp( ’ Watts ’ ,PR , ’ Received o p t i c power PR= ’ );
27 PNT =4*k*T*delF;
28 disp(PNT , ’ Thermal n o i s e PNT= ’ )
29
30 // ( b ) S i g n a l to n o i s e r a t i o :
31 // Since PNS=PNT;
32 // Total n o i s e ;N=PNS+PNT
33 //So ,N=2∗PNS
34 //But PNS=2∗e∗ iS ∗ delF ∗RL
35 S_by_N =(iS)/(4*e*delF);
36 disp(S_by_N , ’ S i g n a l to n o i s e r a t i o ( S/N)= ’ )
37
38 // ( c ) Shot n o i s e power :
39 PNS =2*e*iS*delF*RL;
40 disp( ’ Watts ’ ,PNS , ’ Shot n o i s e power PNS= ’ )
5
Experiment: 2
To compute the
responsivity,received optical
power & the number of photons
received by a pn photodiode
Scilab code Solution 2.1 Experiment Number 2
1 //AIM: To compute the r e s p o n s i v i t y , r e c e i v e d o p t i c a l
power & the number of
2 // photons r e c e i v e d by a pn photodiode
3
4 // Software v e r s i o n S c i l a b 5 . 5 . 2
5 //OS Windows 7
6 clc;
7 clear;
8 // Let us c o n s i d e r quantum e f f i c i e n c y of 50% at a
wavelength of 0 .9 micrometres
9 //& mean photocurrent i s 10ˆ−6 Amp
10 n=50/100; //n=Quantum e f f i c i e n c y =50%( given )
11 lambda =0.9*(10^ -6);
12 // ( a ) : Responsivity
13 // Responsivity R i s r e l a t e d to the quantum
6
e f f i c i e n c y n as R=(n∗e∗lambda ) /( h∗e )
14 e=1.6*(10^ -19);
15 h=6.6*(10^ -34);
16 c=3*(10^8);
17 R=(n*e*lambda)/(h*c);
18 disp( ’AWˆ−1 ’ ,R, ’R= ’ )
19
20 // ( b ) : Received o p t i c a l power :
21 //R=Ip /P0
22 Ip=10^ -6;
23 P0=Ip/R;
24 disp( ’ Watts ’ ,P0 , ’ Received o p t i c a l power (P0)= ’ )
25
26 //No . of r e c e i v e d photons :
27 E=(h*c)/( lambda);
28 disp( ’ Watts ’ ,E, ’E= ’ )
29 // Optical power=No . of photons ∗ Energy of a photon
30 NOP=P0/E;
31 disp( ’ photons / sec ’ ,NOP , ’ Number of photons= ’ )
7
Experiment: 3
Compute the resulting output
voltage of a photodetector
Scilab code Solution 3.1 Experiment Number 3
1 //AIM: Compute the r e s u l t i n g output v o l t a g e of a
photodetector
2 // Software v e r s i o n S c i l a b 5 . 5 . 2
3 //OS Windows 7
4 clc;
5 clear;
6 // Let quantum e f f i c i e n c y =0.9 , wavelength =1.3
micrometre & i n c i d e n t power l e v e l
7 // of −37dBm
8 // Also we c o n s i d e r load r e s i s t a n c e i s 50 ohms and
1000 ohms .
9 n=0.9; //n=Quantum e f f i c i e n c y
10 lambda =1.3*(10^( -6));// lambda=wavelength
11 // I n c i d e n t o p t i c a l power Pia=−37dBm
12 Pia =-37; // Pia=I n c i d e n t power l e v e l
13 Pi =(10^( -3))*(10^( Pia /10));// Computing the i n c i d e n t
o p t i c a l power in Watts
14 disp( ’ Watts ’ ,Pi , ’ I n c i d e n t o p t i c a l power ( Pi ) in
Watts= ’ )
8
15 h=(6.625) *(10^( -34));//h=Planck ’ s constant
16 c=(3) *(10^(8));// c=Speed of l i g h t
17 e=(1.6) *(10^( -19));// Electron
18 I=(n*e*lambda*Pi)/(h*c);// Computing c u r r e n t I
19 disp( ’Amp ’ ,I, ’ Current ( I )= ’ )
20 // Voltage a c r o s s r e s i s t o r of 50 ohms
21 R1 =50;
22 V1=I*R1;// Basic r e l a t i o n : Voltage=Current ∗ R e s i s t a n c e
23 disp( ’ Volts ’ ,V1 , ’V1= ’ )
24
25 // Voltage a c r o s s r e s i s t o r of ohms
26 R2 =1000;
27 V2=I*R2;// Basic r e l a t i o n : Voltage=Current ∗ R e s i s t a n c e
28 disp( ’ Volts ’ ,V2 , ’V2= ’ )
9
Experiment: 4
Compute the acceptance angle
for the optical fiber in water
Scilab code Solution 4.1 Experiment Number 4
1 //AIM: Compute the acceptance angle f o r the o p t i c a l
f i b e r in water
2 // Software v e r s i o n S c i l a b 5 . 5 . 2
3 //OS Windows 7
4 clc;
5 clear;
6 // Let r e f r a c t i v e index be 1 . 3 3 , numerical aperture be
0.20 and cladding
7 // r e f r a c t i v e index be 1 . 5 9 .
8 na =1.33;
9 n2 =1.59;
10 NA =0.20;
11 //The r e f r a c t i v e index of the core n1 i s not given .
So i s has to be c a l c u l a t e d .
12 //NA=s q r t ( ( n1 ˆ2) −(n2 ˆ2) )
13 n1=sqrt ((NA^2)+(n2^2));
14 disp(n1 , ’ n1= ’ )
15 fiy_c = asin(n2/n1);
16 fiy_c_degrees =( fiy_c)*(180/ %pi);
10
17 disp( ’ d e g r e e s ’ ,fiy_c_degrees , ’ C r i t i c a l angle at the
core −cladding i n t e r f a c e : f i y c= ’ )
18 // Computing the acceptance angle
19 theta_a=asin(NA/na);
20 theta_a_degrees =( theta_a)*(180/ %pi);
21 disp( ’ d e g r e e s ’ ,theta_a_degrees , ’ Acceptance angle :
t h e t a a= ’ )
11
Experiment: 5
Compute the numerical
aperture and the critical angle
at the core cladding interface
for the step index fiber
Scilab code Solution 5.1 Experiment Number 5
1 //AIM: Compute the numerical aperture and the
c r i t i c a l angle at the core
2 // cladding i n t e r f a c e f o r the step index f i b e r
3
4 // Software v e r s i o n S c i l a b 5 . 5 . 2
5 //OS Windows 7
6 clc;
7 clear;
8 // Let the acceptance angle in a i r be 22 d e g r e e s and
a r e l a t i v e r e f r a c t i v e index
9 // d i f f e r e n c e of 3%
10 theta_a_degrees =22;
11 theta_a_radians =( theta_a_degrees)*(%pi /180);
12 del =0.03;
13 NA=sin(theta_a_radians);
12
14 disp(NA , ’NA= ’ )
15 n1=(NA)/( sqrt (2* del));
16 disp(n1 , ’ n1= ’ )
17 // Computing n2 :
18 n2=n1 -(del*n1);
19 disp(n2 , ’ n2= ’ )
20 // Computing the c r i t i c a l angle
21 fiy_c=asin(n2/n1);
22 fiy_c_degrees =( fiy_c)*(180/ %pi);
23 disp( ’ d e g r e e s ’ ,fiy_c_degrees , ’ C r i t i c a l angle= ’ )
13
Experiment: 6
Computation of maximum bit
rate for RZ & NRZ encoding
for the pulse spreading
constants certain cable lengths
Scilab code Solution 6.1 Experiment Number 6
1 //AIM: Computation of maximum b i t r a t e f o r RZ & NRZ
encoding f o r the p u l s e
2 // spreading c o n s t a n t s & c e r t a i n c a b l e l e n g t h s
3
4 // Software v e r s i o n S c i l a b 5 . 5 . 2
5 //OS Windows 7
6 clc;
7 clear;
8 // Consider p u l s e spreading c o n s t a n t s & c a b l e l e n g t h s
as f o l l o w s :
9 // ( i ) : T =10ns /mm, L=100m; ( i i ) : T =20ns /m, L=1000m ; (
i i i ) : T =2000 ns /m, L=2km
10
11 //To f i n d maximum b i t r a t e f o r RZ & NRZ encoding
12 // ( i ) : Since delT1=10ns /mm and 1mm=10ˆ−6 km
14
13 delT1 =10*(10^( -9))*(10^(6));
14 disp( ’ sec /km ’ ,delT1 , ’ delT1= ’ )
15 tao1 =0.1* delT1;// Computing t o t a l d i s p e r s i o n f o r 100
m
16 disp( ’ sec ’ ,tao1 , ’ Total d i s p e r s i o n f o r 100 m= ’ )
17 //Maximum p o s s i b l e o p t i c a l bandwidth=maximum
p o s s i b l e b i t r a t e f o r RZ
18 Bopt1 =1/(2* tao1)
19 disp( ’ b i t s / sec ’ ,Bopt1 , ’Maximum p o s s i b l e b i t r a t e f o r
RZ= ’ )
20 NRZ1=Bopt1 /2;
21 disp( ’ b i t s / sec ’ ,NRZ1 , ’Maximum p o s s i b l e b i t r a t e f o r
NRZ= ’ )
22 // ( i i ) : Since delT2=20ns /m and 1m=10ˆ−3km
23 delT2 =20*(10^( -9))/(10^( -3));
24 disp( ’ sec ’ ,delT2 , ’ Total d i s p e r s i o n f o r 1000 m or 1
km = ’ )
25 tao2=delT2;
26 Bopt2 =1/(2* tao2)
27 disp( ’ b i t s / sec ’ ,Bopt2 , ’Maximum p o s s i b l e b i t r a t e f o r
RZ= ’ )
28 NRZ2=Bopt2 /2;
29 disp( ’ b i t s / sec ’ ,NRZ2 , ’Maximum p o s s i b l e b i t r a t e f o r
NRZ= ’ )
30 // ( i i i ) : Since delT3 =2000 ns /m and 1m=10ˆ−3km
31 delT3 =2000*(10^( -9))/(10^( -3));
32 disp( ’ sec /km ’ ,delT3 , ’ delT3= ’ )
33 tao3=delT3 *2;
34 disp( ’ sec ’ ,tao3 , ’ Total d i s p e r s i o n over a length of 2
km = ’ )
35 Bopt3 =1/(2* tao3)
36 disp( ’ b i t s / sec ’ ,Bopt3 , ’Maximum p o s s i b l e b i t r a t e f o r
RZ= ’ )
37 NRZ3=Bopt3 /2;
38 disp( ’ b i t s / sec ’ ,NRZ3 , ’Maximum p o s s i b l e b i t r a t e f o r
NRZ= ’ )
15
Experiment: 7
Computing overall signal
attenuation,signal
attenuation/km,overall signal
attenuation for 20km link with
splices at 2km interval
Scilab code Solution 7.1 Experiment Number 7
1 //AIM: Computing o v e r a l l s i g n a l attenuation , s i g n a l
a t t e n u a t i o n /km, o v e r a l l
2 // s i g n a l a t t e n u a t i o n f o r 20km l i n k with s p l i c e s at 2
km i n t e r v a l
3
4 // Software v e r s i o n S c i l a b 5 . 5 . 2
5 //OS Windows 7
6 clc;
7 clear;
8 // Let us c o n s i d e r that each s p l i c e g i v e s a t t e n u a t i o n
of 1 .5dB f o r 10km long
9 // o p t i c a l f i b e r having output o p t i c a l power of 4 W
10 // and input o p t i c a l power of 100 W
16
11
12 Pin =100*(10^( -6));// Pin=Input o p t i c a l power
13 Pout =4*(10^( -6));// Pout=Output o p t i c a l power
14 alphaT =10* log10(Pin/Pout);// alphaT=Overall
a t t e n u a t i o n
15 disp( ’dB ’ ,alphaT , ’ Overall a t t e n u a t i o n ( alphaT )= ’ )
16 //The length of the o p t i c a l f i b e r i s 10km
17 L1 =10*(10^(3));
18 // Computing S i g n a l attenuaion per km
19 alpha=alphaT /10;
20 disp( ’dB/km ’ ,alpha , ’ The s i g n a l a t t e n u a t i o n per
k i l o m e t e r ( alpha ) = ’ )
21 // Computation f o r 20kms length :
22 L2 =20*(10^(3));
23 TSA=alpha /(10^(3))*L2;//TSA=Total s i g n a l a t t e n u a t i o n
24 disp( ’dB ’ ,TSA , ’ Total s i g n a l a t t e n u a t i o n= ’ )
25 //A s p l i c e i s connected at each 2km d i s t a n c e . Thus
t o t a l 9 s p l i c e s are used .
26 //Now each s p l i c e g i v e s 1.5dB a t t e n u a t i o n .
27 S=9; //S=Total No . of s p l i c e s used
28 A=1.5; //A=Attenuation by each s p l i c e
29 TAFS=S*A;//TAFS=Total a t t e n u a t i o n from s p l i c e s
30 disp( ’dB ’ ,TAFS , ’ Total a t t e n u a t i o n from s p l i c e s= ’ )
31 // Computing o v e r a l l s i g n a l a t t e n u a t i o n i n c l u d i n g
a t t e n u a t i o n due to s p l i c e s
32 a=TAFS+TSA;
33 disp( ’dB ’ ,a, ’ Overall s i g n a l a t t e n u a t i o n i n c l u d i n g
a t t e n u a t i o n due to s p l i c e s= ’ )
17
Experiment: 8
To compute the maximum link
span for 4,8,16 channel;
2.5Gb/s channel optical link.
Scilab code Solution 8.1 Experiment Number 8
1 //AIM: To compute the maximum l i n k span f o r 4 ,8 ,16
channel ; 2.5Gb/ s channel
2 // o p t i c a l l i n k .
3
4 // Software v e r s i o n S c i l a b 5 . 5 . 2
5 //OS Windows 7
6 clc;
7 clear;
8 // ( i ) : Computing maximum l i n k span f o r 4−channel , 2 . 5
Gb/ s per channel
9 // o p t i c a l l i n k
10
11 fb1 =4*2.5;
12 Lmax1 =(6.1*(10^3))/(( fb1)^2);
13 disp( ’km ’ ,Lmax1 , ’Maximum l i n k span f o r 4−channel , 2 . 5
Gb/ s per channel o p t i c a l l i n k ( i . e . Lmax1) = ’ )
14
18
15 // ( i i ) : Computing maximum l i n k span f o r 8−channel , 2 . 5
Gb/ s per channel
16 // o p t i c a l l i n k
17
18 fb2 =8*2.5;
19 Lmax2 =(6.1*(10^3))/(( fb2)^2);
20 disp( ’km ’ ,Lmax2 , ’Maximum l i n k span f o r 8−channel , 2 . 5
Gb/ s per channel o p t i c a l l i n k ( i . e . Lmax2) = ’ )
21
22 // ( i i i ) : Computing maximum l i n k span f o r 16−channel
, 2 . 5 Gb/ s per channel
23 // o p t i c a l l i n k
24
25 fb3 =16*2.5;
26 Lmax3 =(6.1*(10^3))/(( fb3)^2);
27 disp( ’km ’ ,Lmax3 , ’Maximum l i n k span f o r 16−channel
, 2 . 5 Gb/ s per channel o p t i c a l l i n k ( i . e . Lmax3) = ’
)
19
Experiment: 9
Compute the numerical
aperture & the acceptance
angle for the fiber in air
Scilab code Solution 9.1 Experiment Number 9
1 //AIM: Compute the numerical aperture & the
acceptance angle f o r the f i b e r in a i r
2 // Software v e r s i o n S c i l a b 5 . 5 . 2
3 //OS Windows 7
4 clc;
5 clear;
6 // Let the v e l o c i t y of l i g h t in vacuum be 2.998∗10ˆ8
m/ sec , c r i t i c a l angle at the
7 // core −cladding i n t e r f a c e be 80 d e g r e e s & v e l o c i t y
of l i g h t in the core
8 // of a step index f i b e r be 2.01∗10ˆ8 m/ sec
9
10 c=2.998*10^8; // c=v e l o c i t y of l i g h t in vacuum
11 v1 =2.01*10^8; // v1=v e l o c i t y of l i g h t in the core
12 theta_c =80*( %pi /180);// Expressing t h e t a c in r a d i a n s
13 n1=c/v1;
14 disp(n1 , ’ n1= ’ )
20
15 // Since s i n ( t h e t a c )=n2/n1
16 n2=sin(theta_c)*n1;
17 disp(n2 , ’ n2= ’ )
18 NA=sqrt ((n1^2) -(n2^2))
19 disp(NA , ’ Numerical aperture (NA)= ’ )
20 // Computing the acceptance angle
21 theta_a=asin(NA)
22 theta_a_degrees =( theta_a)*(180/ %pi);
23 disp( ’ d e g r e e s ’ ,theta_a_degrees , ’ Acceptance angle (
t h e t a a )= ’ )
21
Experiment: 10
Compute the absorption loss
taking place in an optical fiber
Scilab code Solution 10.1 Experiment Number 10
1 //AIM: Compute the ab sor pt ion l o s s taking p l a c e in an
o p t i c a l f i b e r
2 // Software v e r s i o n S c i l a b 5 . 5 . 2
3 //OS Windows 7
4 clc;
5 clear;
6 // Let the length of the o p t i c a l f i b e r be 3.5cm in an
i n t e r f e r e n c e sphere , while
7 // the t o t a l length of the f i b e r be 1km.
8 // Also c o n s i d e r that i t g i v e s 5 .1nV & 165 micro
Volts corresponding to
9 // s c a t t e r e d & u n s c a t t e r e d l i g h t r e s p e c t i v e l y while
f o r the cutback method ,
10 // i t g i v e s 5.20V & 22V f o r o r i g i n a l & cutback
o p t i c a l f i b e r s r e s p e c t i v e l y .
11
12 l=3.5*(10^( -5));// l=Length of o p t i c a l in i n t e g r a t i n g
sphere
13 Vsc =5.1*(10^( -9));// Vsc=Voltage l e v e l corresponding
22
to s c a t t e r e d l i g h t
14 Vop =165*(10^( -6));//Vop=Voltage l e v e l corresponding
to u n s c a t t e r e d l i g h t
15 // Computing the s c a t t e r i n g l o s s :
16 alpha_sc =(4.343/l)*(Vsc/Vop);
17 disp( ’dB/km ’ ,alpha_sc , ’ S c a t t e r i n g l o s s ( a l p h a s c )= ’ )
18 // Computation of t o t a l a t t e n u a t i o n :
19 L1=1; //L1=Length of the o r i g i n a l f i b e r
20 L2 =0.002; //L2=Length of cutback o p t i c a l f i b e r
21 V2 =22; //V2=Voltage l e v e l f o r cutback o p t i c a l f i b e r
22 V1 =5.20; //V1=Voltage l e v e l f o r o r i g i n a l o p t i c a l
f i b e r
23 alpha_T =(1/(L1 -L2))*(10* log10(V2/V1));// alpha T=
t o t a l a t t e n u a t i o n
24 disp( ’dB/km ’ ,alpha_T , ’ Total a t t e n u a t i o n ( alpha T ) = ’
)
25 // Computing the ab sor pt ion l o s s :
26 AL=alpha_T -alpha_sc;//AL=Absorption l o s s
27 disp( ’dB/km ’ ,AL , ’ Absorption l o s s= ’ )
23

More Related Content

What's hot

RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
Simen Li
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
Simen Li
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Simen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
Simen Li
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
Simen Li
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
Simen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Simen Li
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
Simen Li
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
Simen Li
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
Simen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
Simen Li
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
Simen Li
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
Simen Li
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
Simen Li
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
Simen Li
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Simen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
Simen Li
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
Simen Li
 
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
Tsuyoshi Horigome
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
Simen Li
 

What's hot (20)

RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain ExpressionsRF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
RF Circuit Design - [Ch3-2] Power Waves and Power-Gain Expressions
 
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
RF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF TransceiversRF Module Design - [Chapter 1] From Basics to RF Transceivers
RF Module Design - [Chapter 1] From Basics to RF Transceivers
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
RF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave NetworkRF Circuit Design - [Ch3-1] Microwave Network
RF Circuit Design - [Ch3-1] Microwave Network
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 

Similar to Optical fiber communication prof harsha sanap (1)

13486500-FFT.ppt
13486500-FFT.ppt13486500-FFT.ppt
13486500-FFT.ppt
Pratik Gohel
 
Report Radar and Remote Sensing
Report Radar and Remote SensingReport Radar and Remote Sensing
Report Radar and Remote Sensing
Ferro Demetrio
 
Ece512 h1 20139_621386735458ece512_test2_solutions
Ece512 h1 20139_621386735458ece512_test2_solutionsEce512 h1 20139_621386735458ece512_test2_solutions
Ece512 h1 20139_621386735458ece512_test2_solutions
nadia abd
 
finalreport
finalreportfinalreport
finalreport
Atanu Nath
 
Anup2
Anup2Anup2
Anup2
David Gyle
 
Amvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsAmvdd Data Converter Fundamentals
Amvdd Data Converter Fundamentals
Niket Chandrashekar
 
Assembler Numerical in system programming
Assembler Numerical in system programmingAssembler Numerical in system programming
Assembler Numerical in system programming
Assembler Numerical in system programming
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Matt Moores
 
6th Semester (June; July-2014) Electronics and Communication Engineering Ques...
6th Semester (June; July-2014) Electronics and Communication Engineering Ques...6th Semester (June; July-2014) Electronics and Communication Engineering Ques...
6th Semester (June; July-2014) Electronics and Communication Engineering Ques...
BGS Institute of Technology, Adichunchanagiri University (ACU)
 
Antenna & wave lab manual
Antenna & wave lab manualAntenna & wave lab manual
Antenna & wave lab manual
amanabr
 
PSpice Tutorial
PSpice TutorialPSpice Tutorial
PSpice Tutorial
ankitgdoshi
 
Analog Communication Engineering Lab Manual
Analog Communication Engineering Lab ManualAnalog Communication Engineering Lab Manual
Analog Communication Engineering Lab Manual
Amairullah Khan Lodhi
 
Single elctron transisto PHASE 2.pptx
Single elctron transisto PHASE 2.pptxSingle elctron transisto PHASE 2.pptx
Single elctron transisto PHASE 2.pptx
ssuser1580e5
 
DPLL PRESENTATION
DPLL PRESENTATIONDPLL PRESENTATION
DPLL PRESENTATION
Narendra-Naidu Lingutla
 
ASP
ASPASP
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
imranbashir
 
Physical prototyping lab2-analog_digital
Physical prototyping lab2-analog_digitalPhysical prototyping lab2-analog_digital
Physical prototyping lab2-analog_digital
Tony Olsson.
 
Physical prototyping lab2-analog_digital
Physical prototyping lab2-analog_digitalPhysical prototyping lab2-analog_digital
Physical prototyping lab2-analog_digital
Tony Olsson.
 
Optimum range of angle tracking radars: a theoretical computing
Optimum range of angle tracking radars: a theoretical computingOptimum range of angle tracking radars: a theoretical computing
Optimum range of angle tracking radars: a theoretical computing
IJECEIAES
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
VasantkumarUpadhye
 

Similar to Optical fiber communication prof harsha sanap (1) (20)

13486500-FFT.ppt
13486500-FFT.ppt13486500-FFT.ppt
13486500-FFT.ppt
 
Report Radar and Remote Sensing
Report Radar and Remote SensingReport Radar and Remote Sensing
Report Radar and Remote Sensing
 
Ece512 h1 20139_621386735458ece512_test2_solutions
Ece512 h1 20139_621386735458ece512_test2_solutionsEce512 h1 20139_621386735458ece512_test2_solutions
Ece512 h1 20139_621386735458ece512_test2_solutions
 
finalreport
finalreportfinalreport
finalreport
 
Anup2
Anup2Anup2
Anup2
 
Amvdd Data Converter Fundamentals
Amvdd Data Converter FundamentalsAmvdd Data Converter Fundamentals
Amvdd Data Converter Fundamentals
 
Assembler Numerical in system programming
Assembler Numerical in system programmingAssembler Numerical in system programming
Assembler Numerical in system programming
 
Bayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse ProblemsBayesian Inference and Uncertainty Quantification for Inverse Problems
Bayesian Inference and Uncertainty Quantification for Inverse Problems
 
6th Semester (June; July-2014) Electronics and Communication Engineering Ques...
6th Semester (June; July-2014) Electronics and Communication Engineering Ques...6th Semester (June; July-2014) Electronics and Communication Engineering Ques...
6th Semester (June; July-2014) Electronics and Communication Engineering Ques...
 
Antenna & wave lab manual
Antenna & wave lab manualAntenna & wave lab manual
Antenna & wave lab manual
 
PSpice Tutorial
PSpice TutorialPSpice Tutorial
PSpice Tutorial
 
Analog Communication Engineering Lab Manual
Analog Communication Engineering Lab ManualAnalog Communication Engineering Lab Manual
Analog Communication Engineering Lab Manual
 
Single elctron transisto PHASE 2.pptx
Single elctron transisto PHASE 2.pptxSingle elctron transisto PHASE 2.pptx
Single elctron transisto PHASE 2.pptx
 
DPLL PRESENTATION
DPLL PRESENTATIONDPLL PRESENTATION
DPLL PRESENTATION
 
ASP
ASPASP
ASP
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
 
Physical prototyping lab2-analog_digital
Physical prototyping lab2-analog_digitalPhysical prototyping lab2-analog_digital
Physical prototyping lab2-analog_digital
 
Physical prototyping lab2-analog_digital
Physical prototyping lab2-analog_digitalPhysical prototyping lab2-analog_digital
Physical prototyping lab2-analog_digital
 
Optimum range of angle tracking radars: a theoretical computing
Optimum range of angle tracking radars: a theoretical computingOptimum range of angle tracking radars: a theoretical computing
Optimum range of angle tracking radars: a theoretical computing
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 

Recently uploaded

一比一原版(QU毕业证)皇后大学毕业证如何办理
一比一原版(QU毕业证)皇后大学毕业证如何办理一比一原版(QU毕业证)皇后大学毕业证如何办理
一比一原版(QU毕业证)皇后大学毕业证如何办理
yuhofha
 
Jill Pizzola's Tenure as Senior Talent Acquisition Partner at THOMSON REUTERS...
Jill Pizzola's Tenure as Senior Talent Acquisition Partner at THOMSON REUTERS...Jill Pizzola's Tenure as Senior Talent Acquisition Partner at THOMSON REUTERS...
Jill Pizzola's Tenure as Senior Talent Acquisition Partner at THOMSON REUTERS...
dsnow9802
 
在线制作加拿大萨省大学毕业证文凭证书实拍图原版一模一样
在线制作加拿大萨省大学毕业证文凭证书实拍图原版一模一样在线制作加拿大萨省大学毕业证文凭证书实拍图原版一模一样
在线制作加拿大萨省大学毕业证文凭证书实拍图原版一模一样
2zjra9bn
 
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
pxyhy
 
官方认证美国旧金山州立大学毕业证学位证书案例原版一模一样
官方认证美国旧金山州立大学毕业证学位证书案例原版一模一样官方认证美国旧金山州立大学毕业证学位证书案例原版一模一样
官方认证美国旧金山州立大学毕业证学位证书案例原版一模一样
2zjra9bn
 
一比一原版(YU毕业证)约克大学毕业证如何办理
一比一原版(YU毕业证)约克大学毕业证如何办理一比一原版(YU毕业证)约克大学毕业证如何办理
一比一原版(YU毕业证)约克大学毕业证如何办理
yuhofha
 
Status of Women in Pakistan.pptxStatus of Women in Pakistan.pptx
Status of Women in Pakistan.pptxStatus of Women in Pakistan.pptxStatus of Women in Pakistan.pptxStatus of Women in Pakistan.pptx
Status of Women in Pakistan.pptxStatus of Women in Pakistan.pptx
MuhammadWaqasBaloch1
 
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
yuhofha
 
Resumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying OnlineResumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying Online
Bruce Bennett
 
labb123456789123456789123456789123456789
labb123456789123456789123456789123456789labb123456789123456789123456789123456789
labb123456789123456789123456789123456789
Ghh
 
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
pxyhy
 
Introducing Gopay Mobile App For Environment.pptx
Introducing Gopay Mobile App For Environment.pptxIntroducing Gopay Mobile App For Environment.pptx
Introducing Gopay Mobile App For Environment.pptx
FauzanHarits1
 
A Guide to a Winning Interview June 2024
A Guide to a Winning Interview June 2024A Guide to a Winning Interview June 2024
A Guide to a Winning Interview June 2024
Bruce Bennett
 
5 Common Mistakes to Avoid During the Job Application Process.pdf
5 Common Mistakes to Avoid During the Job Application Process.pdf5 Common Mistakes to Avoid During the Job Application Process.pdf
5 Common Mistakes to Avoid During the Job Application Process.pdf
Alliance Jobs
 
Job Finding Apps Everything You Need to Know in 2024
Job Finding Apps Everything You Need to Know in 2024Job Finding Apps Everything You Need to Know in 2024
Job Finding Apps Everything You Need to Know in 2024
SnapJob
 
lab.123456789123456789123456789123456789
lab.123456789123456789123456789123456789lab.123456789123456789123456789123456789
lab.123456789123456789123456789123456789
Ghh
 
一比一原版布拉德福德大学毕业证(bradford毕业证)如何办理
一比一原版布拉德福德大学毕业证(bradford毕业证)如何办理一比一原版布拉德福德大学毕业证(bradford毕业证)如何办理
一比一原版布拉德福德大学毕业证(bradford毕业证)如何办理
taqyea
 
thyroid case presentation.pptx Kamala's Lakshaman palatial
thyroid case presentation.pptx Kamala's Lakshaman palatialthyroid case presentation.pptx Kamala's Lakshaman palatial
thyroid case presentation.pptx Kamala's Lakshaman palatial
Aditya Raghav
 
一比一原版(UBC毕业证)不列颠哥伦比亚大学毕业证如何办理
一比一原版(UBC毕业证)不列颠哥伦比亚大学毕业证如何办理一比一原版(UBC毕业证)不列颠哥伦比亚大学毕业证如何办理
一比一原版(UBC毕业证)不列颠哥伦比亚大学毕业证如何办理
pxyhy
 
Lbs last rank 2023 9988kr47h4744j445.pdf
Lbs last rank 2023 9988kr47h4744j445.pdfLbs last rank 2023 9988kr47h4744j445.pdf
Lbs last rank 2023 9988kr47h4744j445.pdf
ashiquepa3
 

Recently uploaded (20)

一比一原版(QU毕业证)皇后大学毕业证如何办理
一比一原版(QU毕业证)皇后大学毕业证如何办理一比一原版(QU毕业证)皇后大学毕业证如何办理
一比一原版(QU毕业证)皇后大学毕业证如何办理
 
Jill Pizzola's Tenure as Senior Talent Acquisition Partner at THOMSON REUTERS...
Jill Pizzola's Tenure as Senior Talent Acquisition Partner at THOMSON REUTERS...Jill Pizzola's Tenure as Senior Talent Acquisition Partner at THOMSON REUTERS...
Jill Pizzola's Tenure as Senior Talent Acquisition Partner at THOMSON REUTERS...
 
在线制作加拿大萨省大学毕业证文凭证书实拍图原版一模一样
在线制作加拿大萨省大学毕业证文凭证书实拍图原版一模一样在线制作加拿大萨省大学毕业证文凭证书实拍图原版一模一样
在线制作加拿大萨省大学毕业证文凭证书实拍图原版一模一样
 
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
一比一原版(SFU毕业证)西蒙弗雷泽大学毕业证如何办理
 
官方认证美国旧金山州立大学毕业证学位证书案例原版一模一样
官方认证美国旧金山州立大学毕业证学位证书案例原版一模一样官方认证美国旧金山州立大学毕业证学位证书案例原版一模一样
官方认证美国旧金山州立大学毕业证学位证书案例原版一模一样
 
一比一原版(YU毕业证)约克大学毕业证如何办理
一比一原版(YU毕业证)约克大学毕业证如何办理一比一原版(YU毕业证)约克大学毕业证如何办理
一比一原版(YU毕业证)约克大学毕业证如何办理
 
Status of Women in Pakistan.pptxStatus of Women in Pakistan.pptx
Status of Women in Pakistan.pptxStatus of Women in Pakistan.pptxStatus of Women in Pakistan.pptxStatus of Women in Pakistan.pptx
Status of Women in Pakistan.pptxStatus of Women in Pakistan.pptx
 
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
一比一原版(TMU毕业证)多伦多都会大学毕业证如何办理
 
Resumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying OnlineResumes, Cover Letters, and Applying Online
Resumes, Cover Letters, and Applying Online
 
labb123456789123456789123456789123456789
labb123456789123456789123456789123456789labb123456789123456789123456789123456789
labb123456789123456789123456789123456789
 
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
一比一原版(UVic毕业证)维多利亚大学毕业证如何办理
 
Introducing Gopay Mobile App For Environment.pptx
Introducing Gopay Mobile App For Environment.pptxIntroducing Gopay Mobile App For Environment.pptx
Introducing Gopay Mobile App For Environment.pptx
 
A Guide to a Winning Interview June 2024
A Guide to a Winning Interview June 2024A Guide to a Winning Interview June 2024
A Guide to a Winning Interview June 2024
 
5 Common Mistakes to Avoid During the Job Application Process.pdf
5 Common Mistakes to Avoid During the Job Application Process.pdf5 Common Mistakes to Avoid During the Job Application Process.pdf
5 Common Mistakes to Avoid During the Job Application Process.pdf
 
Job Finding Apps Everything You Need to Know in 2024
Job Finding Apps Everything You Need to Know in 2024Job Finding Apps Everything You Need to Know in 2024
Job Finding Apps Everything You Need to Know in 2024
 
lab.123456789123456789123456789123456789
lab.123456789123456789123456789123456789lab.123456789123456789123456789123456789
lab.123456789123456789123456789123456789
 
一比一原版布拉德福德大学毕业证(bradford毕业证)如何办理
一比一原版布拉德福德大学毕业证(bradford毕业证)如何办理一比一原版布拉德福德大学毕业证(bradford毕业证)如何办理
一比一原版布拉德福德大学毕业证(bradford毕业证)如何办理
 
thyroid case presentation.pptx Kamala's Lakshaman palatial
thyroid case presentation.pptx Kamala's Lakshaman palatialthyroid case presentation.pptx Kamala's Lakshaman palatial
thyroid case presentation.pptx Kamala's Lakshaman palatial
 
一比一原版(UBC毕业证)不列颠哥伦比亚大学毕业证如何办理
一比一原版(UBC毕业证)不列颠哥伦比亚大学毕业证如何办理一比一原版(UBC毕业证)不列颠哥伦比亚大学毕业证如何办理
一比一原版(UBC毕业证)不列颠哥伦比亚大学毕业证如何办理
 
Lbs last rank 2023 9988kr47h4744j445.pdf
Lbs last rank 2023 9988kr47h4744j445.pdfLbs last rank 2023 9988kr47h4744j445.pdf
Lbs last rank 2023 9988kr47h4744j445.pdf
 

Optical fiber communication prof harsha sanap (1)

  • 1. Scilab Manual for Optical Fiber Communication by Prof Harsha Sanap Others Padmabhushan Vasantdada Patil Pratishthan’s College of Engineering/Mumbai University1 Solutions provided by Prof RAJIV S. TAWDE Others Mumbai University/PVPPCOE April 18, 2019 1Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the ”Migrated Labs” section at the website http://scilab.in
  • 2. 1
  • 3. Contents List of Scilab Solutions 3 1 To compute the Thermal noise,Signal to noise ratio and Shot noise power for a PIN photodiode 4 2 To compute the responsivity,received optical power & the number of photons received by a pn photodiode 6 3 Compute the resulting output voltage of a photodetector 8 4 Compute the acceptance angle for the optical fiber in water 10 5 Compute the numerical aperture and the critical angle at the core cladding interface for the step index fiber 12 6 Computation of maximum bit rate for RZ & NRZ encoding for the pulse spreading constants certain cable lengths 14 7 Computing overall signal attenuation,signal attenuation/km,overall signal attenuation for 20km link with splices at 2km inter- val 16 8 To compute the maximum link span for 4,8,16 channel; 2.5Gb/s channel optical link. 18 9 Compute the numerical aperture & the acceptance angle for the fiber in air 20 10 Compute the absorption loss taking place in an optical fiber 22 2
  • 4. List of Experiments Solution 1.1 Experiment Number 1 . . . . . . . . . . . . . . . 4 Solution 2.1 Experiment Number 2 . . . . . . . . . . . . . . . 6 Solution 3.1 Experiment Number 3 . . . . . . . . . . . . . . . 8 Solution 4.1 Experiment Number 4 . . . . . . . . . . . . . . . 10 Solution 5.1 Experiment Number 5 . . . . . . . . . . . . . . . 12 Solution 6.1 Experiment Number 6 . . . . . . . . . . . . . . . 14 Solution 7.1 Experiment Number 7 . . . . . . . . . . . . . . . 16 Solution 8.1 Experiment Number 8 . . . . . . . . . . . . . . . 18 Solution 9.1 Experiment Number 9 . . . . . . . . . . . . . . . 20 Solution 10.1 Experiment Number 10 . . . . . . . . . . . . . . . 22 3
  • 5. Experiment: 1 To compute the Thermal noise,Signal to noise ratio and Shot noise power for a PIN photodiode Scilab code Solution 1.1 Experiment Number 1 1 //AIM: To compute the Thermal noise , S i g n a l to n o i s e r a t i o and Shot n o i s e power 2 // f o r a PIN photodiode 3 4 // Software v e r s i o n S c i l a b 5 . 5 . 2 5 //OS Windows 7 6 clc; 7 clear; 8 // Consider r e s p o n s i v i t y 0.5 A/W, load r e s i s t a n c e =2000 ohms , system 9 // bandwidth=50MHz, temperature =40 d e g r e e s c e n t i g r a d e 10 // ( a ) Thermal n o i s e : 11 T=40+273; //T=Temperature 12 disp( ’K ’ ,T, ’T= ’ ) 13 delF =50*(10^3);// delF=Bandwidth 4
  • 6. 14 k=1.38*(10^ -23);//k=Boltzmann constant 15 e=1.6*(10^ -19);//E=Electron 16 RL =2000; //RL=Load r e s i s t a n c e 17 //PNT=4∗k∗T∗ delF where PNT=Thermal n o i s e 18 // I f shot n o i s e i s equal to thermal noise , then PNT= PNS 19 //PNS i s the shot n o i s e power 20 //So , 4∗k∗T∗ delF=2∗e∗ iS ∗ delF ∗RL 21 // Hence iS =(2∗k∗T) /( e∗RL) 22 iS =(2*k*T)/(e*RL);// iS=s i g n a l photocurrent 23 disp( ’Amp ’ ,iS , ’ iS= ’ ) 24 R=0.5; //R=r e s p o n s i v i t y =0.5 25 PR=iS/R; 26 disp( ’ Watts ’ ,PR , ’ Received o p t i c power PR= ’ ); 27 PNT =4*k*T*delF; 28 disp(PNT , ’ Thermal n o i s e PNT= ’ ) 29 30 // ( b ) S i g n a l to n o i s e r a t i o : 31 // Since PNS=PNT; 32 // Total n o i s e ;N=PNS+PNT 33 //So ,N=2∗PNS 34 //But PNS=2∗e∗ iS ∗ delF ∗RL 35 S_by_N =(iS)/(4*e*delF); 36 disp(S_by_N , ’ S i g n a l to n o i s e r a t i o ( S/N)= ’ ) 37 38 // ( c ) Shot n o i s e power : 39 PNS =2*e*iS*delF*RL; 40 disp( ’ Watts ’ ,PNS , ’ Shot n o i s e power PNS= ’ ) 5
  • 7. Experiment: 2 To compute the responsivity,received optical power & the number of photons received by a pn photodiode Scilab code Solution 2.1 Experiment Number 2 1 //AIM: To compute the r e s p o n s i v i t y , r e c e i v e d o p t i c a l power & the number of 2 // photons r e c e i v e d by a pn photodiode 3 4 // Software v e r s i o n S c i l a b 5 . 5 . 2 5 //OS Windows 7 6 clc; 7 clear; 8 // Let us c o n s i d e r quantum e f f i c i e n c y of 50% at a wavelength of 0 .9 micrometres 9 //& mean photocurrent i s 10ˆ−6 Amp 10 n=50/100; //n=Quantum e f f i c i e n c y =50%( given ) 11 lambda =0.9*(10^ -6); 12 // ( a ) : Responsivity 13 // Responsivity R i s r e l a t e d to the quantum 6
  • 8. e f f i c i e n c y n as R=(n∗e∗lambda ) /( h∗e ) 14 e=1.6*(10^ -19); 15 h=6.6*(10^ -34); 16 c=3*(10^8); 17 R=(n*e*lambda)/(h*c); 18 disp( ’AWˆ−1 ’ ,R, ’R= ’ ) 19 20 // ( b ) : Received o p t i c a l power : 21 //R=Ip /P0 22 Ip=10^ -6; 23 P0=Ip/R; 24 disp( ’ Watts ’ ,P0 , ’ Received o p t i c a l power (P0)= ’ ) 25 26 //No . of r e c e i v e d photons : 27 E=(h*c)/( lambda); 28 disp( ’ Watts ’ ,E, ’E= ’ ) 29 // Optical power=No . of photons ∗ Energy of a photon 30 NOP=P0/E; 31 disp( ’ photons / sec ’ ,NOP , ’ Number of photons= ’ ) 7
  • 9. Experiment: 3 Compute the resulting output voltage of a photodetector Scilab code Solution 3.1 Experiment Number 3 1 //AIM: Compute the r e s u l t i n g output v o l t a g e of a photodetector 2 // Software v e r s i o n S c i l a b 5 . 5 . 2 3 //OS Windows 7 4 clc; 5 clear; 6 // Let quantum e f f i c i e n c y =0.9 , wavelength =1.3 micrometre & i n c i d e n t power l e v e l 7 // of −37dBm 8 // Also we c o n s i d e r load r e s i s t a n c e i s 50 ohms and 1000 ohms . 9 n=0.9; //n=Quantum e f f i c i e n c y 10 lambda =1.3*(10^( -6));// lambda=wavelength 11 // I n c i d e n t o p t i c a l power Pia=−37dBm 12 Pia =-37; // Pia=I n c i d e n t power l e v e l 13 Pi =(10^( -3))*(10^( Pia /10));// Computing the i n c i d e n t o p t i c a l power in Watts 14 disp( ’ Watts ’ ,Pi , ’ I n c i d e n t o p t i c a l power ( Pi ) in Watts= ’ ) 8
  • 10. 15 h=(6.625) *(10^( -34));//h=Planck ’ s constant 16 c=(3) *(10^(8));// c=Speed of l i g h t 17 e=(1.6) *(10^( -19));// Electron 18 I=(n*e*lambda*Pi)/(h*c);// Computing c u r r e n t I 19 disp( ’Amp ’ ,I, ’ Current ( I )= ’ ) 20 // Voltage a c r o s s r e s i s t o r of 50 ohms 21 R1 =50; 22 V1=I*R1;// Basic r e l a t i o n : Voltage=Current ∗ R e s i s t a n c e 23 disp( ’ Volts ’ ,V1 , ’V1= ’ ) 24 25 // Voltage a c r o s s r e s i s t o r of ohms 26 R2 =1000; 27 V2=I*R2;// Basic r e l a t i o n : Voltage=Current ∗ R e s i s t a n c e 28 disp( ’ Volts ’ ,V2 , ’V2= ’ ) 9
  • 11. Experiment: 4 Compute the acceptance angle for the optical fiber in water Scilab code Solution 4.1 Experiment Number 4 1 //AIM: Compute the acceptance angle f o r the o p t i c a l f i b e r in water 2 // Software v e r s i o n S c i l a b 5 . 5 . 2 3 //OS Windows 7 4 clc; 5 clear; 6 // Let r e f r a c t i v e index be 1 . 3 3 , numerical aperture be 0.20 and cladding 7 // r e f r a c t i v e index be 1 . 5 9 . 8 na =1.33; 9 n2 =1.59; 10 NA =0.20; 11 //The r e f r a c t i v e index of the core n1 i s not given . So i s has to be c a l c u l a t e d . 12 //NA=s q r t ( ( n1 ˆ2) −(n2 ˆ2) ) 13 n1=sqrt ((NA^2)+(n2^2)); 14 disp(n1 , ’ n1= ’ ) 15 fiy_c = asin(n2/n1); 16 fiy_c_degrees =( fiy_c)*(180/ %pi); 10
  • 12. 17 disp( ’ d e g r e e s ’ ,fiy_c_degrees , ’ C r i t i c a l angle at the core −cladding i n t e r f a c e : f i y c= ’ ) 18 // Computing the acceptance angle 19 theta_a=asin(NA/na); 20 theta_a_degrees =( theta_a)*(180/ %pi); 21 disp( ’ d e g r e e s ’ ,theta_a_degrees , ’ Acceptance angle : t h e t a a= ’ ) 11
  • 13. Experiment: 5 Compute the numerical aperture and the critical angle at the core cladding interface for the step index fiber Scilab code Solution 5.1 Experiment Number 5 1 //AIM: Compute the numerical aperture and the c r i t i c a l angle at the core 2 // cladding i n t e r f a c e f o r the step index f i b e r 3 4 // Software v e r s i o n S c i l a b 5 . 5 . 2 5 //OS Windows 7 6 clc; 7 clear; 8 // Let the acceptance angle in a i r be 22 d e g r e e s and a r e l a t i v e r e f r a c t i v e index 9 // d i f f e r e n c e of 3% 10 theta_a_degrees =22; 11 theta_a_radians =( theta_a_degrees)*(%pi /180); 12 del =0.03; 13 NA=sin(theta_a_radians); 12
  • 14. 14 disp(NA , ’NA= ’ ) 15 n1=(NA)/( sqrt (2* del)); 16 disp(n1 , ’ n1= ’ ) 17 // Computing n2 : 18 n2=n1 -(del*n1); 19 disp(n2 , ’ n2= ’ ) 20 // Computing the c r i t i c a l angle 21 fiy_c=asin(n2/n1); 22 fiy_c_degrees =( fiy_c)*(180/ %pi); 23 disp( ’ d e g r e e s ’ ,fiy_c_degrees , ’ C r i t i c a l angle= ’ ) 13
  • 15. Experiment: 6 Computation of maximum bit rate for RZ & NRZ encoding for the pulse spreading constants certain cable lengths Scilab code Solution 6.1 Experiment Number 6 1 //AIM: Computation of maximum b i t r a t e f o r RZ & NRZ encoding f o r the p u l s e 2 // spreading c o n s t a n t s & c e r t a i n c a b l e l e n g t h s 3 4 // Software v e r s i o n S c i l a b 5 . 5 . 2 5 //OS Windows 7 6 clc; 7 clear; 8 // Consider p u l s e spreading c o n s t a n t s & c a b l e l e n g t h s as f o l l o w s : 9 // ( i ) : T =10ns /mm, L=100m; ( i i ) : T =20ns /m, L=1000m ; ( i i i ) : T =2000 ns /m, L=2km 10 11 //To f i n d maximum b i t r a t e f o r RZ & NRZ encoding 12 // ( i ) : Since delT1=10ns /mm and 1mm=10ˆ−6 km 14
  • 16. 13 delT1 =10*(10^( -9))*(10^(6)); 14 disp( ’ sec /km ’ ,delT1 , ’ delT1= ’ ) 15 tao1 =0.1* delT1;// Computing t o t a l d i s p e r s i o n f o r 100 m 16 disp( ’ sec ’ ,tao1 , ’ Total d i s p e r s i o n f o r 100 m= ’ ) 17 //Maximum p o s s i b l e o p t i c a l bandwidth=maximum p o s s i b l e b i t r a t e f o r RZ 18 Bopt1 =1/(2* tao1) 19 disp( ’ b i t s / sec ’ ,Bopt1 , ’Maximum p o s s i b l e b i t r a t e f o r RZ= ’ ) 20 NRZ1=Bopt1 /2; 21 disp( ’ b i t s / sec ’ ,NRZ1 , ’Maximum p o s s i b l e b i t r a t e f o r NRZ= ’ ) 22 // ( i i ) : Since delT2=20ns /m and 1m=10ˆ−3km 23 delT2 =20*(10^( -9))/(10^( -3)); 24 disp( ’ sec ’ ,delT2 , ’ Total d i s p e r s i o n f o r 1000 m or 1 km = ’ ) 25 tao2=delT2; 26 Bopt2 =1/(2* tao2) 27 disp( ’ b i t s / sec ’ ,Bopt2 , ’Maximum p o s s i b l e b i t r a t e f o r RZ= ’ ) 28 NRZ2=Bopt2 /2; 29 disp( ’ b i t s / sec ’ ,NRZ2 , ’Maximum p o s s i b l e b i t r a t e f o r NRZ= ’ ) 30 // ( i i i ) : Since delT3 =2000 ns /m and 1m=10ˆ−3km 31 delT3 =2000*(10^( -9))/(10^( -3)); 32 disp( ’ sec /km ’ ,delT3 , ’ delT3= ’ ) 33 tao3=delT3 *2; 34 disp( ’ sec ’ ,tao3 , ’ Total d i s p e r s i o n over a length of 2 km = ’ ) 35 Bopt3 =1/(2* tao3) 36 disp( ’ b i t s / sec ’ ,Bopt3 , ’Maximum p o s s i b l e b i t r a t e f o r RZ= ’ ) 37 NRZ3=Bopt3 /2; 38 disp( ’ b i t s / sec ’ ,NRZ3 , ’Maximum p o s s i b l e b i t r a t e f o r NRZ= ’ ) 15
  • 17. Experiment: 7 Computing overall signal attenuation,signal attenuation/km,overall signal attenuation for 20km link with splices at 2km interval Scilab code Solution 7.1 Experiment Number 7 1 //AIM: Computing o v e r a l l s i g n a l attenuation , s i g n a l a t t e n u a t i o n /km, o v e r a l l 2 // s i g n a l a t t e n u a t i o n f o r 20km l i n k with s p l i c e s at 2 km i n t e r v a l 3 4 // Software v e r s i o n S c i l a b 5 . 5 . 2 5 //OS Windows 7 6 clc; 7 clear; 8 // Let us c o n s i d e r that each s p l i c e g i v e s a t t e n u a t i o n of 1 .5dB f o r 10km long 9 // o p t i c a l f i b e r having output o p t i c a l power of 4 W 10 // and input o p t i c a l power of 100 W 16
  • 18. 11 12 Pin =100*(10^( -6));// Pin=Input o p t i c a l power 13 Pout =4*(10^( -6));// Pout=Output o p t i c a l power 14 alphaT =10* log10(Pin/Pout);// alphaT=Overall a t t e n u a t i o n 15 disp( ’dB ’ ,alphaT , ’ Overall a t t e n u a t i o n ( alphaT )= ’ ) 16 //The length of the o p t i c a l f i b e r i s 10km 17 L1 =10*(10^(3)); 18 // Computing S i g n a l attenuaion per km 19 alpha=alphaT /10; 20 disp( ’dB/km ’ ,alpha , ’ The s i g n a l a t t e n u a t i o n per k i l o m e t e r ( alpha ) = ’ ) 21 // Computation f o r 20kms length : 22 L2 =20*(10^(3)); 23 TSA=alpha /(10^(3))*L2;//TSA=Total s i g n a l a t t e n u a t i o n 24 disp( ’dB ’ ,TSA , ’ Total s i g n a l a t t e n u a t i o n= ’ ) 25 //A s p l i c e i s connected at each 2km d i s t a n c e . Thus t o t a l 9 s p l i c e s are used . 26 //Now each s p l i c e g i v e s 1.5dB a t t e n u a t i o n . 27 S=9; //S=Total No . of s p l i c e s used 28 A=1.5; //A=Attenuation by each s p l i c e 29 TAFS=S*A;//TAFS=Total a t t e n u a t i o n from s p l i c e s 30 disp( ’dB ’ ,TAFS , ’ Total a t t e n u a t i o n from s p l i c e s= ’ ) 31 // Computing o v e r a l l s i g n a l a t t e n u a t i o n i n c l u d i n g a t t e n u a t i o n due to s p l i c e s 32 a=TAFS+TSA; 33 disp( ’dB ’ ,a, ’ Overall s i g n a l a t t e n u a t i o n i n c l u d i n g a t t e n u a t i o n due to s p l i c e s= ’ ) 17
  • 19. Experiment: 8 To compute the maximum link span for 4,8,16 channel; 2.5Gb/s channel optical link. Scilab code Solution 8.1 Experiment Number 8 1 //AIM: To compute the maximum l i n k span f o r 4 ,8 ,16 channel ; 2.5Gb/ s channel 2 // o p t i c a l l i n k . 3 4 // Software v e r s i o n S c i l a b 5 . 5 . 2 5 //OS Windows 7 6 clc; 7 clear; 8 // ( i ) : Computing maximum l i n k span f o r 4−channel , 2 . 5 Gb/ s per channel 9 // o p t i c a l l i n k 10 11 fb1 =4*2.5; 12 Lmax1 =(6.1*(10^3))/(( fb1)^2); 13 disp( ’km ’ ,Lmax1 , ’Maximum l i n k span f o r 4−channel , 2 . 5 Gb/ s per channel o p t i c a l l i n k ( i . e . Lmax1) = ’ ) 14 18
  • 20. 15 // ( i i ) : Computing maximum l i n k span f o r 8−channel , 2 . 5 Gb/ s per channel 16 // o p t i c a l l i n k 17 18 fb2 =8*2.5; 19 Lmax2 =(6.1*(10^3))/(( fb2)^2); 20 disp( ’km ’ ,Lmax2 , ’Maximum l i n k span f o r 8−channel , 2 . 5 Gb/ s per channel o p t i c a l l i n k ( i . e . Lmax2) = ’ ) 21 22 // ( i i i ) : Computing maximum l i n k span f o r 16−channel , 2 . 5 Gb/ s per channel 23 // o p t i c a l l i n k 24 25 fb3 =16*2.5; 26 Lmax3 =(6.1*(10^3))/(( fb3)^2); 27 disp( ’km ’ ,Lmax3 , ’Maximum l i n k span f o r 16−channel , 2 . 5 Gb/ s per channel o p t i c a l l i n k ( i . e . Lmax3) = ’ ) 19
  • 21. Experiment: 9 Compute the numerical aperture & the acceptance angle for the fiber in air Scilab code Solution 9.1 Experiment Number 9 1 //AIM: Compute the numerical aperture & the acceptance angle f o r the f i b e r in a i r 2 // Software v e r s i o n S c i l a b 5 . 5 . 2 3 //OS Windows 7 4 clc; 5 clear; 6 // Let the v e l o c i t y of l i g h t in vacuum be 2.998∗10ˆ8 m/ sec , c r i t i c a l angle at the 7 // core −cladding i n t e r f a c e be 80 d e g r e e s & v e l o c i t y of l i g h t in the core 8 // of a step index f i b e r be 2.01∗10ˆ8 m/ sec 9 10 c=2.998*10^8; // c=v e l o c i t y of l i g h t in vacuum 11 v1 =2.01*10^8; // v1=v e l o c i t y of l i g h t in the core 12 theta_c =80*( %pi /180);// Expressing t h e t a c in r a d i a n s 13 n1=c/v1; 14 disp(n1 , ’ n1= ’ ) 20
  • 22. 15 // Since s i n ( t h e t a c )=n2/n1 16 n2=sin(theta_c)*n1; 17 disp(n2 , ’ n2= ’ ) 18 NA=sqrt ((n1^2) -(n2^2)) 19 disp(NA , ’ Numerical aperture (NA)= ’ ) 20 // Computing the acceptance angle 21 theta_a=asin(NA) 22 theta_a_degrees =( theta_a)*(180/ %pi); 23 disp( ’ d e g r e e s ’ ,theta_a_degrees , ’ Acceptance angle ( t h e t a a )= ’ ) 21
  • 23. Experiment: 10 Compute the absorption loss taking place in an optical fiber Scilab code Solution 10.1 Experiment Number 10 1 //AIM: Compute the ab sor pt ion l o s s taking p l a c e in an o p t i c a l f i b e r 2 // Software v e r s i o n S c i l a b 5 . 5 . 2 3 //OS Windows 7 4 clc; 5 clear; 6 // Let the length of the o p t i c a l f i b e r be 3.5cm in an i n t e r f e r e n c e sphere , while 7 // the t o t a l length of the f i b e r be 1km. 8 // Also c o n s i d e r that i t g i v e s 5 .1nV & 165 micro Volts corresponding to 9 // s c a t t e r e d & u n s c a t t e r e d l i g h t r e s p e c t i v e l y while f o r the cutback method , 10 // i t g i v e s 5.20V & 22V f o r o r i g i n a l & cutback o p t i c a l f i b e r s r e s p e c t i v e l y . 11 12 l=3.5*(10^( -5));// l=Length of o p t i c a l in i n t e g r a t i n g sphere 13 Vsc =5.1*(10^( -9));// Vsc=Voltage l e v e l corresponding 22
  • 24. to s c a t t e r e d l i g h t 14 Vop =165*(10^( -6));//Vop=Voltage l e v e l corresponding to u n s c a t t e r e d l i g h t 15 // Computing the s c a t t e r i n g l o s s : 16 alpha_sc =(4.343/l)*(Vsc/Vop); 17 disp( ’dB/km ’ ,alpha_sc , ’ S c a t t e r i n g l o s s ( a l p h a s c )= ’ ) 18 // Computation of t o t a l a t t e n u a t i o n : 19 L1=1; //L1=Length of the o r i g i n a l f i b e r 20 L2 =0.002; //L2=Length of cutback o p t i c a l f i b e r 21 V2 =22; //V2=Voltage l e v e l f o r cutback o p t i c a l f i b e r 22 V1 =5.20; //V1=Voltage l e v e l f o r o r i g i n a l o p t i c a l f i b e r 23 alpha_T =(1/(L1 -L2))*(10* log10(V2/V1));// alpha T= t o t a l a t t e n u a t i o n 24 disp( ’dB/km ’ ,alpha_T , ’ Total a t t e n u a t i o n ( alpha T ) = ’ ) 25 // Computing the ab sor pt ion l o s s : 26 AL=alpha_T -alpha_sc;//AL=Absorption l o s s 27 disp( ’dB/km ’ ,AL , ’ Absorption l o s s= ’ ) 23