Embed presentation
Downloaded 565 times























Artificial neural networks are commonly used in optical character recognition algorithms due to their flexibility, ability to learn, and power. ANNs work by taking an input, running it through a network of neurons arranged in layers, and producing an output. They can be trained to recognize patterns through a learning stage where they are given many examples of input and output pairs. Once trained, ANNs can accurately evaluate new inputs and recognize characters at a 98% rate with only 5% error. Common types of ANNs include feedforward, recurrent, radial basis function, and self-organizing networks.






















