NumbersystemsMtro. Edgar Sánchez Linares
A martianproblemWhenthefirstMartiantovisitEarthattended a highschool algebra class, he watchedtheteacher show thattheonlysolution of theequation5x2-50x+125=0isx=5.“Howstrange”, thougththeMartian. “OnMars, x=5is a solution of thisequation, butthereisalsoanothersolution.”IfMartianshave more fingersthanhumanshave, howmanyfingers do Martianshave?Bonnie Averbach & OrinChein
Firstreview – PositionalnotationTen symbols are required by our number system:  0, 1, 2, 3, 4, 5, 6, 7, 8, 924=204=315=45.2=The relative position to the decimal point indicates the “place value” of the digit    3= 3x1       =3x100  30= 3x10    =3x101300= 3x100 =3x1020.3= 3 /10    =3x10-1
First review – Other basesWhat if we have a number system with only two different symbols? (110)two=(110)three=(110)ten=(110)four=0, 1So, the number 1101 in base two represents:1 x23 + How many symbols do we need in base three? And the number 120 represents …
First review – Changing bases(201)three=2x32+0x3+1=(19)ten(185)ten=(???)three= 2 x 81 + (185-162)= 2 x 81 + 23= 2 x 81 + 2 x 9 +(23-18)= 2 x 81 + 2 x 9 + 5= 2 x 81 + 2 x 9 + 3 +2= 2 x 34+ 0 x 33 + +2 x 32+ 1 x 31 + 2 x 30= (20212)three(10011)two==(19)ten(1101)two=(1001)seven=(3.5)six=(T81)eleven=(5403)six=Convert (2087)teninto each of the following  bases: 2, 3, 6, 7, 12
Secondreview - Additionin otherbases

Number systems

  • 1.
  • 2.
    A martianproblemWhenthefirstMartiantovisitEarthattended ahighschool algebra class, he watchedtheteacher show thattheonlysolution of theequation5x2-50x+125=0isx=5.“Howstrange”, thougththeMartian. “OnMars, x=5is a solution of thisequation, butthereisalsoanothersolution.”IfMartianshave more fingersthanhumanshave, howmanyfingers do Martianshave?Bonnie Averbach & OrinChein
  • 3.
    Firstreview – PositionalnotationTensymbols are required by our number system: 0, 1, 2, 3, 4, 5, 6, 7, 8, 924=204=315=45.2=The relative position to the decimal point indicates the “place value” of the digit 3= 3x1 =3x100 30= 3x10 =3x101300= 3x100 =3x1020.3= 3 /10 =3x10-1
  • 4.
    First review –Other basesWhat if we have a number system with only two different symbols? (110)two=(110)three=(110)ten=(110)four=0, 1So, the number 1101 in base two represents:1 x23 + How many symbols do we need in base three? And the number 120 represents …
  • 5.
    First review –Changing bases(201)three=2x32+0x3+1=(19)ten(185)ten=(???)three= 2 x 81 + (185-162)= 2 x 81 + 23= 2 x 81 + 2 x 9 +(23-18)= 2 x 81 + 2 x 9 + 5= 2 x 81 + 2 x 9 + 3 +2= 2 x 34+ 0 x 33 + +2 x 32+ 1 x 31 + 2 x 30= (20212)three(10011)two==(19)ten(1101)two=(1001)seven=(3.5)six=(T81)eleven=(5403)six=Convert (2087)teninto each of the following bases: 2, 3, 6, 7, 12
  • 6.