This document provides an overview of advancements in natural language processing through deep learning techniques. It describes several deep learning architectures used for NLP tasks, including multi-layer perceptrons, convolutional neural networks, recurrent neural networks, auto-encoders, and generative adversarial networks. It also summarizes applications of these techniques to common NLP problems such as part-of-speech tagging, parsing, named entity recognition, sentiment analysis, machine translation, question answering, and text summarization.