s
by:g. Martin
To multiply the polynomials, we follow the following rules:
• Apply the associative law for multiplication. Group the numerical
coefficients and the literal coefficients together.
• Multiply the numerical coefficients.
• Apply the law of exponents.
Example 1. Simplify (x3) (x2).
= (x3) (x2)
= x3+2 (Apply the product rule)
= 1x5 (Simplify)
= x5
Example 2. Multiply (3x2) (2x).
= (3x2) (2x)
= (3 . 2) (x2 . x) (Group numerical coefficient and literal coefficient
together)
= (6) . (x3)
= (6x3)
Example 3. Multiply (x2y)( x2y) (2y3).
= (x2y)(x2y)(2y3)
= (x2)(x2) . (y . y . y3) . (2) (Group numerical and literal coefficient
together).
= (x4) . (y5) .(2) = x4y52
= 2x4y5
Example 4. Multiply (-2xy) (-3x2y).
= (-2xy) (-3x2y)
= (-2 . -3) . (x . x2) . (y . y) (Group numerical and literal
coefficient)
= (6) . (x3) . (y2)
= 6x3y2
Example 5. Simplify (3a2)2 (a4)
= (3a2)2 (a4)
= (3a2) (3a2) . (a4)
= (3. 3) (a2 . a2 . a4) (Group numerical and literal coefficient)
= (9) (a8)
= 9a8

Multiplying monomial

  • 1.
  • 2.
    To multiply thepolynomials, we follow the following rules: • Apply the associative law for multiplication. Group the numerical coefficients and the literal coefficients together. • Multiply the numerical coefficients. • Apply the law of exponents.
  • 3.
    Example 1. Simplify(x3) (x2). = (x3) (x2) = x3+2 (Apply the product rule) = 1x5 (Simplify) = x5
  • 4.
    Example 2. Multiply(3x2) (2x). = (3x2) (2x) = (3 . 2) (x2 . x) (Group numerical coefficient and literal coefficient together) = (6) . (x3) = (6x3)
  • 5.
    Example 3. Multiply(x2y)( x2y) (2y3). = (x2y)(x2y)(2y3) = (x2)(x2) . (y . y . y3) . (2) (Group numerical and literal coefficient together). = (x4) . (y5) .(2) = x4y52 = 2x4y5
  • 6.
    Example 4. Multiply(-2xy) (-3x2y). = (-2xy) (-3x2y) = (-2 . -3) . (x . x2) . (y . y) (Group numerical and literal coefficient) = (6) . (x3) . (y2) = 6x3y2
  • 7.
    Example 5. Simplify(3a2)2 (a4) = (3a2)2 (a4) = (3a2) (3a2) . (a4) = (3. 3) (a2 . a2 . a4) (Group numerical and literal coefficient) = (9) (a8) = 9a8