SlideShare a Scribd company logo
The Structure FactorThe Structure Factor
Suggested Reading
P 303 312 i D G f & M HPages 303-312 in DeGraef & McHenry
Pages 59-61 in Engler and Randle
1
Structure Factor (Fhkl)
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
• Describes how atomic arrangement (uvw)
1i
influences the intensity of the scattered beam.
It tells us which reflections (i e peaks hkl) to• It tells us which reflections (i.e., peaks, hkl) to
expect in a diffraction pattern.
2
Structure Factor (Fhkl)
• The amplitude of the resultant wave is given by a
ratio of amplitudes:ratio of amplitudes:
amplitude of the wave scattered by all atoms of a UC
li d f h d b l
hklF 
• The intensity of the diffracted wave is proportional
amplitude of the wave scattered by one electron
hkl
• The intensity of the diffracted wave is proportional
to |Fhkl|2.
3
Some Useful Relations
ei = e3i = e5i = … = -1
e2i = e4i = e6i = … = +1
eni = (-1)n, where n is any integery g
eni = e-ni, where n is any integer
eix + e-ix =2 cos x
Needed for structure factor calculationsNeeded for structure factor calculations
4
Fhkl for Simple Cubic
• Atom coordinate(s) u,v,w:
– 0,0,0
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
0,0,0
2 (0 0 0 )i h k l2 (0 0 0 )i h k l
hklF fe f     
 
No matter what atom coordinates or plane indices you substitute into theNo matter what atom coordinates or plane indices you substitute into the
structure factor equation for simple cubic crystals, the solution is always
non-zero.
5
Thus, all reflections are allowed for simple cubic (primitive) structures.
Fhkl for Body Centered Cubic
• Atom coordinate(s) u,v,w:
– 0,0,0;
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
0,0,0;
– ½, ½, ½.
2
h k l
i
 
 2
2 (0) 2 2 2
h k l
i
i
hklF fe fe


 
  
 
 

 
 1 i h k l
F f e
hkl
  
 
When h+k+l is even Fhkl = non-zero → reflection.
6
When h+k+l is odd Fhkl = 0 → no reflection.
Fhkl for Face Centered Cubic
• Atom coordinate(s) u,v,w:
– 0,0,0;
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
0,0,0;
– ½,½,0;
– ½,0,½;
– 0,½,½.
 
2 2 2
2 0 2 2 2 2 2 2
h k h l k l
i i i
i
f f f f
  

            
      2 0 2 2 2 2 2 2i
hklF fe fe fe fe      
   

7
     
 1 i h k i h l i k l
hklF f e e e    
   
Fhkl for Face Centered Cubic
     
 1 i h k i h l i k l
hklF f e e e    
   
• Substitute in a few values of hkl and you will find
the following:the following:
– When h,k,l are unmixed (i.e. all even or all odd), then
Fhkl = 4f. [NOTE: zero is considered even]
F 0 f i d i di (i bi ti f dd– Fhkl = 0 for mixed indices (i.e., a combination of odd
and even).
8
Fhkl for NaCl Structure
• Atom coordinate(s) u,v,w:
– Na at 0,0,0 + FC transl.;
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
Na at 0,0,0 FC transl.;
• 0,0,0;
• ½,½,0;
½ 0 ½
This means these
coordinates
• ½,0,½;
• 0,½,½.
coordinates
(u,v,w)
– Cl at ½,½,½ + FC transl.
• ½,½,½;  ½,½,½
1 1 ½ 0 0 ½
The re-assignment of coordinates is
• 1,1,½;  0,0,½
• 1,½,1;  0,½,0
• ½,1,1.  ½,0,0
g
based upon the equipoint concept in
the international tables for
crystallography
9• Substitute these u,v,w values into Fhkl equation.
Fhkl for NaCl Structure – cont’d
• For Na:
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
 2 (0) ( ) ( ) ( )i i h k i h l i k l
f e e e e     
    
 
( ) ( ) ( ) ( )
( ) ( ) ( )
1
Na
i h k i h l i k l
Na
f e e e e
f e e e    
   
  
• For Cl:
 
 
2 ( ) 2 ( ) 2 ( )( ) 2 2 2
l k hi h k i h l i k li h k l
Clf e e e e
         
   
 
 
( ) ( ) ( ) ( )
( ) ( ) ( )
2 2 2 2
( )
2 2i h k l i i ih k h l k l
Cl
i h k l i i i
Cl
f e e e e
f e e e e
   
   
       
 
   
  
l k h
l k h
These terms are all positive and even.
 Whether the exponent is odd or
10
 Whether the exponent is odd or
even depends solely on the remaining
h, k, and l in each exponent.
Fhkl for NaCl Structure – cont’d
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 • Therefore Fhkl:
 
 
( ) ( ) ( )
( ) ( ) ( ) ( )
1 i h k i h l i k l
hkl Na
i h k l i i i
Cl
F f e e e
f e e e e
  
   
  
 
    
  l k h
 Clf e e e e  
which can be simplified to*:
  ( ) ( ) ( ) ( )
1i h k l i h k i h l i k l
hkl Na ClF f f e e e e       
    
11
Fhkl for NaCl Structure
When hkl are even Fhkl = 4(fNa + fCl)
Primary reflectionsPrimary reflections
When hkl are odd F = 4(f f )When hkl are odd Fhkl = 4(fNa - fCl)
Superlattice reflections
When hkl are mixed Fhkl = 0
N fl tiNo reflections
12
(200)
100
80
90
NaCl
CuKα radiation
(220)
%)
60
70
Intensity(
50
I
30
40
(111)
(222)
(400)
(420)
(422) (600)
(442)
10
20
13
(111)
(311)
(400)
(331)
(333)
(511)
(440)
(531)
20 30 40 50 60 70 80 90 100 110 120
2θ (°)
0
10
Fhkl for L12 Crystal Structure
• Atom coordinate(s) u,v,w:
– 0,0,0; A B
2 ( )
1
i j i
N
i hu kv lw
hkl i
i
F f e
  

 
0,0,0;
– ½,½,0;
– ½,0,½;
A
– 0,½,½.
     2 2 22 (0) 2 2 2 2 2 2
h k h l k li i ii           2 (0) 2 2 2 2 2 2
A B B B
i
F f e f e f e f e
hkl
   

14
 ( ) ( ) ( )
A B
i h k i h l i k l
F f f e e e
hkl
    
   
Fhkl for L12 Crystal Structure
 ( ) ( ) ( )
A B
i h k i h l i k l
F f f e e e
hkl
    
   
(1 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB
(1 1 0) Fhkl = fA + fB(1-1-1) = fA – fB
A B
(1 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB
(2 0 0) Fhkl = fA + fB(1+1+1) = fA +3 fB
(2 1 0) Fhkl = fA + fB(-1+1-1) = fA – fB(2 1 0) Fhkl fA fB( 1 1 1) fA fB
(2 2 0) Fhkl = fA + fB(1+1+1) = fA +3 fB
(2 2 1) Fhkl = fA + fB(1-1-1) = fA – fB
(3 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB
(3 1 0) Fhkl = fA + fB(1-1-1) = fA – fB
(3 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB
15
(3 1 1) Fhkl fA + fB(1+1+1) fA +3 fB
(2 2 2) Fhkl = fA + fB(1+1+1) = fA +3 fB
Intensity (%)
100
(111)
Example of XRD pattern
from a material with an
L12 crystal structure
A B
80
90
100
A B
60
70
80
40
50
60
(200)
30
40
(220)
(311)
2 θ (°)
10
20
(100)
(110)
(210) (211) (221)
(300)
(310)
(222)
(320) (321)
16
( )
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115
0
( ) ( )
Fhkl for MoSi2
• Atom positions:
– Mo atoms at 0,0,0; ½,½,½
Si t t 0 0 0 0 ½ ½ ½ ½ ½ ½ 1/3
c
– Si atoms at 0,0,z; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3
– MoSi2 is actually body centered tetragonal with
a = 3.20 Å and c = 7.86 Å z
c c ac
x
y
x y
z
xy
z
b
x
y
z
a
b
a b ab
Viewed down z-axis
17
a a
Viewed down x-axis Viewed down y-axis
Fhkl for MoSi2
Substitute in atom positions:
( )2
1
  

  i j i
N
i hu kv lw
hkl i
i
F f e
• Mo atoms at 0,0,0; ½,½,½
• Si atoms at 0,0, ; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3
     5   h k l h k l h k ll l
     
   
52 2 22 ( ) 2 ( )2 (0) 2 2 2 2 2 6 2 2 63 3
5
   
           
        
   
   
 
h k l h k l h k ll li i ii ii
F f e f e f e f e f e f e
hkl Mo Mo Si Si Si Si
l ll l h k h k     52 ( ) 2 ( )
3 33 31
  
        
        
   
 
l ll l i h k i h ki ii h k l
F f e f e e e e
Mo Si
Now we can plug in different values for h k l to determine the structure factor.
F h k l 1 0 0• For h k l = 1 0 0
 
     5(0) (0)(0) (0)
3 33 3
1 0 1 02 ( ) 2 ( )1 0 0
2
1
0
(1 1) (1 1 1 1) 0
               
  
      
i ii ii
hkl Mo Si
hkl
Mo Si
F f e f e e e e
F
f f
18
2
( ) ( )
You will soon learn that intensity is proportional to ; there is NO REFLECTION!
Mo S
l
i
hkF
f f
Now we can plug in different values for h k l to determine the structure factor
Fhkl for MoSi2 – cont’d
Now we can plug in different values for h k l to determine the structure factor.
• For h k l = 0 0 1
 
     5(1) (1)
1 1
3 33 3
0 0 0 02 ( ) 2 ( )0 0 10                
 
i ii ii
hkl Mo SiF f e e f e e e e
22
3(1 ) (2 ( ) )
(1 1) ( 1 1) 0
 
   
     

i i
Mo Si
Mo si
f e f COS e
f f
• For h k l = 1 1 0
2
0 NO REFLECTION!hklF
 
     
 1 1 0 1 1 0 1 1 00 2 (0) 2 (0)
2 (0) (0) 2 2
(1 ) ( )
(2) (4)
   
  
     
     
     
 
i i ii i
hkl Mo Si
i i i
Mo Si
Mo si
F f e e f e e e e
f e f e e e e
f f
If you continue for different h k l combinations trends will emerge this will lead you
2
POSITIVE! YOU WILL SEE A REFLECTION

hklF
19
• If you continue for different h k l combinations… trends will emerge… this will lead you
to the rules for diffraction…
h + k + l = even
100
(103)
80
90
(110)
MoSi2
CuKα radiation
%)
60
70
(101)
(110)
Intensity(
50
I
30
40
(002)
(213)
10
20
(112) (200)
(202) (211) (116)
(301)
(206)
(303)
2020 30 40 50 60 70 80 90 100 110 120
2θ (°)
0
10
(006)
(204) (222)
(301) (303)
(312) (314)
Fhkl for MoSi2 – cont’d
2000 JCPDS International Centre for Diffraction Data All rights reserved
21
2000 JCPDS-International Centre for Diffraction Data. All rights reserved
PCPDFWIN v. 2.1
Structure Factor (Fhkl) for HCP
2 ( )i j i
N
i hu kv lw
F f
  

• Describes how atomic arrangement (uvw)
( )
1
i j i
hkl i
i
F f e

 
• Describes how atomic arrangement (uvw)
influences the intensity of the scattered beam.
i.e.,
• It tells us which reflections (i.e., peaks, hkl) to
expect in a diffraction pattern from a given crystal
structure with atoms located at positions u v w
22
structure with atoms located at positions u,v,w.
• In HCP crystals (like Ru Zn Ti and Mg) the• In HCP crystals (like Ru, Zn, Ti, and Mg) the
lattice point coordinates are:
– 0 0 0
–
1 2 1
3 3 2
• Therefore, the structure factor becomes:
2
2
h k l
i  
   2
3 3 2
1
i
hkl iF f e
  
  
 
 
  
 
• We simplify this expression by letting:p y p y g
2 1
3 2
h k
g

 
which reduces the structure factor to:
 2
1 ig
hkl iF f e 
 
• We can simplify this once more using:
 1hkl iF f e
from which we find:
2ix ix
2cosix ix
e e x 
2 2 2 2
4 cos
h k l
F f 
   4 cos
3 2
hkl iF f   
 
Selection rules for HCP
0 when 2 3 and oddh k n l  
2
2
2
when 2 3 1 and even
3 when 2 3 1 and odd
i
hkl
f h k n l
F
f h k n l

    
 
   
2
3 when 2 3 1 and odd
4 when 2 3 and even
i
i
f h k n l
f h k n l
 
   
 For your HW problem, you will need these things to
do the structure factor calculation for Ru.
 HINT: It might save you some time if you already
had the ICDD card for Ru.ad t e C ca d o u
List of selection rules for different crystals
Crystal Type Bravais Lattice Reflections Present Reflections Absent
Simple Primitive, P Any h,k,l Nonep , y
Body-centered Body centered, I h+k+l = even h+k+l = odd
Face-centered Face-centered, F h,k,l unmixed h,k,l mixed
NaCl FCC h,k,l unmixed h,k,l mixed
Zincblende FCC Same as FCC, but if all even
and h+k+l4N then absent
h,k,l mixed and if all even
and h+k+l4N then absent
Base-centered Base-centered h,k both even or both odd h,k mixed
Hexagonal close-packed Hexagonal h+2k=3N with l even
h+2k=3N1 with l odd
h+2k=3N1 with l even
h+2k=3N with l odd
26
What about solid solution alloys?
• If the alloys lack long range order, then youIf the alloys lack long range order, then you
must average the atomic scattering factor.
falloy =xAfA + xBfB
where xn is an atomic fraction for the atomic
iconstituent
27
Exercises
• For CaF2 calculate the structure factor and
determine the selection rules for alloweddetermine the selection rules for allowed
reflections.
28

More Related Content

What's hot

Arc discharge method
Arc discharge methodArc discharge method
Arc discharge method
Sudama04
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)
Zaahir Salam
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
University of California, San Diego
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
Gabriel O'Brien
 
X-ray diffraction technique (xrd)
X-ray diffraction technique  (xrd)X-ray diffraction technique  (xrd)
X-ray diffraction technique (xrd)
saqib16
 
Point defect in solids
Point defect in solidsPoint defect in solids
Point defect in solids
neelusharma39
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
Claudio Attaccalite
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
X ray Photoelectron Spectroscopy (XPS)
X ray Photoelectron Spectroscopy (XPS)X ray Photoelectron Spectroscopy (XPS)
X ray Photoelectron Spectroscopy (XPS)
Nano Encryption
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materials
krishslide
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS
Harsh Mohan
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materials
Zaahir Salam
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
Rawat DA Greatt
 
Presentation
PresentationPresentation
Presentation
Nikita Gupta
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
Parth Patel
 
X Ray Diffraction Spectroscopy
X Ray Diffraction SpectroscopyX Ray Diffraction Spectroscopy
X Ray Diffraction Spectroscopyhephz
 
Defects in crystalline materials
Defects in crystalline materialsDefects in crystalline materials
Defects in crystalline materials
onlinemetallurgy.com
 
Float Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUETFloat Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUET
A. S. M. Jannatul Islam
 

What's hot (20)

Arc discharge method
Arc discharge methodArc discharge method
Arc discharge method
 
Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)Xps (x ray photoelectron spectroscopy)
Xps (x ray photoelectron spectroscopy)
 
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
X-ray diffraction technique (xrd)
X-ray diffraction technique  (xrd)X-ray diffraction technique  (xrd)
X-ray diffraction technique (xrd)
 
Point defect in solids
Point defect in solidsPoint defect in solids
Point defect in solids
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Xps
XpsXps
Xps
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Quantum Hall Effect
 
X ray Photoelectron Spectroscopy (XPS)
X ray Photoelectron Spectroscopy (XPS)X ray Photoelectron Spectroscopy (XPS)
X ray Photoelectron Spectroscopy (XPS)
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materials
 
2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS2018 ELECTRON DIFFRACTION AND APPLICATIONS
2018 ELECTRON DIFFRACTION AND APPLICATIONS
 
Ferroelectric and piezoelectric materials
Ferroelectric and piezoelectric materialsFerroelectric and piezoelectric materials
Ferroelectric and piezoelectric materials
 
Crystal sizeanalysis
Crystal sizeanalysisCrystal sizeanalysis
Crystal sizeanalysis
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
 
Presentation
PresentationPresentation
Presentation
 
Crystal structure
Crystal structureCrystal structure
Crystal structure
 
X Ray Diffraction Spectroscopy
X Ray Diffraction SpectroscopyX Ray Diffraction Spectroscopy
X Ray Diffraction Spectroscopy
 
Defects in crystalline materials
Defects in crystalline materialsDefects in crystalline materials
Defects in crystalline materials
 
Float Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUETFloat Zone, Bridgman Techniques--ABU SYED KUET
Float Zone, Bridgman Techniques--ABU SYED KUET
 

Similar to Mte 583 class 18b

253A-2016-03.pdf
253A-2016-03.pdf253A-2016-03.pdf
253A-2016-03.pdf
Jorge Vega Rodríguez
 
Fourier transform.ppt
Fourier transform.pptFourier transform.ppt
Fourier transform.ppt
Radhyesham
 
Method for beam 20 1-2020
Method for beam 20 1-2020Method for beam 20 1-2020
Method for beam 20 1-2020
RahulMeena188
 
Seminar chm804
Seminar chm804Seminar chm804
Seminar chm804
Aysha Fatima
 
Transformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear MatterTransformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear Matter
Alex Quadros
 
NEET Courses - iPositiev Academy
NEET Courses - iPositiev AcademyNEET Courses - iPositiev Academy
NEET Courses - iPositiev Academy
iPositive Academy
 
Jee sol-internet-pcm off -2013
Jee sol-internet-pcm off -2013Jee sol-internet-pcm off -2013
Jee sol-internet-pcm off -2013
Ashish Yadav
 
Jee sol-internet-pcm
Jee sol-internet-pcmJee sol-internet-pcm
Jee sol-internet-pcm
vishalraj412
 
Properties of coordination compoundes part 1 of 3
Properties of coordination compoundes part 1 of 3Properties of coordination compoundes part 1 of 3
Properties of coordination compoundes part 1 of 3
Chris Sonntag
 
AIPMT 2014-paper-solution-chemistry
AIPMT 2014-paper-solution-chemistryAIPMT 2014-paper-solution-chemistry
AIPMT 2014-paper-solution-chemistry
ALLEN CAREER INSTITUTE
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
Radhyesham
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Daisuke Satow
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
Alexander Litvinenko
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
Alexander Litvinenko
 
Slides
SlidesSlides
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
Eneutron
 
Aula materiais
Aula materiaisAula materiais
Aula materiais
Rubens Costa
 
(Www.entrance exam.net)-aieee chemistry sample paper 1
(Www.entrance exam.net)-aieee chemistry sample paper 1(Www.entrance exam.net)-aieee chemistry sample paper 1
(Www.entrance exam.net)-aieee chemistry sample paper 1Atul Sharma
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
Albert DeFusco
 

Similar to Mte 583 class 18b (20)

Xrd lecture 1
Xrd lecture 1Xrd lecture 1
Xrd lecture 1
 
253A-2016-03.pdf
253A-2016-03.pdf253A-2016-03.pdf
253A-2016-03.pdf
 
Fourier transform.ppt
Fourier transform.pptFourier transform.ppt
Fourier transform.ppt
 
Method for beam 20 1-2020
Method for beam 20 1-2020Method for beam 20 1-2020
Method for beam 20 1-2020
 
Seminar chm804
Seminar chm804Seminar chm804
Seminar chm804
 
Transformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear MatterTransformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear Matter
 
NEET Courses - iPositiev Academy
NEET Courses - iPositiev AcademyNEET Courses - iPositiev Academy
NEET Courses - iPositiev Academy
 
Jee sol-internet-pcm off -2013
Jee sol-internet-pcm off -2013Jee sol-internet-pcm off -2013
Jee sol-internet-pcm off -2013
 
Jee sol-internet-pcm
Jee sol-internet-pcmJee sol-internet-pcm
Jee sol-internet-pcm
 
Properties of coordination compoundes part 1 of 3
Properties of coordination compoundes part 1 of 3Properties of coordination compoundes part 1 of 3
Properties of coordination compoundes part 1 of 3
 
AIPMT 2014-paper-solution-chemistry
AIPMT 2014-paper-solution-chemistryAIPMT 2014-paper-solution-chemistry
AIPMT 2014-paper-solution-chemistry
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Slides
SlidesSlides
Slides
 
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
IIT-JEE Mains 2017 Online Chemistry Previous Paper Day 1
 
Aula materiais
Aula materiaisAula materiais
Aula materiais
 
(Www.entrance exam.net)-aieee chemistry sample paper 1
(Www.entrance exam.net)-aieee chemistry sample paper 1(Www.entrance exam.net)-aieee chemistry sample paper 1
(Www.entrance exam.net)-aieee chemistry sample paper 1
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 

Recently uploaded

Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
RTTS
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
Product School
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
CatarinaPereira64715
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Product School
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 

Recently uploaded (20)

Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...Mission to Decommission: Importance of Decommissioning Products to Increase E...
Mission to Decommission: Importance of Decommissioning Products to Increase E...
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 

Mte 583 class 18b

  • 1. The Structure FactorThe Structure Factor Suggested Reading P 303 312 i D G f & M HPages 303-312 in DeGraef & McHenry Pages 59-61 in Engler and Randle 1
  • 2. Structure Factor (Fhkl) 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       • Describes how atomic arrangement (uvw) 1i influences the intensity of the scattered beam. It tells us which reflections (i e peaks hkl) to• It tells us which reflections (i.e., peaks, hkl) to expect in a diffraction pattern. 2
  • 3. Structure Factor (Fhkl) • The amplitude of the resultant wave is given by a ratio of amplitudes:ratio of amplitudes: amplitude of the wave scattered by all atoms of a UC li d f h d b l hklF  • The intensity of the diffracted wave is proportional amplitude of the wave scattered by one electron hkl • The intensity of the diffracted wave is proportional to |Fhkl|2. 3
  • 4. Some Useful Relations ei = e3i = e5i = … = -1 e2i = e4i = e6i = … = +1 eni = (-1)n, where n is any integery g eni = e-ni, where n is any integer eix + e-ix =2 cos x Needed for structure factor calculationsNeeded for structure factor calculations 4
  • 5. Fhkl for Simple Cubic • Atom coordinate(s) u,v,w: – 0,0,0 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       0,0,0 2 (0 0 0 )i h k l2 (0 0 0 )i h k l hklF fe f        No matter what atom coordinates or plane indices you substitute into theNo matter what atom coordinates or plane indices you substitute into the structure factor equation for simple cubic crystals, the solution is always non-zero. 5 Thus, all reflections are allowed for simple cubic (primitive) structures.
  • 6. Fhkl for Body Centered Cubic • Atom coordinate(s) u,v,w: – 0,0,0; 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       0,0,0; – ½, ½, ½. 2 h k l i    2 2 (0) 2 2 2 h k l i i hklF fe fe                1 i h k l F f e hkl      When h+k+l is even Fhkl = non-zero → reflection. 6 When h+k+l is odd Fhkl = 0 → no reflection.
  • 7. Fhkl for Face Centered Cubic • Atom coordinate(s) u,v,w: – 0,0,0; 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       0,0,0; – ½,½,0; – ½,0,½; – 0,½,½.   2 2 2 2 0 2 2 2 2 2 2 h k h l k l i i i i f f f f                        2 0 2 2 2 2 2 2i hklF fe fe fe fe            7        1 i h k i h l i k l hklF f e e e        
  • 8. Fhkl for Face Centered Cubic        1 i h k i h l i k l hklF f e e e         • Substitute in a few values of hkl and you will find the following:the following: – When h,k,l are unmixed (i.e. all even or all odd), then Fhkl = 4f. [NOTE: zero is considered even] F 0 f i d i di (i bi ti f dd– Fhkl = 0 for mixed indices (i.e., a combination of odd and even). 8
  • 9. Fhkl for NaCl Structure • Atom coordinate(s) u,v,w: – Na at 0,0,0 + FC transl.; 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       Na at 0,0,0 FC transl.; • 0,0,0; • ½,½,0; ½ 0 ½ This means these coordinates • ½,0,½; • 0,½,½. coordinates (u,v,w) – Cl at ½,½,½ + FC transl. • ½,½,½;  ½,½,½ 1 1 ½ 0 0 ½ The re-assignment of coordinates is • 1,1,½;  0,0,½ • 1,½,1;  0,½,0 • ½,1,1.  ½,0,0 g based upon the equipoint concept in the international tables for crystallography 9• Substitute these u,v,w values into Fhkl equation.
  • 10. Fhkl for NaCl Structure – cont’d • For Na: 2 ( ) 1 i j i N i hu kv lw hkl i i F f e        2 (0) ( ) ( ) ( )i i h k i h l i k l f e e e e             ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 Na i h k i h l i k l Na f e e e e f e e e            • For Cl:     2 ( ) 2 ( ) 2 ( )( ) 2 2 2 l k hi h k i h l i k li h k l Clf e e e e                   ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 ( ) 2 2i h k l i i ih k h l k l Cl i h k l i i i Cl f e e e e f e e e e                          l k h l k h These terms are all positive and even.  Whether the exponent is odd or 10  Whether the exponent is odd or even depends solely on the remaining h, k, and l in each exponent.
  • 11. Fhkl for NaCl Structure – cont’d 2 ( ) 1 i j i N i hu kv lw hkl i i F f e      • Therefore Fhkl:     ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 i h k i h l i k l hkl Na i h k l i i i Cl F f e e e f e e e e                    l k h  Clf e e e e   which can be simplified to*:   ( ) ( ) ( ) ( ) 1i h k l i h k i h l i k l hkl Na ClF f f e e e e             11
  • 12. Fhkl for NaCl Structure When hkl are even Fhkl = 4(fNa + fCl) Primary reflectionsPrimary reflections When hkl are odd F = 4(f f )When hkl are odd Fhkl = 4(fNa - fCl) Superlattice reflections When hkl are mixed Fhkl = 0 N fl tiNo reflections 12
  • 14. Fhkl for L12 Crystal Structure • Atom coordinate(s) u,v,w: – 0,0,0; A B 2 ( ) 1 i j i N i hu kv lw hkl i i F f e       0,0,0; – ½,½,0; – ½,0,½; A – 0,½,½.      2 2 22 (0) 2 2 2 2 2 2 h k h l k li i ii           2 (0) 2 2 2 2 2 2 A B B B i F f e f e f e f e hkl      14  ( ) ( ) ( ) A B i h k i h l i k l F f f e e e hkl         
  • 15. Fhkl for L12 Crystal Structure  ( ) ( ) ( ) A B i h k i h l i k l F f f e e e hkl          (1 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB (1 1 0) Fhkl = fA + fB(1-1-1) = fA – fB A B (1 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 0 0) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 1 0) Fhkl = fA + fB(-1+1-1) = fA – fB(2 1 0) Fhkl fA fB( 1 1 1) fA fB (2 2 0) Fhkl = fA + fB(1+1+1) = fA +3 fB (2 2 1) Fhkl = fA + fB(1-1-1) = fA – fB (3 0 0) Fhkl = fA + fB(-1-1+1) = fA – fB (3 1 0) Fhkl = fA + fB(1-1-1) = fA – fB (3 1 1) Fhkl = fA + fB(1+1+1) = fA +3 fB 15 (3 1 1) Fhkl fA + fB(1+1+1) fA +3 fB (2 2 2) Fhkl = fA + fB(1+1+1) = fA +3 fB
  • 16. Intensity (%) 100 (111) Example of XRD pattern from a material with an L12 crystal structure A B 80 90 100 A B 60 70 80 40 50 60 (200) 30 40 (220) (311) 2 θ (°) 10 20 (100) (110) (210) (211) (221) (300) (310) (222) (320) (321) 16 ( ) 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 0 ( ) ( )
  • 17. Fhkl for MoSi2 • Atom positions: – Mo atoms at 0,0,0; ½,½,½ Si t t 0 0 0 0 ½ ½ ½ ½ ½ ½ 1/3 c – Si atoms at 0,0,z; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3 – MoSi2 is actually body centered tetragonal with a = 3.20 Å and c = 7.86 Å z c c ac x y x y z xy z b x y z a b a b ab Viewed down z-axis 17 a a Viewed down x-axis Viewed down y-axis
  • 18. Fhkl for MoSi2 Substitute in atom positions: ( )2 1       i j i N i hu kv lw hkl i i F f e • Mo atoms at 0,0,0; ½,½,½ • Si atoms at 0,0, ; 0,0,z; ½,½,½+z; ½,½,½-z; z=1/3      5   h k l h k l h k ll l           52 2 22 ( ) 2 ( )2 (0) 2 2 2 2 2 6 2 2 63 3 5                                    h k l h k l h k ll li i ii ii F f e f e f e f e f e f e hkl Mo Mo Si Si Si Si l ll l h k h k     52 ( ) 2 ( ) 3 33 31                            l ll l i h k i h ki ii h k l F f e f e e e e Mo Si Now we can plug in different values for h k l to determine the structure factor. F h k l 1 0 0• For h k l = 1 0 0        5(0) (0)(0) (0) 3 33 3 1 0 1 02 ( ) 2 ( )1 0 0 2 1 0 (1 1) (1 1 1 1) 0                           i ii ii hkl Mo Si hkl Mo Si F f e f e e e e F f f 18 2 ( ) ( ) You will soon learn that intensity is proportional to ; there is NO REFLECTION! Mo S l i hkF f f
  • 19. Now we can plug in different values for h k l to determine the structure factor Fhkl for MoSi2 – cont’d Now we can plug in different values for h k l to determine the structure factor. • For h k l = 0 0 1        5(1) (1) 1 1 3 33 3 0 0 0 02 ( ) 2 ( )0 0 10                   i ii ii hkl Mo SiF f e e f e e e e 22 3(1 ) (2 ( ) ) (1 1) ( 1 1) 0              i i Mo Si Mo si f e f COS e f f • For h k l = 1 1 0 2 0 NO REFLECTION!hklF          1 1 0 1 1 0 1 1 00 2 (0) 2 (0) 2 (0) (0) 2 2 (1 ) ( ) (2) (4)                            i i ii i hkl Mo Si i i i Mo Si Mo si F f e e f e e e e f e f e e e e f f If you continue for different h k l combinations trends will emerge this will lead you 2 POSITIVE! YOU WILL SEE A REFLECTION  hklF 19 • If you continue for different h k l combinations… trends will emerge… this will lead you to the rules for diffraction… h + k + l = even
  • 20. 100 (103) 80 90 (110) MoSi2 CuKα radiation %) 60 70 (101) (110) Intensity( 50 I 30 40 (002) (213) 10 20 (112) (200) (202) (211) (116) (301) (206) (303) 2020 30 40 50 60 70 80 90 100 110 120 2θ (°) 0 10 (006) (204) (222) (301) (303) (312) (314)
  • 21. Fhkl for MoSi2 – cont’d 2000 JCPDS International Centre for Diffraction Data All rights reserved 21 2000 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.1
  • 22. Structure Factor (Fhkl) for HCP 2 ( )i j i N i hu kv lw F f     • Describes how atomic arrangement (uvw) ( ) 1 i j i hkl i i F f e    • Describes how atomic arrangement (uvw) influences the intensity of the scattered beam. i.e., • It tells us which reflections (i.e., peaks, hkl) to expect in a diffraction pattern from a given crystal structure with atoms located at positions u v w 22 structure with atoms located at positions u,v,w.
  • 23. • In HCP crystals (like Ru Zn Ti and Mg) the• In HCP crystals (like Ru, Zn, Ti, and Mg) the lattice point coordinates are: – 0 0 0 – 1 2 1 3 3 2 • Therefore, the structure factor becomes: 2 2 h k l i      2 3 3 2 1 i hkl iF f e               
  • 24. • We simplify this expression by letting:p y p y g 2 1 3 2 h k g    which reduces the structure factor to:  2 1 ig hkl iF f e    • We can simplify this once more using:  1hkl iF f e from which we find: 2ix ix 2cosix ix e e x  2 2 2 2 4 cos h k l F f     4 cos 3 2 hkl iF f     
  • 25. Selection rules for HCP 0 when 2 3 and oddh k n l   2 2 2 when 2 3 1 and even 3 when 2 3 1 and odd i hkl f h k n l F f h k n l             2 3 when 2 3 1 and odd 4 when 2 3 and even i i f h k n l f h k n l        For your HW problem, you will need these things to do the structure factor calculation for Ru.  HINT: It might save you some time if you already had the ICDD card for Ru.ad t e C ca d o u
  • 26. List of selection rules for different crystals Crystal Type Bravais Lattice Reflections Present Reflections Absent Simple Primitive, P Any h,k,l Nonep , y Body-centered Body centered, I h+k+l = even h+k+l = odd Face-centered Face-centered, F h,k,l unmixed h,k,l mixed NaCl FCC h,k,l unmixed h,k,l mixed Zincblende FCC Same as FCC, but if all even and h+k+l4N then absent h,k,l mixed and if all even and h+k+l4N then absent Base-centered Base-centered h,k both even or both odd h,k mixed Hexagonal close-packed Hexagonal h+2k=3N with l even h+2k=3N1 with l odd h+2k=3N1 with l even h+2k=3N with l odd 26
  • 27. What about solid solution alloys? • If the alloys lack long range order, then youIf the alloys lack long range order, then you must average the atomic scattering factor. falloy =xAfA + xBfB where xn is an atomic fraction for the atomic iconstituent 27
  • 28. Exercises • For CaF2 calculate the structure factor and determine the selection rules for alloweddetermine the selection rules for allowed reflections. 28