SlideShare a Scribd company logo
İÇERİK
2
1. ÇALIŞMANIN AMACI
2. LİTERATÜR ARAŞTIRMASI
3. SİSTEMİN MATEMATİKSEL MODELİ
3.1 EYLEYİCİ MODELİ
3.2 SİSTEMİN DİNAMİK DENKLEMLERİ
3.3 SİSTEMİN KİNEMATİK DENKLEMLERİ
4. PID KONTROL
5. SONUÇLAR
6. GELECEK ÇALIŞMALAR
1. ÇALIŞMANIN AMACI
Nano uydu prototipi üzerine yerleştirilmiş 4 adet tepki tekerleği ve atalet algılayıcılarıyla
1. Uydunun yönelim kontrolünün yapılabileceği
2. Farklı kontrolcülerin kullanıcı tarafından tasarlanarak simülasyon ortamında testlerinin yapılabileceği
3. Gerçek sistem üzerinde yapılan deneyler ile simülasyon sonuçlarının doğrulanabileceği bir sistemin
Üretilmeden önceki ilk benzetim çalışması ve sistemin doğrulanması.
3
2. LİTERATÜR ARAŞTIRMASI
4
2. LİTERATÜR ARAŞTIRMASI
İSTERLER
• Taşınabilir
• Tek parça
• Sök-taka müsait
• Güç kaynağından bağımsız
• Uzaktan erişime olanak sağlayan
5
3. SİSTEMİN MATEMATİKSEL MODELİ
6
• Koordinat sistemi laboratuvar koşullarına göre tanımlandı. (fixed inertial reference
coordinate system)
• X ve Y eksenleri için 2, Z – ekseni için 4 motor çalışmaktadır.
𝑇𝐶𝑥
𝑇𝐶𝑦
𝑇𝐶𝑧
=
𝑐𝑜𝑠θ 0 −𝑐𝑜𝑠θ 0
0 𝑐𝑜𝑠θ 0 −𝑐𝑜𝑠θ
𝑠𝑖𝑛θ 𝑠𝑖𝑛θ 𝑠𝑖𝑛θ 𝑠𝑖𝑛θ
𝐷𝑎ğı𝑡ı𝑚 𝑀𝑎𝑡𝑟𝑖𝑠𝑖
𝑇1
𝑇2
𝑇3
𝑇4
(1)
𝑇𝐶𝑥
𝑐𝑜𝑠θ
= 𝑇1 − 𝑇3 (2)
𝑇𝐶𝑦
𝑐𝑜𝑠θ
= 𝑇2 − 𝑇4 (3)
𝑇𝐶𝑧
𝑠𝑖𝑛θ
= 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 (4)
3.1 EYLEYİCİ MODELİ
7
Elektriksel Kısım:
Kirchhoff’s Voltaj Kanunu:
𝑣(𝑡) = 𝑣𝑅(𝑡) + 𝑣𝐿(𝑡) + 𝑣𝑒𝑚𝑓(𝑡)
𝑣(𝑡) = 𝑅𝑖(𝑡) + 𝐿
𝑑𝑖 𝑡
𝑑𝑡
+ 𝐾𝑏𝜔(𝑡)
Mekanik Kısım:
𝑇𝑚(𝑡) = 𝐾𝑓𝜔(𝑡) + 𝐽𝑚
𝑑𝜔(𝑡)
𝑑𝑡
+ 𝑇𝐿 = 𝑖(𝑡)𝐾𝑡
v t = R
Tm t
Kt
+
L
Kt
dTm t
dt
+ Kbω t
Tm s = Kfθ s s + Jmθ s s2
+ Jwθ s s2
= θ s Kfs + (Jm + Jw)s2
= I(s)Kt
I s =
Tm s
Kt
V(s) =
R
Kt
Tm s +
L
Kt
Tm s s + Kbθ s s
θ s s =
Tm(s)
Kf+Jms
V s =
R
Kt
Tm s +
Ls
Kt
Tm s +
Kb
Jms+Kf
Tm s
Tm s
V(s)
=
( Jm+Jw s+Kf)Kt
R Jm+Jw s+Kf +Ls Jm+Jw s+Kf +KbKt
Tm s
V(s)
=
3.287s+151.2
0.1384s2+1979s+180994
Yapılan hesaplamalar sonucu DC Motor’s transfer fonksiyonu
𝑻𝒎(𝒔)
𝑽(𝒔)
elde edilmiştir
8
3.1 EYLEYİCİ MODELİ
9
3.1 EYLEYİCİ MODELİ
10
𝑇𝑅𝑊 = ℎ𝑅𝑊 + 𝜔𝐵 𝑥 ℎ𝑅𝑊
𝑇𝑅𝑊 = 𝐼𝑅𝑊𝜔𝑅𝑊 + 𝜔𝐵 𝑥 𝐼𝑅𝑊𝜔𝑅𝑊
3.1 EYLEYİCİ MODELİ
3.2 SİSTEMİN DİNAMİK DENKLEMLERİ
τ𝑅𝑊 − τ𝐵 = 0
𝐼𝑅𝑊𝜔𝑅𝑊 + 𝜔𝐵 𝑥 𝐼𝑅𝑊𝜔𝑅𝑊 − 𝐼𝜔𝐵 + 𝜔𝐵 𝑥 𝐼𝜔𝐵 = 0
𝜔𝐵 = I−1
(𝐼𝑅𝑊𝜔𝑅𝑊 + 𝜔𝐵 𝑥 𝐼𝑅𝑊𝜔𝑅𝑊 − 𝜔𝐵 𝑥 𝐼𝜔𝐵 )
𝑀 = ℎ𝐼 = ℎ𝐵 + 𝜔 𝑥 ℎ
𝑀𝑥 = 𝐼𝑥𝜔𝑥 + 𝜔𝑦𝜔𝑧(𝐼𝑧 − 𝐼𝑦)
𝑀𝑦 = 𝐼𝑦𝜔𝑦 + 𝜔𝑥𝜔𝑧(𝐼𝑥 − 𝐼𝑧)
𝑀𝑧 = 𝐼𝑧𝜔𝑧 + 𝜔𝑥𝜔𝑦(𝐼𝑦 − 𝐼𝑥)
Sistemin rijit olduğu ve tepki tekerlekleri dışında hareket eden bir elemanın olmadığı varsayılmıştır. Sistemin dinamik denklemi,
Euler'in hareket denklemi ile tanımlanır. Euler’in denklemleri iki açısal hızın çarpımından dolayı doğrusal değildir. Tepki
tekerleklerinin ürettiği toplam tork dinamik hesaplamalara girdi olarak verilecektir.
11
𝑅𝑥 𝜑 =
1 0 0
0 cos(𝜑) sin(𝜑)
0 −sin(𝜑) cos(𝜑)
𝑅𝑦 𝜃 =
cos(𝜃) 0 −sin(𝜃)
0 1 0
sin(𝜃) 0 cos(𝜃)
𝑅𝑧 𝜓 =
cos(𝜓) sin(𝜓) 0
−sin(𝜓) cos(𝜓) 0
0 0 0
𝑥1
y1
z1
=
1 0 0
0 cos(𝜑) sin(𝜑)
0 −sin(𝜑) cos(𝜑)
X
Y
Z
= 𝑅𝑥 𝜑
X
Y
Z
x2
y2
z2
=
cos(𝜃) 0 −sin(𝜃)
0 1 0
sin(𝜃) 0 cos(𝜃)
𝑥1
y1
z1
= 𝑅𝑦 𝜃
𝑥1
y1
z1
x3
y3
z3
=
cos(𝜓) sin(𝜓) 0
−sin(𝜓) cos(𝜓) 0
0 0 0
𝑥2
y2
z2
= 𝑅𝑧 𝜓
𝑥2
y2
z2
x
y
z
=
x3
y3
z3
= 𝑅𝑧 𝜓 𝑅𝑦 𝜃 𝑅𝑥 𝜑
X
Y
Z
𝑅𝑥𝑦𝑧 = 𝑅𝑧 𝜓 𝑅𝑦 𝜃 𝑅𝑥 𝜑 =
cos(𝜃)cos(𝜓) − cos 𝜑 sin 𝜓 + sin 𝜑 sin(𝜃)cos(𝜓) −sin 𝜑 sin 𝜓 + cos 𝜑 sin(𝜃)cos(𝜓)
cos(𝜃)sin(𝜓) cos 𝜑 cos 𝜓 + sin 𝜑 sin(𝜃)sin(𝜓) −sin 𝜑 cos 𝜓 + cos 𝜑 sin(𝜃)cos(𝜓)
−sin(𝜃) sin(𝜑)cos(𝜃) cos(𝜑)cos(𝜃)
Euler Açıları: Quaternion:
𝒒 = 𝑞4 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3 ≡ 𝑞4 + 𝑞
𝑑
𝑑𝑡
𝐪 =
1
2
𝛀′ 𝐪
𝛀′ =
0 𝜔𝑧 −𝜔𝑦 𝜔𝑥
−𝜔𝑧 0 𝜔𝑥 𝜔𝑦
𝜔𝑦 −𝜔𝑥 0 𝜔𝑧
−𝜔𝑥 −𝜔𝑦 −𝜔𝑧 0
𝑞 = 𝑞4 𝑞1 𝑞2 𝑞3
𝑇 (unitless), Θ = [φ θ ψ]𝑇
𝑞4 =
1
2
𝑐𝑜𝑠φ 𝑐𝑜𝑠θ 𝑐𝑜𝑠ψ − 𝑠𝑖𝑛φ 𝑠𝑖𝑛θ 𝑠𝑖𝑛ψ
𝑞1 =
1
2
𝑐𝑜𝑠φ 𝑠𝑖𝑛θ 𝑠𝑖𝑛ψ − 𝑠𝑖𝑛φ 𝑐𝑜𝑠θ 𝑐𝑜𝑠ψ
𝑞2 =
1
2
𝑐𝑜𝑠φ sinθ 𝑐𝑜𝑠ψ − 𝑠𝑖𝑛φ 𝑐𝑜𝑠θ 𝑠𝑖𝑛ψ
𝑞3 =
1
2
𝑐𝑜𝑠φ 𝑐𝑜𝑠θ 𝑠𝑖𝑛ψ − 𝑠𝑖𝑛φ 𝑠𝑖𝑛θ 𝑐𝑜𝑠ψ
𝜑 = arctan
−2(𝑞2𝑞3−𝑞4𝑞1)
𝑞4
2−𝑞1
2−𝑞2
2+𝑞3
2
θ = arcsin 2(𝑞1𝑞3 + 𝑞4𝑞2)
ψ = arctan
−2(𝑞2𝑞1−𝑞4𝑞3)
𝑞4
2+𝑞1
2−𝑞2
2−𝑞3
2
3.3 SİSTEMİN KİNEMATİK DENKLEMLERİ
12
4. PID KONTROL
13
𝑦 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒 𝑡
𝑑𝑡
𝑌 𝑠 = 𝐾𝑝𝐸 𝑠 + 𝐾𝑖
𝐸 𝑠
𝑠
+ 𝐾𝑑𝐸 𝑠 𝑠
𝑌 𝑠
𝐸 𝑠
=
𝐾𝑝𝑠 + 𝐾𝑖 + 𝐾𝑑𝑠2
𝑠
PID kontrolcü 3 eksen için ayrı ayrı tasarlanmıştır. Kontrolcü tasarlanırken zaman bölgesinde seçilen kriterler göz önünde
bulundurulmuştur. Oturma zamanının 10 saniyeden az ve maksimum aşım yüzdesinin %30 dan düşük olması kriterleri
konulmuştur.
5. SONUÇLAR
14
X Ekseni Y Ekseni Z Ekseni
Kp 0.0013 0.0013 0.35
Ki 0.0001 0.0001 0.002
Kd 0.3 0.3 11.83
Oturma Zamanı (ts) 5.14 sn. 5.14 sn. 6.63 sn.
% Aşım % 22.3 % 22.3 % 12.9
5. SONUÇLAR
15
SONUÇLAR
16
SONUÇLAR
17
Uzayda hareket konusunun somut bir şekilde anlaşılabilmesini sağlaması için üretilecek olan uydu yönelim
kontrolü yer testi düzeneğinin üretilmeden önceki ön tasarım ve kontrol benzetimi çalışması başarılı olarak
gerçekleştirilmiştir.
6. GELECEK ÇALIŞMALAR
18
• Üretim
• Benzetim çalışmasının sonuçları ile gerçek zamanlı systemin sonuçlarının doğrulanması
• Hataya Toleranslı Kontrol Sistemi tasarımı
• H∞, Sliding Mode Controller SMC , Model Predictive Controller (MPC) tasarımı
KATILIMINIZ İÇİN TEŞEKKÜR EDERİZ

More Related Content

What's hot

Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond Brunkow
 
Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)
Salim Al Oufi
 
Inverted Pendulum Control System
Inverted Pendulum Control SystemInverted Pendulum Control System
Inverted Pendulum Control System
Aniket Govindaraju
 
Inverted Pendulum Control: A Brief Overview
Inverted Pendulum Control: A Brief OverviewInverted Pendulum Control: A Brief Overview
Inverted Pendulum Control: A Brief Overview
IJMER
 
Linear quadratic regulator and pole placement for stabilizing a cart inverted...
Linear quadratic regulator and pole placement for stabilizing a cart inverted...Linear quadratic regulator and pole placement for stabilizing a cart inverted...
Linear quadratic regulator and pole placement for stabilizing a cart inverted...
journalBEEI
 
report
reportreport
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
Amritesh Maitra
 
Thesis presentation on inverted pendulum
Thesis presentation on inverted pendulum Thesis presentation on inverted pendulum
Thesis presentation on inverted pendulum
Nowab Md. Aminul Haq
 
State space modelling of a quadcopter
State space modelling of a quadcopterState space modelling of a quadcopter
State space modelling of a quadcopter
SrinibashSahoo3
 
Optimal and pid controller for controlling camera’s position in unmanned aeri...
Optimal and pid controller for controlling camera’s position in unmanned aeri...Optimal and pid controller for controlling camera’s position in unmanned aeri...
Optimal and pid controller for controlling camera’s position in unmanned aeri...
Zac Darcy
 
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
IJECEIAES
 
1 mrac for inverted pendulum
1 mrac for inverted pendulum1 mrac for inverted pendulum
1 mrac for inverted pendulum
nazir1988
 
Application of neuro fuzzy controller in torque ripple minimization of vec
Application of neuro fuzzy controller in torque ripple minimization of vecApplication of neuro fuzzy controller in torque ripple minimization of vec
Application of neuro fuzzy controller in torque ripple minimization of vec
IAEME Publication
 
2_DOF_Inverted_Pendulum_Laboratory_Session
2_DOF_Inverted_Pendulum_Laboratory_Session2_DOF_Inverted_Pendulum_Laboratory_Session
2_DOF_Inverted_Pendulum_Laboratory_Session
Peixi Gong
 
Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonl...
Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonl...Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonl...
Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonl...
IJPEDS-IAES
 
Robust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsRobust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB Systems
Sina Kuseyri
 
The stabilization of forced inverted pendulum via fuzzy controller
The stabilization of forced inverted pendulum via fuzzy controllerThe stabilization of forced inverted pendulum via fuzzy controller
The stabilization of forced inverted pendulum via fuzzy controller
eSAT Journals
 
17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf
Mouli Reddy
 
IRJET- A Review on Design and Construction of a One-Axis Sun-Tracking System
IRJET- A Review on Design and Construction of a One-Axis Sun-Tracking SystemIRJET- A Review on Design and Construction of a One-Axis Sun-Tracking System
IRJET- A Review on Design and Construction of a One-Axis Sun-Tracking System
IRJET Journal
 
07 15 sep14 6532 13538-1-rv-edit_
07 15 sep14 6532 13538-1-rv-edit_07 15 sep14 6532 13538-1-rv-edit_
07 15 sep14 6532 13538-1-rv-edit_
IAES-IJPEDS
 

What's hot (20)

Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15
 
Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)Electromagnetic Levitation (control project)
Electromagnetic Levitation (control project)
 
Inverted Pendulum Control System
Inverted Pendulum Control SystemInverted Pendulum Control System
Inverted Pendulum Control System
 
Inverted Pendulum Control: A Brief Overview
Inverted Pendulum Control: A Brief OverviewInverted Pendulum Control: A Brief Overview
Inverted Pendulum Control: A Brief Overview
 
Linear quadratic regulator and pole placement for stabilizing a cart inverted...
Linear quadratic regulator and pole placement for stabilizing a cart inverted...Linear quadratic regulator and pole placement for stabilizing a cart inverted...
Linear quadratic regulator and pole placement for stabilizing a cart inverted...
 
report
reportreport
report
 
12EE62R11_Final Presentation
12EE62R11_Final Presentation12EE62R11_Final Presentation
12EE62R11_Final Presentation
 
Thesis presentation on inverted pendulum
Thesis presentation on inverted pendulum Thesis presentation on inverted pendulum
Thesis presentation on inverted pendulum
 
State space modelling of a quadcopter
State space modelling of a quadcopterState space modelling of a quadcopter
State space modelling of a quadcopter
 
Optimal and pid controller for controlling camera’s position in unmanned aeri...
Optimal and pid controller for controlling camera’s position in unmanned aeri...Optimal and pid controller for controlling camera’s position in unmanned aeri...
Optimal and pid controller for controlling camera’s position in unmanned aeri...
 
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Ind...
 
1 mrac for inverted pendulum
1 mrac for inverted pendulum1 mrac for inverted pendulum
1 mrac for inverted pendulum
 
Application of neuro fuzzy controller in torque ripple minimization of vec
Application of neuro fuzzy controller in torque ripple minimization of vecApplication of neuro fuzzy controller in torque ripple minimization of vec
Application of neuro fuzzy controller in torque ripple minimization of vec
 
2_DOF_Inverted_Pendulum_Laboratory_Session
2_DOF_Inverted_Pendulum_Laboratory_Session2_DOF_Inverted_Pendulum_Laboratory_Session
2_DOF_Inverted_Pendulum_Laboratory_Session
 
Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonl...
Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonl...Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonl...
Adaptive Fuzzy Integral Sliding-Mode Regulator for Induction Motor Using Nonl...
 
Robust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsRobust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB Systems
 
The stabilization of forced inverted pendulum via fuzzy controller
The stabilization of forced inverted pendulum via fuzzy controllerThe stabilization of forced inverted pendulum via fuzzy controller
The stabilization of forced inverted pendulum via fuzzy controller
 
17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf17.pmsm speed sensor less direct torque control based on ekf
17.pmsm speed sensor less direct torque control based on ekf
 
IRJET- A Review on Design and Construction of a One-Axis Sun-Tracking System
IRJET- A Review on Design and Construction of a One-Axis Sun-Tracking SystemIRJET- A Review on Design and Construction of a One-Axis Sun-Tracking System
IRJET- A Review on Design and Construction of a One-Axis Sun-Tracking System
 
07 15 sep14 6532 13538-1-rv-edit_
07 15 sep14 6532 13538-1-rv-edit_07 15 sep14 6532 13538-1-rv-edit_
07 15 sep14 6532 13538-1-rv-edit_
 

Similar to Modelling and Control of Ground Test Set-up of Attitude of Satellite

MS_thesis_presentation
MS_thesis_presentationMS_thesis_presentation
MS_thesis_presentation
Deepak Agarwal
 
Instrumentation and Automation of Mechatronic
Instrumentation and Automation of MechatronicInstrumentation and Automation of Mechatronic
Instrumentation and Automation of Mechatronic
IJERA Editor
 
srd
srdsrd
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
ijccmsjournal
 
P73
P73P73
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
ijccmsjournal
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
ijccmsjournal
 
Robust Adaptive Controller for Uncertain Nonlinear Systems
Robust Adaptive Controller for Uncertain Nonlinear SystemsRobust Adaptive Controller for Uncertain Nonlinear Systems
Robust Adaptive Controller for Uncertain Nonlinear Systems
IJITCA Journal
 
Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
rinzindorjej
 
Design of imc based controller for industrial purpose
Design of imc based controller for industrial purposeDesign of imc based controller for industrial purpose
Design of imc based controller for industrial purpose
375ankit
 
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
IOSR Journals
 
The International Journal of Computational Science, Information Technology an...
The International Journal of Computational Science, Information Technology an...The International Journal of Computational Science, Information Technology an...
The International Journal of Computational Science, Information Technology an...
rinzindorjej
 
Model Reference Adaptation Systems (MRAS)
Model Reference Adaptation Systems (MRAS)Model Reference Adaptation Systems (MRAS)
Model Reference Adaptation Systems (MRAS)
Mohamed Mohamed El-Sayed
 
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
ijctcm
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
ijcsitcejournal
 
Sliding mode control
Sliding mode controlSliding mode control
Sliding mode control
swati singh
 
B010511015
B010511015B010511015
B010511015
IOSR Journals
 
Project ppt 18 june.pptx
Project ppt 18 june.pptxProject ppt 18 june.pptx
Project ppt 18 june.pptx
PawanTiwari672779
 
KNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptKNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.ppt
SherAli984263
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Belinda Marchand
 

Similar to Modelling and Control of Ground Test Set-up of Attitude of Satellite (20)

MS_thesis_presentation
MS_thesis_presentationMS_thesis_presentation
MS_thesis_presentation
 
Instrumentation and Automation of Mechatronic
Instrumentation and Automation of MechatronicInstrumentation and Automation of Mechatronic
Instrumentation and Automation of Mechatronic
 
srd
srdsrd
srd
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
 
P73
P73P73
P73
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
 
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEMSYNCHRONIZATION OF A FOUR-WING  HYPERCHAOTIC SYSTEM
SYNCHRONIZATION OF A FOUR-WING HYPERCHAOTIC SYSTEM
 
Robust Adaptive Controller for Uncertain Nonlinear Systems
Robust Adaptive Controller for Uncertain Nonlinear SystemsRobust Adaptive Controller for Uncertain Nonlinear Systems
Robust Adaptive Controller for Uncertain Nonlinear Systems
 
Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
Adaptive Type-2 Fuzzy Second Order Sliding Mode Control for Nonlinear Uncerta...
 
Design of imc based controller for industrial purpose
Design of imc based controller for industrial purposeDesign of imc based controller for industrial purpose
Design of imc based controller for industrial purpose
 
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
 
The International Journal of Computational Science, Information Technology an...
The International Journal of Computational Science, Information Technology an...The International Journal of Computational Science, Information Technology an...
The International Journal of Computational Science, Information Technology an...
 
Model Reference Adaptation Systems (MRAS)
Model Reference Adaptation Systems (MRAS)Model Reference Adaptation Systems (MRAS)
Model Reference Adaptation Systems (MRAS)
 
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
Integral Backstepping Sliding Mode Control of Chaotic Forced Van Der Pol Osci...
 
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
CHAOS CONTROL VIA ADAPTIVE INTERVAL TYPE-2 FUZZY NONSINGULAR TERMINAL SLIDING...
 
Sliding mode control
Sliding mode controlSliding mode control
Sliding mode control
 
B010511015
B010511015B010511015
B010511015
 
Project ppt 18 june.pptx
Project ppt 18 june.pptxProject ppt 18 june.pptx
Project ppt 18 june.pptx
 
KNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptKNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.ppt
 
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...  Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
Discrete Nonlinear Optimal Control of S/C Formations Near The L1 and L2 poi...
 

Recently uploaded

BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
HODECEDSIET
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
zubairahmad848137
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 

Recently uploaded (20)

BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
 
International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 

Modelling and Control of Ground Test Set-up of Attitude of Satellite

  • 1.
  • 2. İÇERİK 2 1. ÇALIŞMANIN AMACI 2. LİTERATÜR ARAŞTIRMASI 3. SİSTEMİN MATEMATİKSEL MODELİ 3.1 EYLEYİCİ MODELİ 3.2 SİSTEMİN DİNAMİK DENKLEMLERİ 3.3 SİSTEMİN KİNEMATİK DENKLEMLERİ 4. PID KONTROL 5. SONUÇLAR 6. GELECEK ÇALIŞMALAR
  • 3. 1. ÇALIŞMANIN AMACI Nano uydu prototipi üzerine yerleştirilmiş 4 adet tepki tekerleği ve atalet algılayıcılarıyla 1. Uydunun yönelim kontrolünün yapılabileceği 2. Farklı kontrolcülerin kullanıcı tarafından tasarlanarak simülasyon ortamında testlerinin yapılabileceği 3. Gerçek sistem üzerinde yapılan deneyler ile simülasyon sonuçlarının doğrulanabileceği bir sistemin Üretilmeden önceki ilk benzetim çalışması ve sistemin doğrulanması. 3
  • 5. 2. LİTERATÜR ARAŞTIRMASI İSTERLER • Taşınabilir • Tek parça • Sök-taka müsait • Güç kaynağından bağımsız • Uzaktan erişime olanak sağlayan 5
  • 6. 3. SİSTEMİN MATEMATİKSEL MODELİ 6 • Koordinat sistemi laboratuvar koşullarına göre tanımlandı. (fixed inertial reference coordinate system) • X ve Y eksenleri için 2, Z – ekseni için 4 motor çalışmaktadır. 𝑇𝐶𝑥 𝑇𝐶𝑦 𝑇𝐶𝑧 = 𝑐𝑜𝑠θ 0 −𝑐𝑜𝑠θ 0 0 𝑐𝑜𝑠θ 0 −𝑐𝑜𝑠θ 𝑠𝑖𝑛θ 𝑠𝑖𝑛θ 𝑠𝑖𝑛θ 𝑠𝑖𝑛θ 𝐷𝑎ğı𝑡ı𝑚 𝑀𝑎𝑡𝑟𝑖𝑠𝑖 𝑇1 𝑇2 𝑇3 𝑇4 (1) 𝑇𝐶𝑥 𝑐𝑜𝑠θ = 𝑇1 − 𝑇3 (2) 𝑇𝐶𝑦 𝑐𝑜𝑠θ = 𝑇2 − 𝑇4 (3) 𝑇𝐶𝑧 𝑠𝑖𝑛θ = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 (4)
  • 7. 3.1 EYLEYİCİ MODELİ 7 Elektriksel Kısım: Kirchhoff’s Voltaj Kanunu: 𝑣(𝑡) = 𝑣𝑅(𝑡) + 𝑣𝐿(𝑡) + 𝑣𝑒𝑚𝑓(𝑡) 𝑣(𝑡) = 𝑅𝑖(𝑡) + 𝐿 𝑑𝑖 𝑡 𝑑𝑡 + 𝐾𝑏𝜔(𝑡) Mekanik Kısım: 𝑇𝑚(𝑡) = 𝐾𝑓𝜔(𝑡) + 𝐽𝑚 𝑑𝜔(𝑡) 𝑑𝑡 + 𝑇𝐿 = 𝑖(𝑡)𝐾𝑡 v t = R Tm t Kt + L Kt dTm t dt + Kbω t Tm s = Kfθ s s + Jmθ s s2 + Jwθ s s2 = θ s Kfs + (Jm + Jw)s2 = I(s)Kt I s = Tm s Kt V(s) = R Kt Tm s + L Kt Tm s s + Kbθ s s θ s s = Tm(s) Kf+Jms V s = R Kt Tm s + Ls Kt Tm s + Kb Jms+Kf Tm s Tm s V(s) = ( Jm+Jw s+Kf)Kt R Jm+Jw s+Kf +Ls Jm+Jw s+Kf +KbKt Tm s V(s) = 3.287s+151.2 0.1384s2+1979s+180994 Yapılan hesaplamalar sonucu DC Motor’s transfer fonksiyonu 𝑻𝒎(𝒔) 𝑽(𝒔) elde edilmiştir
  • 10. 10 𝑇𝑅𝑊 = ℎ𝑅𝑊 + 𝜔𝐵 𝑥 ℎ𝑅𝑊 𝑇𝑅𝑊 = 𝐼𝑅𝑊𝜔𝑅𝑊 + 𝜔𝐵 𝑥 𝐼𝑅𝑊𝜔𝑅𝑊 3.1 EYLEYİCİ MODELİ
  • 11. 3.2 SİSTEMİN DİNAMİK DENKLEMLERİ τ𝑅𝑊 − τ𝐵 = 0 𝐼𝑅𝑊𝜔𝑅𝑊 + 𝜔𝐵 𝑥 𝐼𝑅𝑊𝜔𝑅𝑊 − 𝐼𝜔𝐵 + 𝜔𝐵 𝑥 𝐼𝜔𝐵 = 0 𝜔𝐵 = I−1 (𝐼𝑅𝑊𝜔𝑅𝑊 + 𝜔𝐵 𝑥 𝐼𝑅𝑊𝜔𝑅𝑊 − 𝜔𝐵 𝑥 𝐼𝜔𝐵 ) 𝑀 = ℎ𝐼 = ℎ𝐵 + 𝜔 𝑥 ℎ 𝑀𝑥 = 𝐼𝑥𝜔𝑥 + 𝜔𝑦𝜔𝑧(𝐼𝑧 − 𝐼𝑦) 𝑀𝑦 = 𝐼𝑦𝜔𝑦 + 𝜔𝑥𝜔𝑧(𝐼𝑥 − 𝐼𝑧) 𝑀𝑧 = 𝐼𝑧𝜔𝑧 + 𝜔𝑥𝜔𝑦(𝐼𝑦 − 𝐼𝑥) Sistemin rijit olduğu ve tepki tekerlekleri dışında hareket eden bir elemanın olmadığı varsayılmıştır. Sistemin dinamik denklemi, Euler'in hareket denklemi ile tanımlanır. Euler’in denklemleri iki açısal hızın çarpımından dolayı doğrusal değildir. Tepki tekerleklerinin ürettiği toplam tork dinamik hesaplamalara girdi olarak verilecektir. 11
  • 12. 𝑅𝑥 𝜑 = 1 0 0 0 cos(𝜑) sin(𝜑) 0 −sin(𝜑) cos(𝜑) 𝑅𝑦 𝜃 = cos(𝜃) 0 −sin(𝜃) 0 1 0 sin(𝜃) 0 cos(𝜃) 𝑅𝑧 𝜓 = cos(𝜓) sin(𝜓) 0 −sin(𝜓) cos(𝜓) 0 0 0 0 𝑥1 y1 z1 = 1 0 0 0 cos(𝜑) sin(𝜑) 0 −sin(𝜑) cos(𝜑) X Y Z = 𝑅𝑥 𝜑 X Y Z x2 y2 z2 = cos(𝜃) 0 −sin(𝜃) 0 1 0 sin(𝜃) 0 cos(𝜃) 𝑥1 y1 z1 = 𝑅𝑦 𝜃 𝑥1 y1 z1 x3 y3 z3 = cos(𝜓) sin(𝜓) 0 −sin(𝜓) cos(𝜓) 0 0 0 0 𝑥2 y2 z2 = 𝑅𝑧 𝜓 𝑥2 y2 z2 x y z = x3 y3 z3 = 𝑅𝑧 𝜓 𝑅𝑦 𝜃 𝑅𝑥 𝜑 X Y Z 𝑅𝑥𝑦𝑧 = 𝑅𝑧 𝜓 𝑅𝑦 𝜃 𝑅𝑥 𝜑 = cos(𝜃)cos(𝜓) − cos 𝜑 sin 𝜓 + sin 𝜑 sin(𝜃)cos(𝜓) −sin 𝜑 sin 𝜓 + cos 𝜑 sin(𝜃)cos(𝜓) cos(𝜃)sin(𝜓) cos 𝜑 cos 𝜓 + sin 𝜑 sin(𝜃)sin(𝜓) −sin 𝜑 cos 𝜓 + cos 𝜑 sin(𝜃)cos(𝜓) −sin(𝜃) sin(𝜑)cos(𝜃) cos(𝜑)cos(𝜃) Euler Açıları: Quaternion: 𝒒 = 𝑞4 + 𝒊𝑞1 + 𝒋𝑞2 + 𝒌𝑞3 ≡ 𝑞4 + 𝑞 𝑑 𝑑𝑡 𝐪 = 1 2 𝛀′ 𝐪 𝛀′ = 0 𝜔𝑧 −𝜔𝑦 𝜔𝑥 −𝜔𝑧 0 𝜔𝑥 𝜔𝑦 𝜔𝑦 −𝜔𝑥 0 𝜔𝑧 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧 0 𝑞 = 𝑞4 𝑞1 𝑞2 𝑞3 𝑇 (unitless), Θ = [φ θ ψ]𝑇 𝑞4 = 1 2 𝑐𝑜𝑠φ 𝑐𝑜𝑠θ 𝑐𝑜𝑠ψ − 𝑠𝑖𝑛φ 𝑠𝑖𝑛θ 𝑠𝑖𝑛ψ 𝑞1 = 1 2 𝑐𝑜𝑠φ 𝑠𝑖𝑛θ 𝑠𝑖𝑛ψ − 𝑠𝑖𝑛φ 𝑐𝑜𝑠θ 𝑐𝑜𝑠ψ 𝑞2 = 1 2 𝑐𝑜𝑠φ sinθ 𝑐𝑜𝑠ψ − 𝑠𝑖𝑛φ 𝑐𝑜𝑠θ 𝑠𝑖𝑛ψ 𝑞3 = 1 2 𝑐𝑜𝑠φ 𝑐𝑜𝑠θ 𝑠𝑖𝑛ψ − 𝑠𝑖𝑛φ 𝑠𝑖𝑛θ 𝑐𝑜𝑠ψ 𝜑 = arctan −2(𝑞2𝑞3−𝑞4𝑞1) 𝑞4 2−𝑞1 2−𝑞2 2+𝑞3 2 θ = arcsin 2(𝑞1𝑞3 + 𝑞4𝑞2) ψ = arctan −2(𝑞2𝑞1−𝑞4𝑞3) 𝑞4 2+𝑞1 2−𝑞2 2−𝑞3 2 3.3 SİSTEMİN KİNEMATİK DENKLEMLERİ 12
  • 13. 4. PID KONTROL 13 𝑦 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑 𝑑𝑒 𝑡 𝑑𝑡 𝑌 𝑠 = 𝐾𝑝𝐸 𝑠 + 𝐾𝑖 𝐸 𝑠 𝑠 + 𝐾𝑑𝐸 𝑠 𝑠 𝑌 𝑠 𝐸 𝑠 = 𝐾𝑝𝑠 + 𝐾𝑖 + 𝐾𝑑𝑠2 𝑠 PID kontrolcü 3 eksen için ayrı ayrı tasarlanmıştır. Kontrolcü tasarlanırken zaman bölgesinde seçilen kriterler göz önünde bulundurulmuştur. Oturma zamanının 10 saniyeden az ve maksimum aşım yüzdesinin %30 dan düşük olması kriterleri konulmuştur.
  • 14. 5. SONUÇLAR 14 X Ekseni Y Ekseni Z Ekseni Kp 0.0013 0.0013 0.35 Ki 0.0001 0.0001 0.002 Kd 0.3 0.3 11.83 Oturma Zamanı (ts) 5.14 sn. 5.14 sn. 6.63 sn. % Aşım % 22.3 % 22.3 % 12.9
  • 17. SONUÇLAR 17 Uzayda hareket konusunun somut bir şekilde anlaşılabilmesini sağlaması için üretilecek olan uydu yönelim kontrolü yer testi düzeneğinin üretilmeden önceki ön tasarım ve kontrol benzetimi çalışması başarılı olarak gerçekleştirilmiştir.
  • 18. 6. GELECEK ÇALIŞMALAR 18 • Üretim • Benzetim çalışmasının sonuçları ile gerçek zamanlı systemin sonuçlarının doğrulanması • Hataya Toleranslı Kontrol Sistemi tasarımı • H∞, Sliding Mode Controller SMC , Model Predictive Controller (MPC) tasarımı