SlideShare a Scribd company logo
1 of 55
Linearization & Robust Control of
Active Magnetic Bearing System
Project presentation By
Amit Pandey
(BT16EE010)
Under supervision of
Mr. Sukanta Debnath
(Assistant Professor NIT MIZORAM)
Department of Electrical & Electronics
Engineering
National Institute of Technology Mizoram
1
Contents
Introduction
Objective
Active Magnetic Bearing Elements
Advantages & applications
Magnetic circuit analysis
Force analysis of 1-DOF AMB
Electrical circuit analysis
State space model
Linearization of non-linear AMB System
PID Controller & AMB System
Fractional Calculus
Transfer Function of Fractional Operator
Fractional Order PID Controller
Transfer Function of FOPID
Advantage of FOPID
FOPID optimization and tuning
Simulation & Results
Conclusion & Future Work 2
OBJECTIVE
• Mathematical modelling of 1-DOF AMB
• To linearize the non-linear system of AMB
• Analyse the displacement of rotor by PID Controller
• Robust FOPID Control of AMB System
3
INTRODUCTION
• An active magnetic bearing (AMB) system supports a rotating
shaft, without any physical contact by suspending the rotor in
the air ,with an electrically controlled (or/and permanent
magnet) magnetic force.
• It is a mechatronic product which involves different fields of
engineering such as Mechanical ,Electrical ,Control System and
Computer Sciences.
4
ACTIVE MAGNETIC BEARING
ELEMENTS
• Electromagnet
• Rotor
• Sensor
• Controller
• Amplifier
Fig.1 Circuit diagram of AMB
5
ADVANTAGES OF AMB
1. No mechanical contact so there is no friction.
2. No lubrication is necessary.
3.They can run in vacuum.
4.Very high rotation speed because of no friction.
5.Magnetic bearings have very small energy losses.
6. Dynamics of rotor can be controlled
7. Long life cycle, high reliability, and economic advantages.
6
APPLICATIONS OF MAGNETIC BEARING
1. In turbomolecular pumps,
2. In long-term energy storage flywheel systems,
3. In Magnetic levitated trains
4. Used in some centrifugal compressors for chillers
5. In watt-hour meters for electrical utilities
6. In Medical devices such as blood pump
7
MAGNETIC CIRCUIT ANALYSIS
Fig.3 Equivalent Electric Circuit Representation
Fig.2 Magnetic
Circuit
8
IDEAL MAGNETIC CIRCUIT MODEL
• 𝐻. 𝑑𝑙 = 𝐽. 𝑛𝑑𝑎 (Ampere’s Law)
• 2𝐻𝑔 lg +𝐻𝑎𝑙𝑖 + 𝐻𝑠𝑙𝑠 = 𝑛ⅈ
• 𝐵 = 𝜇𝐻 𝑜𝑟 𝐻 =
𝐵
𝜇
• 2𝐵𝑔 lg +𝜇0
𝐵𝑎
𝜇𝑎
𝑙𝑎 +
𝐵𝑠
𝜇𝑠
𝑙𝑠 = 𝜇0𝑛ⅈ
• ,
Fig.4 MAGNETIC CIRCUIT 9
FORCE ANALYSIS OF 1-DOF AMB
• It can move only in Y-axis Direction.
• Notations
𝑦0 𝑚ⅈ𝑑 𝑝𝑜𝑛ⅈ𝑡
𝑚 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑟𝑜𝑡𝑜𝑟
𝐹1 𝑎𝑡𝑡𝑟𝑎𝑐𝑡ⅈ𝑣𝑒 𝑓𝑜𝑟𝑐𝑒
𝐹2 𝑎𝑡𝑡𝑟𝑎𝑐𝑡ⅈ𝑣𝑒 𝑓𝑜𝑟𝑐𝑒
𝐹
𝑔 𝑔𝑟𝑎𝑣ⅈ𝑡𝑎𝑡ⅈ𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒
Table 1 Fig.5 1 –DOF AMB 10
FORCE ANALYSIS ON ROTOR
• Applying Newton’s 2nd Law,
• 𝑚𝜘 = 𝐹1 − 𝐹2 + 𝐹
𝑔 (1)
• Energy stored in a Magnetic Field in a given
volume ‘v’ is,
• 𝑤𝜙 =
1
2 𝑉
𝐻 ⋅ 𝐵 𝑑𝑉 =
1
2
𝐵2
𝜇0
𝑑𝑉 & dv=A.dg
(2)
Fig.6 Force components 11
MATHEMATICAL DERIVATION
•
ⅆ𝑊𝜙
ⅆ𝑔
=
𝐴𝐵2
2𝜇0
(3)
•
ⅆ𝑊𝜙
ⅆ𝑔
= F (4)
• From 3rd & 4th eqn.
• F =
𝑘
2
(ⅈ/𝑔)2 (5)
12
MATHEMATICAL DERIVATION
• Now from fig.6, we conclude that,
• 𝐹1 =
𝑘
2
(ⅈ1/𝑔)2 & 𝐹2 =
𝑘
2
(ⅈ2/𝑔)2
• Now using equation (1) we get,
• 𝑦 =
𝑘
2𝑚
(ⅈ1/𝑔)2 -
𝑘
2𝑚
(ⅈ2/𝑔)2 + 𝐹
𝑔/m (6)Non Linear Differential Equation
13
ELECTRICAL CIRCUIT ANALYSIS
• e = 𝑁
ⅆ𝜙
ⅆ𝑡
(7)
• From Faraday’s Law,
• Using Krichoff’s Voltage Law,
• 𝑢1 = 𝑅ⅈ1 + 𝐿𝑠
ⅆ𝑖1
ⅆ𝑡
+ 𝑘
ⅆ
ⅆ𝑡
𝑖1
𝑦1
(8)
• 𝑢2 = 𝑅ⅈ2 + 𝐿𝑠
ⅆ𝑖2
ⅆ𝑡
+ 𝑘
ⅆ
ⅆ𝑡
𝑖2
𝑦2
(9)
Fig.7 Electrical circuit 14
u1
u2
STATE SPACE REPRESENTATION OF
SYSTEM
• Assumptions 𝑍1 𝑦
𝑍2 𝑦
𝑍3 ⅈ1
𝑍4 ⅈ2
𝑦1 𝑦0 − 𝑦
𝑑𝑦1
𝑑𝑡
−
𝑑𝑦
𝑑𝑡
= −𝑧2
𝑦2 𝑦0 + 𝑦
𝑑𝑦2
𝑑𝑡
𝑑𝑦
𝑑𝑡
= 𝑧2
Table 2 1
5
STATE SPACE REPRESENTATION OF NON-
LINEAR SYSTEM
𝑧1=𝑧2
𝑧2 =
𝑘
2𝑚
𝑧3/𝑦0 − 𝑧1
2 -
𝑘
2𝑚
𝑧4/𝑦0 + 𝑧1
2 +
𝐹𝑔
𝑚
𝑧3 =
𝑦0−𝑧1
𝐿𝑆 𝑦0−𝑧1 +𝑘
(−𝑅𝑧3 −
𝑘𝑧2𝑧3
𝑦0−𝑧1
+ 𝑢1)
𝑧4 =
𝑦0+𝑧1
𝐿𝑆 𝑦0+𝑧2 +𝑘
(−𝑅𝑧4 +
𝑘𝑧2𝑧4
𝑦0+𝑧1
+ 𝑢2)
Table 4 16
NON-LINEAR SYSTEM TO LINEAR
SYSTEM
• By Using JACOBIAN
• 𝑧 = 𝐴𝑧 + 𝐵1𝑢 + 𝐵2𝐹
𝑔
,where
𝐴 =
𝜕𝑓
𝜕𝑧
(𝑧0,𝑢0, 𝐹
𝑔)
𝐵1 =
𝜕𝑓
𝜕𝑢
(𝑧0,𝑢0, 𝐹
𝑔)
𝐵2 =
𝜕𝑓
𝜕𝑓𝑔
(𝑧0,𝑢0, 𝐹
𝑔)
Table 5
Table 6 17
CALCULATION OF PARAMETER A,B1 & B2
• A=
• 𝐵1=
0 1 0 0
2𝑘ⅈ0
2
𝑚𝑦0
3
0 𝑘ⅈ0
𝑚𝑦0
2
−𝑘ⅈ0
𝑚𝑦0
2
0 −2𝑘ⅈ0
𝑦0 𝑘 + 𝑦0𝐿𝑠
−𝑦0𝑅−
𝑘 + 𝑦0𝐿𝑠
0
0 −2𝑘ⅈ0
𝑦0 𝑘 + 𝑦0𝐿𝑠
0 −𝑦0𝑅−
𝑘 + 𝑦0𝐿𝑠
0 0
0 0
1/L 0
0 1/L
0
1/m
0
0
𝐵2=
Table 7
Table 8
18
VALUES OF PARAMETERS
𝐾𝑠 740
𝐾𝑖 2.4
𝑚 0.004
𝑅 2.0
𝐿 0.196
𝑁
𝑀
𝑁
𝐴
𝑘𝑔
𝛺
𝑚𝐻
Table No 9.
Source-Research Paper[3]
19
LINEARIZED MIMO MODEL OF AMB
SYSTEM
Fig:8 Linearized MODEL of AMB
20
ANALYSIS OF ROTOR MOTION USING
TRANSFER FUNCTION
• On solving the previous equations,
• 𝑦 =
2𝑘𝑠
𝑚
𝑦 +
𝑘𝑖𝑖1
𝑚
−
𝑘𝑖
𝑚
⋅ ⅈ2 +
𝐹𝑔
𝑚
•
ⅆ𝑖1
ⅆ𝑡
=
−𝑘𝑖
𝐿
𝑦 −
𝑅
𝐿
ⅈ1 +
𝑢1
𝐿
•
ⅆ𝑖2
ⅆ𝑡
=
𝑘𝑖
𝐿
𝑦 −
𝑅
𝐿
ⅈ2 +
𝑢2
𝐿
,
• We get
𝑋
𝑈
=
𝑘𝑖
𝑚𝐿𝑠3+𝑚𝑅𝑠2+ 2𝑘𝑖
2−2𝑘𝑠𝐿 𝑠−2⋅𝐾𝑠𝑅
21
BLOCK DIAGRAM OF
IMPLEMENTATION OF TRANSFER
FUNCTION
Fig.9 Transfer function. blocks
22
PID CONTROLLER
Fig:10 PID Controller block diagram with transfer
function
23
EFFECT OF PID PARAMETERS ON SYSTEM
DYNAMICS
Response Rise Time Overshoot Settling Time SS Error
𝐾𝑝 Decrease Increase NT Decrease
𝐾𝑖 Decrease Increase Increase Eliminate
𝐾ⅆ NT (not fix) Decrease Decrease NT
24
FOPID CONTROLLER
• FOPID have been developed by A.Oustaloup through CRONE controller in
1991.
• It involves fraction order of “s” in the integration part and derivative part.
• It has form PIλDμ.
25
FRACTIONAL CALCULUS
• Differential operator denoted by: [{a𝐷𝑡
𝑞
}]
• It is defined by as:
Combined differentiation – integration
operator
Where ‘q’ is fractional order, which can
be complex number and a & t are limits
of operation.
𝑑𝑞
𝑑𝑡𝑞
𝑞 > 0
1 𝑞 = 0
𝑎
𝑡
𝑑𝜏−𝑞 𝑞 < 0
26
FRACTIONAL CALCULUS
• There are some definitions for fractional derivatives as:
• The Grunwald-Letnikov definition is given by as:
• Grunwald-Letnikov
• Riemann-Liouville
• Caputo
𝐷𝑡
𝑞
f t =
dqf t
d t − a
= lim
𝑁∞
𝑡 −
𝑎
𝑁
−𝑞
𝑗=0
𝑁−1
−1 𝑗
𝑞
𝑗 𝑓(𝑡 − 𝑗[𝑡 −
𝑎
𝑁
])
27
FRACTIONAL CALCULUS
• The Riemann-Liouville is given by:
• It is simplest and easiest definition to use.
𝐷𝑡
𝑞
f t =
dq
f t
d t − a
=
1
Γ 𝑛 − 𝑞
(
dn
dtn
)
0
𝑡
𝑡 − 𝜏 𝑛−𝑞−1𝑓 𝜏 𝑑𝜏
Where ‘n’ is the first integer
which is not less than ‘q’ i.e.
n-1 <q<1
&Γ ⅈ𝑠 𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡ⅈ𝑜𝑛
28
TRANSFER FUNCTION OF FRACTIONAL
OPERATOR
• A continuous time linear input / output system can be
described as –
• 𝑖=0
𝑛
𝑎𝑖 𝐷𝑡
𝛼𝑖
y t = 𝑘=0
𝑚
𝑏𝑘𝐷𝑡
𝛽𝑖
𝑢(𝑡)
• It’s transfer function--
𝑤ℎ𝑒𝑟𝑒 𝛼𝑛 > 𝛼𝑛−1 > ⋯ > 𝛼0 ≥ 0
𝛽𝑚 ≥ 𝛽𝑚−1 > ⋯ > 𝛽0
≥ 0 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠.
𝐺 𝑠 =
𝑏𝑚𝑠𝛽𝑚 + 𝑏𝑚−1𝑠𝛽𝑚−1 + ⋯ + 𝑏0𝑠𝛽0
𝑎𝑛𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼𝑛−1 + ⋯ + 𝑎0𝑠𝛼0
29
FRACTIONAL ORDER PID CONTROLLER
• The most common form of a fractional order PID
CONTROLLER is 𝑃𝐼𝜆
𝐷𝜇
.
• Involving an integrator of order 𝜆 and a differentiator of order
𝜇 where 𝜆 and 𝜇 can be real number.
Fig.11 Block Diagram of FOPID 30
TRANSFER FUNCTION OF FOPID
• It has the form as:
𝐺𝑐 𝑠 =
𝑈 𝑠
𝐸 𝑠
= 𝐾𝑝 + 𝐾𝑖
1
𝑠𝜆
+ 𝐾𝐷𝑠𝜇
where Gc s is the transfer function of the controller
E s is the error & U s is controller output.
The
1
sλ
is integrator term on logarthimic table slope − 20db.
31
ADVANTAGE OF FOPID
• Enhance the systems control performance.
• Better control of dynamic system which are described by fractional
order mathematical model.
• FOPID controllers are less sensitive to change of parameters of a
controlled system.
• There is two extra degrees of freedom to better adjust the dynamical
properties of a fraction order control system.
32
POINT TO PLANE CONCEPT
Fig.12 Point/Plane
33
FRACTIONAL ORDER PID CONTROLLER
TUNING
• FOPID controllers are tuned based on
1. Frequency domain specifications
2. Time domain based optimal control tuning
• Frequency domain Analysis
• “Monje – Vinagre” proposed it.
• Based on following specified values
…….continued
34
FREQUENCY DOMAIN ANALYSIS
1. No steady state error
2. Specified gain crossover frequency
1. 𝐶 𝑗𝑤𝑐𝑔 G j𝑤𝑐𝑔 dB = 0dB
3. Specified phase margin ∅𝑚 represented as—
1. −𝜋 + 𝜑𝑚 = arg(𝐶 𝑗𝑤𝑐𝑔 G j𝑤𝑐𝑔 )
4. For Robustness-- 𝑑(arg(𝐶 𝑗𝑤𝑐𝑔 G j𝑤𝑐𝑔 ))
𝑑𝑤
= 0
35
TIME DOMAIN ANALYSIS
• For designing controllers based on time domain ,controllers aim
at minimization of different integral performance indices as:
1. Integral square error ISE = 0
𝑡
𝑒2 𝑡 𝑑𝑡
2. Integral absolute error IAE= 0
𝑡
|𝑒 𝑡 |𝑑𝑡
3. Integral time square error ITSE = 0
𝑡
𝑡𝑒2 𝑡 𝑑𝑡
4. Integral time absolute error ITAE= 0
𝑡
𝑡|𝑒(𝑡)|𝑑𝑡
36
DESIGN OF FOPID CONTROLLER
Phase margin 𝜑𝒎 𝑷𝑰𝝀𝑫𝝁
40° 𝐶 𝑠
= 14 +
196
𝑠1.55 + 0.0044𝑠0.45
60° 𝐶 𝑠
= 14 +
196
𝑠1.33
+ 0.0044𝑠0.67
80° 𝐶 𝑠
= 14 +
196
𝑠1.11
+ 0.0044𝑠0.89
Source-Research
Paper[5]
Table-10
37
SIMULATION MODEL & RESULTS
LINEARIZED ACTIVE MAGNETIC BEARING
SYSTEM
Figure 13: Linearized Active Magnetic Bearing System 38
ROTOR DISPLACEMENT V/S TIME
time
Displacement
Fig14 Rotor Displacement v/s Time : 39
TRANSFER FUNCTION OF AMB -
SIMULATION MODEL
Fig: 15 Transfer System of AMB Simulation Model 40
VIBRATION OF ROTOR IN AMB SYSTEM
time
displacemen
t
Fig:16 Vibration of Rotor in AMB System
41
SIMULATED MODEL OF DISPLACEMENT &
CURRENT SENSOR USING PID
Fig:17 Simulated Model of Displacement & Current Sensor using
PID
42
DISPLACEMENT OF ROTOR USING PID
SENSOR
time
position
Fig:18 Displacement of Rotor using PID
Sensor
4
3
CURRENT SENSOR USING PID
time
current
Figure:19Current Sensor using PID 44
SIMULATED MODEL OF AMB SYSTEM
USING FOPID
Figure:20 Simulated Model of AMB System using
FOPID
45
DISPLACEMENT OF ROTOR USING FOPID
time
displacement
Fig:21 Displacement v/s Time using
FOPID
46
FREQUENCY RESPONSE OF AMB SYSTEM
USING FOPID AFTER VARYING PARAMETERS
𝝀&𝝁
frequency
phase
magnitud
e
Fig:22 Frequency Response 47
STEP RESPONSE OF AMB SYSTEM USING
FOPID
Fig.23 Amplitude/Time
48
STABILITY ANALYSIS OF SYSTEM
Unstable System:
Poles are in shaded
region
Fig:24 Stability of System
…..contd 49
STABILITY ANALYSIS OF SYSTEM
Stable System: No pole in
shaded region
Fig:25 Stable System 50
STEP RESPONSE AFTER TUNING USING
FOPID
Fig.26 Amplitude/Time 51
CONCLUSION
• Linearization of AMB System has been done.
• PID Controller & AMB system has been analysed.
• Fractional Calculus and Fractional Operator has been studied.
• Fractional Order PID controller and its modelling based on its
transfer function has been studied.
• Robustness of AMB has been analysed.
52
SCOPE OF FUTURE WORK
• Tuning and Optimization of parameters of AMB using
FOPID.
• Use of Fuzzy & Genetic Algorithm.
53
REFERENCES
1. Gao, Z. "Scaling and Bandwidth-Parameterization Based Controller Tuning," Proceedings of the IEEE
American Control Conference, pp. 4989 – 4
2. Gibbs, P. and Geim, A. “Is Magnetic Levitation Possible?” http://www.hfml.kun.nl/levitation-
possible.html, March, 1997.
3. Glover, K., and J.C. Doyle, "State-space formulae for all stabilizing controllers that satisfy an H-Infinity
norm bound and relations to risk sensitivity," Systems and Control Letters, Vol. 11, pp. 167 - 172, 1988.
4. Han, J. "Nonlinear Design Methods for Control Systems," Proceedings of the 14th IFAC World Congress,
Beijing, 1999.
5. Arijit iBiswas, iSwagatam iDas, iAjith iAbraham iand iSambarta iDasgupta, i“Design iof ifractional-order
icontrollers iwith ian iimproved idifferential ievolution”, iEngineering iApplications iof iArtificial
iIntelligence, iVolume i22, iIssue i2, ipp. i343-350, iMarch i2009.
6. Schweitzer, G. Active Magnetic Bearings,” ISBN 3728121320, Eidgenössische Technische Hochschule,
Zürich, 1994 . 54
55

More Related Content

Similar to Project ppt 18 june.pptx

Design and control of ems magnetic levitation train using fuzzy mras and pid ...
Design and control of ems magnetic levitation train using fuzzy mras and pid ...Design and control of ems magnetic levitation train using fuzzy mras and pid ...
Design and control of ems magnetic levitation train using fuzzy mras and pid ...
Mustefa Jibril
 
Presentation FOPID Boost DC-DC Converter.pptx
Presentation FOPID Boost DC-DC Converter.pptxPresentation FOPID Boost DC-DC Converter.pptx
Presentation FOPID Boost DC-DC Converter.pptx
SherAli260123
 
Speed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned piSpeed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned pi
Alexander Decker
 
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond Brunkow
 

Similar to Project ppt 18 june.pptx (20)

PDR Robotic Replacement of Solar Collector Panels.pptx
PDR Robotic Replacement of Solar Collector Panels.pptxPDR Robotic Replacement of Solar Collector Panels.pptx
PDR Robotic Replacement of Solar Collector Panels.pptx
 
Direct torque control and dynamic performance of induction motor using fract...
Direct torque control and dynamic performance of induction  motor using fract...Direct torque control and dynamic performance of induction  motor using fract...
Direct torque control and dynamic performance of induction motor using fract...
 
Ball and beam
Ball and beamBall and beam
Ball and beam
 
Design and control of ems magnetic levitation train using fuzzy mras and pid ...
Design and control of ems magnetic levitation train using fuzzy mras and pid ...Design and control of ems magnetic levitation train using fuzzy mras and pid ...
Design and control of ems magnetic levitation train using fuzzy mras and pid ...
 
Presentation FOPID Boost DC-DC Converter.pptx
Presentation FOPID Boost DC-DC Converter.pptxPresentation FOPID Boost DC-DC Converter.pptx
Presentation FOPID Boost DC-DC Converter.pptx
 
Speed control of ward leonard layout system using h infinity optimal control
Speed control of ward leonard layout system using h  infinity optimal controlSpeed control of ward leonard layout system using h  infinity optimal control
Speed control of ward leonard layout system using h infinity optimal control
 
F05613947
F05613947F05613947
F05613947
 
LCE-UNIT 2 PPT.pdf
LCE-UNIT 2 PPT.pdfLCE-UNIT 2 PPT.pdf
LCE-UNIT 2 PPT.pdf
 
Modified Chattering Free Sliding Mode Control of DC Motor
Modified Chattering Free Sliding Mode Control of DC MotorModified Chattering Free Sliding Mode Control of DC Motor
Modified Chattering Free Sliding Mode Control of DC Motor
 
B010511015
B010511015B010511015
B010511015
 
Attitude Control of Satellite Test Setup Using Reaction Wheels
Attitude Control of Satellite Test Setup Using Reaction WheelsAttitude Control of Satellite Test Setup Using Reaction Wheels
Attitude Control of Satellite Test Setup Using Reaction Wheels
 
Speed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned piSpeed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned pi
 
Servo 2.0
Servo 2.0Servo 2.0
Servo 2.0
 
Correlative Study on the Modeling and Control of Boost Converter using Advanc...
Correlative Study on the Modeling and Control of Boost Converter using Advanc...Correlative Study on the Modeling and Control of Boost Converter using Advanc...
Correlative Study on the Modeling and Control of Boost Converter using Advanc...
 
Performance Analysis of a DTC and SVM Based Field- Orientation Control Induct...
Performance Analysis of a DTC and SVM Based Field- Orientation Control Induct...Performance Analysis of a DTC and SVM Based Field- Orientation Control Induct...
Performance Analysis of a DTC and SVM Based Field- Orientation Control Induct...
 
Unit 3-Laplace Transforms.pdf
Unit 3-Laplace Transforms.pdfUnit 3-Laplace Transforms.pdf
Unit 3-Laplace Transforms.pdf
 
KNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.pptKNL3353_Control_System_Engineering_Lectu.ppt
KNL3353_Control_System_Engineering_Lectu.ppt
 
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
Design and Implementation of Sliding Mode Controller using Coefficient Diagra...
 
Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15Raymond.Brunkow-Project-EEL-3657-Sp15
Raymond.Brunkow-Project-EEL-3657-Sp15
 
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
 

More from PawanTiwari672779 (9)

C Soil Water Relationships.ppt
C Soil Water Relationships.pptC Soil Water Relationships.ppt
C Soil Water Relationships.ppt
 
RPE05.pptx
RPE05.pptxRPE05.pptx
RPE05.pptx
 
ICT cent RDP.pptx
ICT cent RDP.pptxICT cent RDP.pptx
ICT cent RDP.pptx
 
Open Access Publishing.pptx
Open Access Publishing.pptxOpen Access Publishing.pptx
Open Access Publishing.pptx
 
Copyright.pptx
Copyright.pptxCopyright.pptx
Copyright.pptx
 
Presentation-e-NAM.pptx
Presentation-e-NAM.pptxPresentation-e-NAM.pptx
Presentation-e-NAM.pptx
 
Ethics-2L1-iScientific Misconduct-Safety.ppt
Ethics-2L1-iScientific Misconduct-Safety.pptEthics-2L1-iScientific Misconduct-Safety.ppt
Ethics-2L1-iScientific Misconduct-Safety.ppt
 
Reseach Synopsis.pptx
Reseach Synopsis.pptxReseach Synopsis.pptx
Reseach Synopsis.pptx
 
Genome-editing-in-plants_FilipaLara.pptx
Genome-editing-in-plants_FilipaLara.pptxGenome-editing-in-plants_FilipaLara.pptx
Genome-editing-in-plants_FilipaLara.pptx
 

Recently uploaded

AI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
AI Mastery 201: Elevating Your Workflow with Advanced LLM TechniquesAI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
AI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
VictorSzoltysek
 
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

Pharm-D Biostatistics and Research methodology
Pharm-D Biostatistics and Research methodologyPharm-D Biostatistics and Research methodology
Pharm-D Biostatistics and Research methodology
 
LEVEL 5 - SESSION 1 2023 (1).pptx - PDF 123456
LEVEL 5   - SESSION 1 2023 (1).pptx - PDF 123456LEVEL 5   - SESSION 1 2023 (1).pptx - PDF 123456
LEVEL 5 - SESSION 1 2023 (1).pptx - PDF 123456
 
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verifiedSector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
Sector 18, Noida Call girls :8448380779 Model Escorts | 100% verified
 
A Secure and Reliable Document Management System is Essential.docx
A Secure and Reliable Document Management System is Essential.docxA Secure and Reliable Document Management System is Essential.docx
A Secure and Reliable Document Management System is Essential.docx
 
Software Quality Assurance Interview Questions
Software Quality Assurance Interview QuestionsSoftware Quality Assurance Interview Questions
Software Quality Assurance Interview Questions
 
The Guide to Integrating Generative AI into Unified Continuous Testing Platfo...
The Guide to Integrating Generative AI into Unified Continuous Testing Platfo...The Guide to Integrating Generative AI into Unified Continuous Testing Platfo...
The Guide to Integrating Generative AI into Unified Continuous Testing Platfo...
 
VTU technical seminar 8Th Sem on Scikit-learn
VTU technical seminar 8Th Sem on Scikit-learnVTU technical seminar 8Th Sem on Scikit-learn
VTU technical seminar 8Th Sem on Scikit-learn
 
Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
 
8257 interfacing 2 in microprocessor for btech students
8257 interfacing 2 in microprocessor for btech students8257 interfacing 2 in microprocessor for btech students
8257 interfacing 2 in microprocessor for btech students
 
Crypto Cloud Review - How To Earn Up To $500 Per DAY Of Bitcoin 100% On AutoP...
Crypto Cloud Review - How To Earn Up To $500 Per DAY Of Bitcoin 100% On AutoP...Crypto Cloud Review - How To Earn Up To $500 Per DAY Of Bitcoin 100% On AutoP...
Crypto Cloud Review - How To Earn Up To $500 Per DAY Of Bitcoin 100% On AutoP...
 
AI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
AI Mastery 201: Elevating Your Workflow with Advanced LLM TechniquesAI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
AI Mastery 201: Elevating Your Workflow with Advanced LLM Techniques
 
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
 
%in kaalfontein+277-882-255-28 abortion pills for sale in kaalfontein
%in kaalfontein+277-882-255-28 abortion pills for sale in kaalfontein%in kaalfontein+277-882-255-28 abortion pills for sale in kaalfontein
%in kaalfontein+277-882-255-28 abortion pills for sale in kaalfontein
 
The Top App Development Trends Shaping the Industry in 2024-25 .pdf
The Top App Development Trends Shaping the Industry in 2024-25 .pdfThe Top App Development Trends Shaping the Industry in 2024-25 .pdf
The Top App Development Trends Shaping the Industry in 2024-25 .pdf
 
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Microsoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdfMicrosoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdf
 
Unveiling the Tech Salsa of LAMs with Janus in Real-Time Applications
Unveiling the Tech Salsa of LAMs with Janus in Real-Time ApplicationsUnveiling the Tech Salsa of LAMs with Janus in Real-Time Applications
Unveiling the Tech Salsa of LAMs with Janus in Real-Time Applications
 
Introducing Microsoft’s new Enterprise Work Management (EWM) Solution
Introducing Microsoft’s new Enterprise Work Management (EWM) SolutionIntroducing Microsoft’s new Enterprise Work Management (EWM) Solution
Introducing Microsoft’s new Enterprise Work Management (EWM) Solution
 
Direct Style Effect Systems - The Print[A] Example - A Comprehension Aid
Direct Style Effect Systems -The Print[A] Example- A Comprehension AidDirect Style Effect Systems -The Print[A] Example- A Comprehension Aid
Direct Style Effect Systems - The Print[A] Example - A Comprehension Aid
 
10 Trends Likely to Shape Enterprise Technology in 2024
10 Trends Likely to Shape Enterprise Technology in 202410 Trends Likely to Shape Enterprise Technology in 2024
10 Trends Likely to Shape Enterprise Technology in 2024
 

Project ppt 18 june.pptx

  • 1. Linearization & Robust Control of Active Magnetic Bearing System Project presentation By Amit Pandey (BT16EE010) Under supervision of Mr. Sukanta Debnath (Assistant Professor NIT MIZORAM) Department of Electrical & Electronics Engineering National Institute of Technology Mizoram 1
  • 2. Contents Introduction Objective Active Magnetic Bearing Elements Advantages & applications Magnetic circuit analysis Force analysis of 1-DOF AMB Electrical circuit analysis State space model Linearization of non-linear AMB System PID Controller & AMB System Fractional Calculus Transfer Function of Fractional Operator Fractional Order PID Controller Transfer Function of FOPID Advantage of FOPID FOPID optimization and tuning Simulation & Results Conclusion & Future Work 2
  • 3. OBJECTIVE • Mathematical modelling of 1-DOF AMB • To linearize the non-linear system of AMB • Analyse the displacement of rotor by PID Controller • Robust FOPID Control of AMB System 3
  • 4. INTRODUCTION • An active magnetic bearing (AMB) system supports a rotating shaft, without any physical contact by suspending the rotor in the air ,with an electrically controlled (or/and permanent magnet) magnetic force. • It is a mechatronic product which involves different fields of engineering such as Mechanical ,Electrical ,Control System and Computer Sciences. 4
  • 5. ACTIVE MAGNETIC BEARING ELEMENTS • Electromagnet • Rotor • Sensor • Controller • Amplifier Fig.1 Circuit diagram of AMB 5
  • 6. ADVANTAGES OF AMB 1. No mechanical contact so there is no friction. 2. No lubrication is necessary. 3.They can run in vacuum. 4.Very high rotation speed because of no friction. 5.Magnetic bearings have very small energy losses. 6. Dynamics of rotor can be controlled 7. Long life cycle, high reliability, and economic advantages. 6
  • 7. APPLICATIONS OF MAGNETIC BEARING 1. In turbomolecular pumps, 2. In long-term energy storage flywheel systems, 3. In Magnetic levitated trains 4. Used in some centrifugal compressors for chillers 5. In watt-hour meters for electrical utilities 6. In Medical devices such as blood pump 7
  • 8. MAGNETIC CIRCUIT ANALYSIS Fig.3 Equivalent Electric Circuit Representation Fig.2 Magnetic Circuit 8
  • 9. IDEAL MAGNETIC CIRCUIT MODEL • 𝐻. 𝑑𝑙 = 𝐽. 𝑛𝑑𝑎 (Ampere’s Law) • 2𝐻𝑔 lg +𝐻𝑎𝑙𝑖 + 𝐻𝑠𝑙𝑠 = 𝑛ⅈ • 𝐵 = 𝜇𝐻 𝑜𝑟 𝐻 = 𝐵 𝜇 • 2𝐵𝑔 lg +𝜇0 𝐵𝑎 𝜇𝑎 𝑙𝑎 + 𝐵𝑠 𝜇𝑠 𝑙𝑠 = 𝜇0𝑛ⅈ • , Fig.4 MAGNETIC CIRCUIT 9
  • 10. FORCE ANALYSIS OF 1-DOF AMB • It can move only in Y-axis Direction. • Notations 𝑦0 𝑚ⅈ𝑑 𝑝𝑜𝑛ⅈ𝑡 𝑚 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑟𝑜𝑡𝑜𝑟 𝐹1 𝑎𝑡𝑡𝑟𝑎𝑐𝑡ⅈ𝑣𝑒 𝑓𝑜𝑟𝑐𝑒 𝐹2 𝑎𝑡𝑡𝑟𝑎𝑐𝑡ⅈ𝑣𝑒 𝑓𝑜𝑟𝑐𝑒 𝐹 𝑔 𝑔𝑟𝑎𝑣ⅈ𝑡𝑎𝑡ⅈ𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 Table 1 Fig.5 1 –DOF AMB 10
  • 11. FORCE ANALYSIS ON ROTOR • Applying Newton’s 2nd Law, • 𝑚𝜘 = 𝐹1 − 𝐹2 + 𝐹 𝑔 (1) • Energy stored in a Magnetic Field in a given volume ‘v’ is, • 𝑤𝜙 = 1 2 𝑉 𝐻 ⋅ 𝐵 𝑑𝑉 = 1 2 𝐵2 𝜇0 𝑑𝑉 & dv=A.dg (2) Fig.6 Force components 11
  • 12. MATHEMATICAL DERIVATION • ⅆ𝑊𝜙 ⅆ𝑔 = 𝐴𝐵2 2𝜇0 (3) • ⅆ𝑊𝜙 ⅆ𝑔 = F (4) • From 3rd & 4th eqn. • F = 𝑘 2 (ⅈ/𝑔)2 (5) 12
  • 13. MATHEMATICAL DERIVATION • Now from fig.6, we conclude that, • 𝐹1 = 𝑘 2 (ⅈ1/𝑔)2 & 𝐹2 = 𝑘 2 (ⅈ2/𝑔)2 • Now using equation (1) we get, • 𝑦 = 𝑘 2𝑚 (ⅈ1/𝑔)2 - 𝑘 2𝑚 (ⅈ2/𝑔)2 + 𝐹 𝑔/m (6)Non Linear Differential Equation 13
  • 14. ELECTRICAL CIRCUIT ANALYSIS • e = 𝑁 ⅆ𝜙 ⅆ𝑡 (7) • From Faraday’s Law, • Using Krichoff’s Voltage Law, • 𝑢1 = 𝑅ⅈ1 + 𝐿𝑠 ⅆ𝑖1 ⅆ𝑡 + 𝑘 ⅆ ⅆ𝑡 𝑖1 𝑦1 (8) • 𝑢2 = 𝑅ⅈ2 + 𝐿𝑠 ⅆ𝑖2 ⅆ𝑡 + 𝑘 ⅆ ⅆ𝑡 𝑖2 𝑦2 (9) Fig.7 Electrical circuit 14 u1 u2
  • 15. STATE SPACE REPRESENTATION OF SYSTEM • Assumptions 𝑍1 𝑦 𝑍2 𝑦 𝑍3 ⅈ1 𝑍4 ⅈ2 𝑦1 𝑦0 − 𝑦 𝑑𝑦1 𝑑𝑡 − 𝑑𝑦 𝑑𝑡 = −𝑧2 𝑦2 𝑦0 + 𝑦 𝑑𝑦2 𝑑𝑡 𝑑𝑦 𝑑𝑡 = 𝑧2 Table 2 1 5
  • 16. STATE SPACE REPRESENTATION OF NON- LINEAR SYSTEM 𝑧1=𝑧2 𝑧2 = 𝑘 2𝑚 𝑧3/𝑦0 − 𝑧1 2 - 𝑘 2𝑚 𝑧4/𝑦0 + 𝑧1 2 + 𝐹𝑔 𝑚 𝑧3 = 𝑦0−𝑧1 𝐿𝑆 𝑦0−𝑧1 +𝑘 (−𝑅𝑧3 − 𝑘𝑧2𝑧3 𝑦0−𝑧1 + 𝑢1) 𝑧4 = 𝑦0+𝑧1 𝐿𝑆 𝑦0+𝑧2 +𝑘 (−𝑅𝑧4 + 𝑘𝑧2𝑧4 𝑦0+𝑧1 + 𝑢2) Table 4 16
  • 17. NON-LINEAR SYSTEM TO LINEAR SYSTEM • By Using JACOBIAN • 𝑧 = 𝐴𝑧 + 𝐵1𝑢 + 𝐵2𝐹 𝑔 ,where 𝐴 = 𝜕𝑓 𝜕𝑧 (𝑧0,𝑢0, 𝐹 𝑔) 𝐵1 = 𝜕𝑓 𝜕𝑢 (𝑧0,𝑢0, 𝐹 𝑔) 𝐵2 = 𝜕𝑓 𝜕𝑓𝑔 (𝑧0,𝑢0, 𝐹 𝑔) Table 5 Table 6 17
  • 18. CALCULATION OF PARAMETER A,B1 & B2 • A= • 𝐵1= 0 1 0 0 2𝑘ⅈ0 2 𝑚𝑦0 3 0 𝑘ⅈ0 𝑚𝑦0 2 −𝑘ⅈ0 𝑚𝑦0 2 0 −2𝑘ⅈ0 𝑦0 𝑘 + 𝑦0𝐿𝑠 −𝑦0𝑅− 𝑘 + 𝑦0𝐿𝑠 0 0 −2𝑘ⅈ0 𝑦0 𝑘 + 𝑦0𝐿𝑠 0 −𝑦0𝑅− 𝑘 + 𝑦0𝐿𝑠 0 0 0 0 1/L 0 0 1/L 0 1/m 0 0 𝐵2= Table 7 Table 8 18
  • 19. VALUES OF PARAMETERS 𝐾𝑠 740 𝐾𝑖 2.4 𝑚 0.004 𝑅 2.0 𝐿 0.196 𝑁 𝑀 𝑁 𝐴 𝑘𝑔 𝛺 𝑚𝐻 Table No 9. Source-Research Paper[3] 19
  • 20. LINEARIZED MIMO MODEL OF AMB SYSTEM Fig:8 Linearized MODEL of AMB 20
  • 21. ANALYSIS OF ROTOR MOTION USING TRANSFER FUNCTION • On solving the previous equations, • 𝑦 = 2𝑘𝑠 𝑚 𝑦 + 𝑘𝑖𝑖1 𝑚 − 𝑘𝑖 𝑚 ⋅ ⅈ2 + 𝐹𝑔 𝑚 • ⅆ𝑖1 ⅆ𝑡 = −𝑘𝑖 𝐿 𝑦 − 𝑅 𝐿 ⅈ1 + 𝑢1 𝐿 • ⅆ𝑖2 ⅆ𝑡 = 𝑘𝑖 𝐿 𝑦 − 𝑅 𝐿 ⅈ2 + 𝑢2 𝐿 , • We get 𝑋 𝑈 = 𝑘𝑖 𝑚𝐿𝑠3+𝑚𝑅𝑠2+ 2𝑘𝑖 2−2𝑘𝑠𝐿 𝑠−2⋅𝐾𝑠𝑅 21
  • 22. BLOCK DIAGRAM OF IMPLEMENTATION OF TRANSFER FUNCTION Fig.9 Transfer function. blocks 22
  • 23. PID CONTROLLER Fig:10 PID Controller block diagram with transfer function 23
  • 24. EFFECT OF PID PARAMETERS ON SYSTEM DYNAMICS Response Rise Time Overshoot Settling Time SS Error 𝐾𝑝 Decrease Increase NT Decrease 𝐾𝑖 Decrease Increase Increase Eliminate 𝐾ⅆ NT (not fix) Decrease Decrease NT 24
  • 25. FOPID CONTROLLER • FOPID have been developed by A.Oustaloup through CRONE controller in 1991. • It involves fraction order of “s” in the integration part and derivative part. • It has form PIλDμ. 25
  • 26. FRACTIONAL CALCULUS • Differential operator denoted by: [{a𝐷𝑡 𝑞 }] • It is defined by as: Combined differentiation – integration operator Where ‘q’ is fractional order, which can be complex number and a & t are limits of operation. 𝑑𝑞 𝑑𝑡𝑞 𝑞 > 0 1 𝑞 = 0 𝑎 𝑡 𝑑𝜏−𝑞 𝑞 < 0 26
  • 27. FRACTIONAL CALCULUS • There are some definitions for fractional derivatives as: • The Grunwald-Letnikov definition is given by as: • Grunwald-Letnikov • Riemann-Liouville • Caputo 𝐷𝑡 𝑞 f t = dqf t d t − a = lim 𝑁∞ 𝑡 − 𝑎 𝑁 −𝑞 𝑗=0 𝑁−1 −1 𝑗 𝑞 𝑗 𝑓(𝑡 − 𝑗[𝑡 − 𝑎 𝑁 ]) 27
  • 28. FRACTIONAL CALCULUS • The Riemann-Liouville is given by: • It is simplest and easiest definition to use. 𝐷𝑡 𝑞 f t = dq f t d t − a = 1 Γ 𝑛 − 𝑞 ( dn dtn ) 0 𝑡 𝑡 − 𝜏 𝑛−𝑞−1𝑓 𝜏 𝑑𝜏 Where ‘n’ is the first integer which is not less than ‘q’ i.e. n-1 <q<1 &Γ ⅈ𝑠 𝑔𝑎𝑚𝑚𝑎 𝑓𝑢𝑛𝑐𝑡ⅈ𝑜𝑛 28
  • 29. TRANSFER FUNCTION OF FRACTIONAL OPERATOR • A continuous time linear input / output system can be described as – • 𝑖=0 𝑛 𝑎𝑖 𝐷𝑡 𝛼𝑖 y t = 𝑘=0 𝑚 𝑏𝑘𝐷𝑡 𝛽𝑖 𝑢(𝑡) • It’s transfer function-- 𝑤ℎ𝑒𝑟𝑒 𝛼𝑛 > 𝛼𝑛−1 > ⋯ > 𝛼0 ≥ 0 𝛽𝑚 ≥ 𝛽𝑚−1 > ⋯ > 𝛽0 ≥ 0 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 𝐺 𝑠 = 𝑏𝑚𝑠𝛽𝑚 + 𝑏𝑚−1𝑠𝛽𝑚−1 + ⋯ + 𝑏0𝑠𝛽0 𝑎𝑛𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼𝑛−1 + ⋯ + 𝑎0𝑠𝛼0 29
  • 30. FRACTIONAL ORDER PID CONTROLLER • The most common form of a fractional order PID CONTROLLER is 𝑃𝐼𝜆 𝐷𝜇 . • Involving an integrator of order 𝜆 and a differentiator of order 𝜇 where 𝜆 and 𝜇 can be real number. Fig.11 Block Diagram of FOPID 30
  • 31. TRANSFER FUNCTION OF FOPID • It has the form as: 𝐺𝑐 𝑠 = 𝑈 𝑠 𝐸 𝑠 = 𝐾𝑝 + 𝐾𝑖 1 𝑠𝜆 + 𝐾𝐷𝑠𝜇 where Gc s is the transfer function of the controller E s is the error & U s is controller output. The 1 sλ is integrator term on logarthimic table slope − 20db. 31
  • 32. ADVANTAGE OF FOPID • Enhance the systems control performance. • Better control of dynamic system which are described by fractional order mathematical model. • FOPID controllers are less sensitive to change of parameters of a controlled system. • There is two extra degrees of freedom to better adjust the dynamical properties of a fraction order control system. 32
  • 33. POINT TO PLANE CONCEPT Fig.12 Point/Plane 33
  • 34. FRACTIONAL ORDER PID CONTROLLER TUNING • FOPID controllers are tuned based on 1. Frequency domain specifications 2. Time domain based optimal control tuning • Frequency domain Analysis • “Monje – Vinagre” proposed it. • Based on following specified values …….continued 34
  • 35. FREQUENCY DOMAIN ANALYSIS 1. No steady state error 2. Specified gain crossover frequency 1. 𝐶 𝑗𝑤𝑐𝑔 G j𝑤𝑐𝑔 dB = 0dB 3. Specified phase margin ∅𝑚 represented as— 1. −𝜋 + 𝜑𝑚 = arg(𝐶 𝑗𝑤𝑐𝑔 G j𝑤𝑐𝑔 ) 4. For Robustness-- 𝑑(arg(𝐶 𝑗𝑤𝑐𝑔 G j𝑤𝑐𝑔 )) 𝑑𝑤 = 0 35
  • 36. TIME DOMAIN ANALYSIS • For designing controllers based on time domain ,controllers aim at minimization of different integral performance indices as: 1. Integral square error ISE = 0 𝑡 𝑒2 𝑡 𝑑𝑡 2. Integral absolute error IAE= 0 𝑡 |𝑒 𝑡 |𝑑𝑡 3. Integral time square error ITSE = 0 𝑡 𝑡𝑒2 𝑡 𝑑𝑡 4. Integral time absolute error ITAE= 0 𝑡 𝑡|𝑒(𝑡)|𝑑𝑡 36
  • 37. DESIGN OF FOPID CONTROLLER Phase margin 𝜑𝒎 𝑷𝑰𝝀𝑫𝝁 40° 𝐶 𝑠 = 14 + 196 𝑠1.55 + 0.0044𝑠0.45 60° 𝐶 𝑠 = 14 + 196 𝑠1.33 + 0.0044𝑠0.67 80° 𝐶 𝑠 = 14 + 196 𝑠1.11 + 0.0044𝑠0.89 Source-Research Paper[5] Table-10 37
  • 38. SIMULATION MODEL & RESULTS LINEARIZED ACTIVE MAGNETIC BEARING SYSTEM Figure 13: Linearized Active Magnetic Bearing System 38
  • 39. ROTOR DISPLACEMENT V/S TIME time Displacement Fig14 Rotor Displacement v/s Time : 39
  • 40. TRANSFER FUNCTION OF AMB - SIMULATION MODEL Fig: 15 Transfer System of AMB Simulation Model 40
  • 41. VIBRATION OF ROTOR IN AMB SYSTEM time displacemen t Fig:16 Vibration of Rotor in AMB System 41
  • 42. SIMULATED MODEL OF DISPLACEMENT & CURRENT SENSOR USING PID Fig:17 Simulated Model of Displacement & Current Sensor using PID 42
  • 43. DISPLACEMENT OF ROTOR USING PID SENSOR time position Fig:18 Displacement of Rotor using PID Sensor 4 3
  • 44. CURRENT SENSOR USING PID time current Figure:19Current Sensor using PID 44
  • 45. SIMULATED MODEL OF AMB SYSTEM USING FOPID Figure:20 Simulated Model of AMB System using FOPID 45
  • 46. DISPLACEMENT OF ROTOR USING FOPID time displacement Fig:21 Displacement v/s Time using FOPID 46
  • 47. FREQUENCY RESPONSE OF AMB SYSTEM USING FOPID AFTER VARYING PARAMETERS 𝝀&𝝁 frequency phase magnitud e Fig:22 Frequency Response 47
  • 48. STEP RESPONSE OF AMB SYSTEM USING FOPID Fig.23 Amplitude/Time 48
  • 49. STABILITY ANALYSIS OF SYSTEM Unstable System: Poles are in shaded region Fig:24 Stability of System …..contd 49
  • 50. STABILITY ANALYSIS OF SYSTEM Stable System: No pole in shaded region Fig:25 Stable System 50
  • 51. STEP RESPONSE AFTER TUNING USING FOPID Fig.26 Amplitude/Time 51
  • 52. CONCLUSION • Linearization of AMB System has been done. • PID Controller & AMB system has been analysed. • Fractional Calculus and Fractional Operator has been studied. • Fractional Order PID controller and its modelling based on its transfer function has been studied. • Robustness of AMB has been analysed. 52
  • 53. SCOPE OF FUTURE WORK • Tuning and Optimization of parameters of AMB using FOPID. • Use of Fuzzy & Genetic Algorithm. 53
  • 54. REFERENCES 1. Gao, Z. "Scaling and Bandwidth-Parameterization Based Controller Tuning," Proceedings of the IEEE American Control Conference, pp. 4989 – 4 2. Gibbs, P. and Geim, A. “Is Magnetic Levitation Possible?” http://www.hfml.kun.nl/levitation- possible.html, March, 1997. 3. Glover, K., and J.C. Doyle, "State-space formulae for all stabilizing controllers that satisfy an H-Infinity norm bound and relations to risk sensitivity," Systems and Control Letters, Vol. 11, pp. 167 - 172, 1988. 4. Han, J. "Nonlinear Design Methods for Control Systems," Proceedings of the 14th IFAC World Congress, Beijing, 1999. 5. Arijit iBiswas, iSwagatam iDas, iAjith iAbraham iand iSambarta iDasgupta, i“Design iof ifractional-order icontrollers iwith ian iimproved idifferential ievolution”, iEngineering iApplications iof iArtificial iIntelligence, iVolume i22, iIssue i2, ipp. i343-350, iMarch i2009. 6. Schweitzer, G. Active Magnetic Bearings,” ISBN 3728121320, Eidgenössische Technische Hochschule, Zürich, 1994 . 54
  • 55. 55