More Related Content
DOCX
Asignacion de Calculo4 Carlos gonzalez Saia E DOCX
Soal dan Penyelesaian tugas Kalkulus DOCX
PDF
Integration method by parts DOCX
DOCX
Ejercicios de tranformada de laplace rafael marin PDF
Optimal Regret Analysis of Thompson Sampling in Stochastic Multi-armed Bandit... DOCX
Taller #2 integral parte 2 seguimiento 2 What's hot
DOCX
DOCX
Tugas matematika kalkulus DOCX
PPTX
Ejercicios de Calculo. Grupo 2. DOCX
Facultad de ingenierรญa taller integral seguimiento 1 PDF
ใฏใณใใผใฎๅๅๅผใจใผใผใฟ้ขๆฐใฎๅทฆๅด - ๆฐๅญฆใซใใง #mathcafe_height DOCX
PPTX
DOCX
KALKULUS IV - Persamaan Diferensial Linear DOCX
DOCX
PDF
Ejercicios resueltos guรญa # 7 PDF
ํ๊ท๋ชจ๋ธ์ ์ข
๋ฅ์ ํน์ง DOCX
PDF
https://youtu.be/VhLUdtPtIz4 DOCX
Integrador calculo vectoria PDF
Tabela De Pares De Transformadas De Laplace DOCX
operaciones combinadas en Z PDF
DOCX
Viewers also liked
DOCX
DOCX
DOCX
PPTX
Ahlam Ibrahim PDHPE rational DOCX
PPTX
Power point presentation of pdhpe DOCX
PPT
PPTX
PDF
Nvizion Solutions Executive Deck PPTX
End to-end async and await PPTX
Meteran Pintar dengan IoT DOCX
DOCX
Mektan 3 REKHY GUMELAR JHONLY PPTX
ESSI's Presentation to the Metal Casting Congress PPTX
PPTX
DOCX
Dieta para aumentar masa muscular Modelagem
- 1.
1. Determine atransformada de Laplace das seguintes funรงรตes, para t โฅ 0.
4) ๐(๐ก) = 6๐โ(0,2+3๐ก)
= 6๐โ0,2
. ๐โ3๐ก
โ(๐(๐ก)) = ๐น(๐ )
๐น(๐ ) = โซ ๐โ๐ ๐ก
. ๐(๐ )๐๐ก = lim
๐ดโโ
โซ ๐โ๐ ๐ก
. 6๐โ0,2
. ๐โ3๐ก
๐๐ก =
๐ด
0
โ
0
= lim
๐ดโโ
6๐โ0,2
โซ ๐โ(3+๐ )๐ก
๐๐ก
๐ด
0
= lim
๐ดโโ
6๐โ0,2
[(โ
๐โ(3+๐ )๐ก
(3 + ๐
)]
0
๐ด
=
= lim
๐ดโโ
4,912 [(โ
๐โ(3+๐ )๐ด
(3 + ๐ )
) โ (โ
๐โ(3+๐ )0
(3 + ๐ )
)] = 4,912 [0 +
1
(3 + ๐ )
] =
4,912
(๐ + 3)
๐น(๐ ) =
4,912
(๐ + 3)
10) ๐(๐ก) = 7๐โ3๐ก
โ 3๐โ7๐ก
โ(๐(๐ก)) = ๐น(๐ )
๐น(๐ ) = โซ ๐โ๐ ๐ก
. ๐(๐ก)๐๐ก = lim
๐ดโโ
โซ (7๐โ3๐ก
โ 3๐โ7๐ก)๐โ๐ ๐ก
๐๐ก =
๐ด
0
โ
0
= lim
๐ดโโ
โซ (7๐โ3๐ก
๐ด
0
. ๐โ๐ ๐ก
)๐๐ก โ lim
๐ดโโ
โซ (3๐โ7๐ก
. ๐โ๐ ๐ก)๐๐ก =
๐ด
0
= lim
๐ดโโ
7 โซ ๐โ(3+๐ )๐ก
๐๐ก โ lim
๐ดโโ
3 โซ ๐โ(7+๐ )๐ก
๐๐ก =
โ
0
๐ด
0
= lim
๐ดโโ
7 [โ
๐โ(3+๐ )๐ก
(3 + ๐ )
]
0
โ
โ lim
๐ดโโ
3 [โ
eโ(7+s)t
(7 + s)
]
0
โ
=
๐ดโโ
= lim
๐ดโโ
{7 [(โ
๐โ(3+๐ )๐ด
(3 + ๐ )
) โ (โ
๐โ(3+๐ )0
(3 + ๐ )
)]
โ lim
๐ดโโ
3 [(โ
eโ(7+s)A
(7 + s)
) โ (
eโ(7+s)0
(7 + s)
)]} =
- 2.
= {7 [0+
1
(3 + ๐ )
] โ 3 [0 +
1
(7 + ๐ )
]} = {
7
๐ + 3
โ
3
๐ + 7
} =
7๐ + 49 โ 3๐ โ 9
(๐ ยฒ + 10๐ + 21)
=
=
4๐ + 40
(๐ ยฒ + 10๐ + 21)
=
4(๐ + 10)
(๐ ยฒ + 10๐ + 21)
๐น(๐ ) =
4(๐ + 10
(๐ ยฒ + 10๐ + 21)
15).๐(๐ก) = ๐โ๐ก
sin(3๐ก) ๐น(๐ ) =
โซ ๐โ๐ ๐ก
๐(๐ก)๐๐ก =
โ
0
โซ ๐โ๐ ๐ก
๐โ๐ก
sin(3๐ก) ๐๐ก =
โ
0
โซ ๐โ(๐ +1)๐ก
sin(3๐ก) ๐๐ก =
โ
0
= lim
๐ดโโ
{[๐โ(๐ +1)๐ด
(
โ๐ sin(3๐ด) โ 3 cos(3๐ด)
(๐ + 1)2 + 3ยฒ
)]
โ [๐โ(๐ +1)0
(
โ๐ sin(3.0) โ 3 cos(3.0)
(๐ + 1)2 + 3ยฒ
)]} =
= {[
0 + 0
(๐ + 1)2 + 3ยฒ
] โ [
0 โ 3
(๐ + 1)2 + 3ยฒ
]} = {
3
๐ 2 + 2๐ + 1 + 9
} =
3
๐ 2 + 2๐ + 10
2. Exercรญcio 30 da pg. 39. (Transformada inversa de Laplace)
๐น(๐ ) =
5
๐ (๐ + 2)
โโ1
(๐น(๐ )) = ๐(๐ )
โโ1
(๐น(๐ )) =
5
๐ (๐ + 2)
=
๐1
๐
+
๐2
๐ + 2
- 3.
๐1 = [(
5
๐ (๐ + 2)
) . ๐ ]
๐ =0
= [
5
(๐ + 2)
]
๐ =0
=
5
2
= 2,5
๐2 = [(
5
๐ (๐ + 2)
) . (๐ + 2)]
๐ =โ2
= [
5
๐
]
๐ =โ2
= โ
5
2
= โ2,5
โโ1
(๐น(๐ )) =
5
๐ (๐ + 2)
=
2,5
๐
+
(โ2,5)
๐ + 2
โโ1
(๐น(๐ )) = โโ1
(
2,5
๐
) โ โโ1
(
2,5
๐
)
โโ1
(๐น(๐ )) = (2,5๐โ2๐ก
โ 2,5๐โ2๐ก)๐๐ก
โโ1
(๐น(๐ )) = 2,5(1 โ ๐โ2๐ก)๐๐ก
โโ1
(๐น(๐ )) = ๐(๐ ) = 2,5(1 โ ๐โ2๐ก)๐๐ก
3. Determine a funรงรฃo de transferรชncia e calcule polos e zeros de cada um dos
sistemas, de entrada ๐ข = ๐ข(๐ก) e saรญda ๐ฆ = ๐ฆ(๐ก) descritos pelas seguintes
equaรงรตes:
a) ๐ฆฬ + 5๐ฆฬ + 3๐ฆ = ๐ข
โ(๐ฆฬ) + โ(5๐ฆฬ) + โ(3๐ฆ) = โ(๐ข)
๐(๐ฅ)
๐(๐ )
(๐ 2
+ 5๐ + 3) = 1
- 4.
๐(๐ )
๐(๐ )
=
1
(๐ 2 + 5๐ + 3)
b) ๐ฆโ + 6๐ฆฬ + 5๐ฆฬ = 0,5๐ข
โ(๐ฆโ) + โ(6๐ฆฬ) + โ(5๐ฆฬ) = โ(0,5๐ข)
๐(๐ )
๐(๐ )
(๐ 3
+ 6๐ 2
+ 5๐ ) = 0,5
๐(๐ )
๐(๐ )
=
0,5
(๐ 3 + 6๐ 2 + 5๐ )
c) ๐ฆฬ + 2๐ฆฬ + 5๐ฆ + 10 โซ ๐ฆ๐๐ก = 25๐ข
๐ก
0
โ(๐ฆฬ) + โ(2๐ฆฬ) + โ(5๐ฆ) + โ (10 โซ ๐ฆ๐๐ก
๐ก
0
) = โ(25๐ข)
๐(๐ )
๐(๐ )
(๐ 2
+ 2๐ + 5 +
10
๐
) = 25
๐(๐ )
๐(๐ )
=
25๐
๐ 3 + 22 + 5๐ + 10
d) ๐ฆ + 6๐ฆฬโ + 5๐ฆ = (
๐๐ข
๐๐ก
) + ๐ข
โ(๐ฆโ) + โ(6๐ฆฬ) + โ(5๐ฆฬ) = โ ((
๐๐ข
๐๐ก
)) + โ(6๐ข)
๐(๐ )(๐ 3
+ 6๐ 2
+ 5๐ ) = ๐(๐ )(2๐ + 1)
๐(๐ )
๐(๐ )
(๐ 3
+ 6๐ 2
+ 5๐ ) = (2๐ + 1)
๐(๐ )
๐(๐ )
=
(2๐ + 1)
(๐ 3 + 6๐ 2 + 5๐ )
- 5.
e) {
๐ฅฬฬ +18๐ฅโ + 192๐ฅฬ + 640๐ฅฬ = ๐ข
๐ฆ = 160(๐ฅฬ + 4๐ฅ)
โ(๐ฅฬฬ) + โ(18๐ฅโ) + โ(192๐ฅฬ) + โ(640๐ฅ)ฬ
๐(๐ )(๐ 4
+ 18๐ 3
+ 192๐ 2
+ 640๐ ) = ๐(๐ )
{๐(๐ ) = 160(๐ + 4)๐(๐ )
๐(๐ )
๐(๐ )
=
160(๐ + 4)
๐ 4 + 18๐ 3 + 192๐ 2 + 640๐
f) {
๐ฅโฆ.
+ 3๐ฅโ + 19๐ฅฬ + 17๐ฅฬ = โซ ๐ข๐๐ก
๐ก
0
ฬ
๐ฆ = 10(๐ฅฬ + 4๐ฅ)
โ(๐ฅโฆ.) + โ(3๐ฅโ) + โ(19๐ฅฬ) + โ(17๐ฅฬ) = โ(โซ ๐ข๐๐ก
๐ก
0
)
๐(๐ )(๐ 4
+ 3๐ 3
+ 19๐ 2
+ 17๐ ) =
1
๐
๐(๐ )
๐(๐ )
๐(๐ )
(๐ 4
+ 3๐ 3
+ 19๐ 2
+ 17๐ )
{๐(๐ ) = 10(๐ + 4)๐(๐ )
๐(๐ )
๐(๐ )
=
1
๐
.
1
๐ 4 + 3๐ 3 + 19๐ 2 + 17๐
๐(๐ )
๐(๐ )
=
10(๐ + 4)
๐ (๐ 4 + 3๐ 3 + 19๐ 2 + 17๐ )
5. Reduza o diagrama de blocos da figura:
- 6.
- 7.
๐ฎ(๐) =
๐ฎ๐(๐)๐ฎ๐(๐)[๐ฎ๐(๐) +๐ฎ๐(๐)]
๐ + ๐ฎ๐(๐)๐ฎ๐(๐)๐ฏ๐(๐)๐ฎ๐(๐)๐ฎ๐(๐)๐ฎ๐(๐) + ๐ฎ๐(๐)๐ฎ๐(๐)๐ฎ๐(๐)
+
๐บ1(๐ )๐บ2(๐ )
1 + ๐ป(๐ )๐บ1(๐ )๐บ2(๐ )
G3(s)+G4(s
)
-
+
+
(๐บ1(๐ )๐บ2(๐ ))(๐บ3(๐ ) + ๐บ4(๐ ))
1 + ๐ป(๐ )๐บ1(๐ )๐บ2(๐ )
-
+
๐บ1(๐ )๐บ2(๐ )๐บ3(๐ ) + ๐บ4(๐ )
1 + ๐ป(๐ )๐บ1(๐ )๐บ2(๐ )
๐ + (๐ฎ๐(๐)๐ฎ๐(๐)(๐ฎ๐(๐) + ๐ฎ๐(๐)
1 + ๐ป(๐ )๐บ1(๐ )๐บ2(๐ )