proporsi
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Pengertian proporsi
•Proposisi adalah kalimat
yang bernilai benar atau
salah tetapi tidak
keduanya.
Contoh proporsi
• Berikut adalah beberapa contoh proposisi:
• a. 2 + 2 = 4
• b. 4 adalah bilangan prima
• c. Jakarta adalah ibukota negara Indonesia.
• Kalimat-kalimat diatas adalah proposisi
karena dapat diketahui nilai kebenaranya.
• Kalimat (a) dan (c) bernilai benar, sedangkan
kalimat (b) bernilai salah.
• Contoh berikut ini adalah kalimat-
kalimat yang bukan merupakan
proposisi:
• a. Dimana letak pulau Bali?
• b. x + y = 2
• c. Siapa namamu?
• d. x > 5
• Tetapi pernyataan berikut ini
• “Untuk sembarang bilangan bulat n ≥0, maka 2n
adalah bilangan genap.”
• dan
• “x + y = y + x untuk setiap x dan y bilangan riil”
• adalah proposisi, karena pernyataan pertama adalah
cara lain untuk menyatakan
• bilangan genap dan pernyataan kedua waalaupun
tidakmenyebutkan nilai x dan y,
• tetapi pernyataan tersebut benar untuk nilai x dany
berapapun. Bentuk proposisi
• Proposisi biasanya dilambangkan
dengan huruf kecil seperti p,q,r, . . .
• Misalnya,
• p : 6 adalah bilangan genap.
• q : 2 + 3 = 7
• r : 2 < 5
Mengkombinasikan proporsi
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Satu atau lebih proposisi dapat
dikombinasikan untuk menghasilkan proposisi
baru. Operator yang digunakan untuk
mengkombinasikan proposisi disebut operator
logika. Operator logika dasar yang digunakan
adalah dan(and), atau(or), dan tidak(not).
Proposisi baru yang diperoleh dari
pengkombinasiantersebut dinamakan proposisi
majemuk (compound proposition).
Dalam logika, dikenal 5 buah operator seperti dijelaskan
dalam tabel berikut ini.
contoh
Diketahui proposisi berikut ini:
• p : Hari ini hujan
• q : Murid-murid diliburkan dari sekolah
• maka
• p ∧q : Hari ini hujan dan murid-murid diliburkan dari sekolah
• p ∨q : Hari ini hujan atau murid-murid diliburkan dari sekolah
• ∼p : Hari ini tidak hujan
• p ∧ ∼q : Hari ini hujan dan murid-murid tidak diliburkandari
sekolah
• ∼(∼p) : Tidak benar bahwa hari ini tidak hujan
• p ⇒q : Jika hari ini hujan, maka murid-murid diliburkan dari
sekolah
• p ⇔q : Hari ini hujan jika hanya jika murid-murid diliburkan dari
sekolah
Tabel kebenaran
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Tabel kebenaran adalah suatu tabel yang
memuat nilai kebenaran proposisi majemuk.
Nilai kebenaran dari proposisi majemuk
Ditentukan oleh nilai kebenaran dari proposisi
atomiknya dan cara mereka dihubungkan oleh
operator logika
Misalkan p dan q adalah proposisi
• ƒKonjungsi p ∧ q bernilai benar jika p dan q
keduanya benar, selain itu nilainya salah
• ƒDisjungsi p V q bernilai salah jika p dan q
keduanya salah, selain itu nilainya benar
• ƒNegasi p bernilai benar jika p salah, atau
kebalikannya
Berikut ini adalah tabel kebenaran dari
operator-operator logika dasar.
Contoh:
Buatlah tabel kebenaran proposisi berikut:
∼(∼p ∨ ∼q)
Jawab:
DISJUNGSI EKSKLUSIF
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Disjungsi adalah pernyataan majemuk
yang menggunakan kata hubung“atau”
Kata hubung“atau” disajikan
denganlambang “∨”. Dalam Logika
Matematika juga dibedakan dua macam
“atau“ Yang pertama disebut Disjungsi
Inklusif (dengan lambang ”∨”) dan yang
kedua disebut Disjungsi Eksklusif (dengan
lambang ”V ”).
DEFINISI
a. Suatu disjungsi inklusif bernilai benarbila
sekurang- kurangnyasalah satupernyataan
tunggalnya benar.
b. Suatu disjungsi eksklusif bernilai benar bila
salah satu(dan tidak kedua-duanya) dari
pernyataan tunggalnya benar.
Disjungsi Eksklusif
kata “atau” atau “or” dapat digunakan secara
eksklusif
(exclusive or) yaitu dalam bentuk “p atau q tetapi
bukan keduanya”. Artinya, disjungsi p dengan q
bernilai benar hanya jika salah satu proposisinya
atomiknya benar (tapi bukan keduanya), misalnya
“Ia lahir di Bandung atau di Padang”.
TABEL DISJUNGSI EKSKLUSIF
CONTOH
a. Pak Hartono berlangganan harian Kompas
atau KedaulatanRakyat.
b. Anisa pergi ke perpustakaan atau ke kantin.
c. 5 ≤ 6 (5 kurang dari atau sama dengan 6)
d. A B adalah himpunan semua elemen yang
menjadi anggota himpunan A atau
himpunanB.
p : Kamera adalah alat visual
q : Kamera adalah alat audial
p V q : Kamera adalah alat visual atau audial.
Pada contoh di atas, Kamera termasuk alat
visual, tetapi tidak termasuk alat audial. Jadi
yang benar hanyalah satu dari kedua
pernyataan pembentuknya, dan tidak
keduanya.
Hukum hukumlogika peoporsi
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Hukum hukumlogika proporsi
contoh
Tunjukkan bahwa p∨~(p ∨q) dan p ∨~q
keduanya ekivalen secara logika.
ƒPenyelesaian
p∨~(p ∨q) ⇔p∨(~p ∧~q) (Hukum De Mogran)
⇔(p∨~p) ∧(p∨~q) (Hukum distributif)
⇔T ∧(p∨~q) (Hukurn negasi)
⇔p∨~q (Hukum identitas)
Proporsi bersyarat (implikasi)
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Pengertian implikasi
• Implikasi adalah peryataan majemuk yang
menggunakan kata hubung ”bila …., maka ….”
• Pernyataan tunggal yang pertama disebut
anteseden dan yang kedua disebut konsekuen.
• Misalkan p dan q adalah proposisi. Proposisi
majemuk “jika p maka q” disebut proposisi
bersyarat(implikasi) dan dilambangkan dengan
p →q
Dalam bahasa sehari-hari kita memakai implikasi
dalam
bermacam-macam arti, misalnya:
a) Untuk menyatakan suatu syarat: “Bila kamu tidak
membeli
karcis, maka kamu tidak akan diperbolehkan masuk”.
b) Untuk menyatakan suatu hubungan sebab akibat:” Bila
kehujanan, maka Tono pasti sakit”.
c) Untuk menyatakan suatu tanda:”Bila bel berbunyi,
maka
mahasiswa masuk ke dalam ruang kuliah.
definisi
Suatu implikasi bernilai benar bila
antesedennya salah atau konsekuennya
benar (jadi suatu Implikasi bernilai salah
hanya apabila anteseden benar dan
konsekuennya salah).
Tabel implikasi
contoh
• ƒJika saya benar semua dalam ujian, maka saya
mendapat nilai 100.
• ƒJika suhu udara mencapai 800c maka alarm
akan berbunyi
• ƒJika anda tidak mendaftar ulang, maka anda
dianggap mengundurkan diri.
Varian proporsi bersyarat
ada tiga varian proporsi bersyarat yaitu
1.Konvers, yaitu sebuah pernyataan yang benar tetapi
tidak perlu benar. Hal ini disebabkan nilai kebenaran
sebuah pernyataan tidak sama dengan konversnya.
jika p → q maka konversnya q → p.
2.Invers, yaitu sebuah pernyataan yang diperoleh
dengan membentuk sangkalan terhadap anteseden
dan konsekuennya. Jika p → q maka invers ~ p → ~ q.
3.kontraposisi yaitu sebuah pernyataan yang selalu
benar sebab kedua pernyataan ini saling logically
equivalent (ekivalen secara logis). jika p → q maka
kontrapositifnya ~ q → ~ p.
Adapun tabel kebenarannya sbb;
p q ~p ~q p → q q → p ~ p → ~q ~ q → ~p
T T F F T T T T
T F F T F T T F
F T T F T F F T
F F T T T T T T
Tabel di atas memperlihatkan tabel kebenaran
dari ketiga varian proposisi bersyarat tersebut.
Dari tabel tersebut terlihat bahwa proposisi
bersyarat p → q ekivalen secara logika dengan
kontraposisinya, ~ q → ~p. Sedangkan
konvers q →p ekivalen secara logika dengan
invers ~ p → ~ q. Ekivalen secara yang
dimaksud diatas adalah memiliki nilai
kebenaran yang sama atau setara.
contoh
• Tentukan konvers, invers, dan kontraposisi dari pernyataaan
berikut “jika Amir mempunyai mobil, maka ia orang kaya”.
• Penyelesaian:
• · Konvers (kebalikan) : q → p
• Jika Amir orang kaya, maka ia mempunyai mobil.
• · Invers : ~ p → ~ q
• Jika Amir tidak mempunyai mobil, maka ia bukan orang
kaya.
• · Kontraposisi : ~ q → ~ p
• Jika Amir bukan orang kaya, maka ia tidak mempunyai
mobil.
biimplikasi
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Peryataan majemuk yang menggunakan
kata hubung “Bila dan hanya bila” disebut
ekuivalensi atau biimplikasi. Kata hubung
tersebut disajikan dengan lambangnya
“ ” Definisi:
Suatu ekuivalensi bernilai benar bila
kedua pernyataan tunggalnya
mempunyai nilai kebenaran yang sama.
Tabel biimplikasi
contoh
Suatu segitiga disebut sama kaki bila
dan bila segitiga itumempunyai dua sisi
yang sama panjang(maksudnya suatu
ekuivalensi:”bila dan hanya bila”)
teorema
inferensi
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Macam macam inferensi
Ada dua macam inferensi
(penarikan kesimpulan), yaitu :
1) Inferensi Induksi
2) Inferensi Deduksi
Inferensi induksi
Penarikan kesimpulan (inferensi) dari premis
terhadap konklusinya bisa benar tetapi juga
bisa salah, karena premisnya masih
“mungkin”. Inferensi dari premis menuju
konklusi yang hanya berdasarkan atas
kemungkinan saja dinamakan inferensi
induksi.
Contoh inferensi induksi
1) Semua angsa yang saya lihat warnanya putih
2) Saya telah melihat banyak angsa
3) Jadi, semua angsa warnanya putih
Pernyataan (1) dan (2) merupakan premis-premis,
dan sepintas seperti argumen yang
baik, karena premis-premisnya memberi
akibat yang logis terhadap konklusinya,
meskipun baru berupa sesuatu yang
“mungkin”
Inferensi deduksi
Penarikan kesimpulan (inferensi) argumen
yang tepat tanpa berdasarkan kemungkinan
disebut inferensi deduktif .
Contoh inferensi deduksi
1) Semua manusia akan meninggal dunia
2) Romianti adalah seorang manusia
3) Jadi, Romianti akan meninggal dunia
Pernyataan (1) dan (2) merupakan premis-
premis yang benar dan jelaslah bahwa
konklusinya juga benar , karena tidak ada
kemungkinan lain selain “Romianti akan
meninggal dunia”.
argumen
Kelompok 5
1. Efsi wulandari
2. Jela akbar
3. Nira puspitasari
4. Pitri mei suciati
5. Riko agustiawan
Argumen merupakan
serangkaian pernyataan yang
mempunyai ungkapan
pernyataan Penarikan
kesimpulan.
Dalam argumen terdapat kata-
kata seperti : Jadi, maka, oleh
karena itu, dsb.
Argumen terdiri dari pernyataan
yang terbagi atas 2 kelompok,
yaitu ;
Pernyataan sebelum kata “jadi” yang
disebut premis dan kelompok lain
yang terdiri atas satu pernyataan
yang disebut konklusi.
contoh
1) Jika Aljabar dan Logika diperlukan maka
semua mahasiswa akan belajar matematika
2) Aljabar dan Logika diperlukan
3) Jadi semua mahasiswa akan belajar
matematika
Pernyataan (1) dan (2) merupakan premis,
sedangkan pernyataan (3) merupakan konklusi
Matematika diskrit

Matematika diskrit

  • 2.
    proporsi Kelompok 5 1. Efsiwulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 3.
    Pengertian proporsi •Proposisi adalahkalimat yang bernilai benar atau salah tetapi tidak keduanya.
  • 4.
    Contoh proporsi • Berikutadalah beberapa contoh proposisi: • a. 2 + 2 = 4 • b. 4 adalah bilangan prima • c. Jakarta adalah ibukota negara Indonesia. • Kalimat-kalimat diatas adalah proposisi karena dapat diketahui nilai kebenaranya. • Kalimat (a) dan (c) bernilai benar, sedangkan kalimat (b) bernilai salah.
  • 5.
    • Contoh berikutini adalah kalimat- kalimat yang bukan merupakan proposisi: • a. Dimana letak pulau Bali? • b. x + y = 2 • c. Siapa namamu? • d. x > 5
  • 6.
    • Tetapi pernyataanberikut ini • “Untuk sembarang bilangan bulat n ≥0, maka 2n adalah bilangan genap.” • dan • “x + y = y + x untuk setiap x dan y bilangan riil” • adalah proposisi, karena pernyataan pertama adalah cara lain untuk menyatakan • bilangan genap dan pernyataan kedua waalaupun tidakmenyebutkan nilai x dan y, • tetapi pernyataan tersebut benar untuk nilai x dany berapapun. Bentuk proposisi
  • 7.
    • Proposisi biasanyadilambangkan dengan huruf kecil seperti p,q,r, . . . • Misalnya, • p : 6 adalah bilangan genap. • q : 2 + 3 = 7 • r : 2 < 5
  • 8.
    Mengkombinasikan proporsi Kelompok 5 1.Efsi wulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 9.
    Satu atau lebihproposisi dapat dikombinasikan untuk menghasilkan proposisi baru. Operator yang digunakan untuk mengkombinasikan proposisi disebut operator logika. Operator logika dasar yang digunakan adalah dan(and), atau(or), dan tidak(not). Proposisi baru yang diperoleh dari pengkombinasiantersebut dinamakan proposisi majemuk (compound proposition).
  • 10.
    Dalam logika, dikenal5 buah operator seperti dijelaskan dalam tabel berikut ini.
  • 11.
    contoh Diketahui proposisi berikutini: • p : Hari ini hujan • q : Murid-murid diliburkan dari sekolah • maka • p ∧q : Hari ini hujan dan murid-murid diliburkan dari sekolah • p ∨q : Hari ini hujan atau murid-murid diliburkan dari sekolah • ∼p : Hari ini tidak hujan • p ∧ ∼q : Hari ini hujan dan murid-murid tidak diliburkandari sekolah • ∼(∼p) : Tidak benar bahwa hari ini tidak hujan • p ⇒q : Jika hari ini hujan, maka murid-murid diliburkan dari sekolah • p ⇔q : Hari ini hujan jika hanya jika murid-murid diliburkan dari sekolah
  • 12.
    Tabel kebenaran Kelompok 5 1.Efsi wulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 13.
    Tabel kebenaran adalahsuatu tabel yang memuat nilai kebenaran proposisi majemuk. Nilai kebenaran dari proposisi majemuk Ditentukan oleh nilai kebenaran dari proposisi atomiknya dan cara mereka dihubungkan oleh operator logika
  • 14.
    Misalkan p danq adalah proposisi • ƒKonjungsi p ∧ q bernilai benar jika p dan q keduanya benar, selain itu nilainya salah • ƒDisjungsi p V q bernilai salah jika p dan q keduanya salah, selain itu nilainya benar • ƒNegasi p bernilai benar jika p salah, atau kebalikannya
  • 15.
    Berikut ini adalahtabel kebenaran dari operator-operator logika dasar.
  • 16.
    Contoh: Buatlah tabel kebenaranproposisi berikut: ∼(∼p ∨ ∼q) Jawab:
  • 17.
    DISJUNGSI EKSKLUSIF Kelompok 5 1.Efsi wulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 18.
    Disjungsi adalah pernyataanmajemuk yang menggunakan kata hubung“atau” Kata hubung“atau” disajikan denganlambang “∨”. Dalam Logika Matematika juga dibedakan dua macam “atau“ Yang pertama disebut Disjungsi Inklusif (dengan lambang ”∨”) dan yang kedua disebut Disjungsi Eksklusif (dengan lambang ”V ”).
  • 19.
    DEFINISI a. Suatu disjungsiinklusif bernilai benarbila sekurang- kurangnyasalah satupernyataan tunggalnya benar. b. Suatu disjungsi eksklusif bernilai benar bila salah satu(dan tidak kedua-duanya) dari pernyataan tunggalnya benar.
  • 20.
    Disjungsi Eksklusif kata “atau”atau “or” dapat digunakan secara eksklusif (exclusive or) yaitu dalam bentuk “p atau q tetapi bukan keduanya”. Artinya, disjungsi p dengan q bernilai benar hanya jika salah satu proposisinya atomiknya benar (tapi bukan keduanya), misalnya “Ia lahir di Bandung atau di Padang”.
  • 21.
  • 22.
    CONTOH a. Pak Hartonoberlangganan harian Kompas atau KedaulatanRakyat. b. Anisa pergi ke perpustakaan atau ke kantin. c. 5 ≤ 6 (5 kurang dari atau sama dengan 6) d. A B adalah himpunan semua elemen yang menjadi anggota himpunan A atau himpunanB.
  • 23.
    p : Kameraadalah alat visual q : Kamera adalah alat audial p V q : Kamera adalah alat visual atau audial. Pada contoh di atas, Kamera termasuk alat visual, tetapi tidak termasuk alat audial. Jadi yang benar hanyalah satu dari kedua pernyataan pembentuknya, dan tidak keduanya.
  • 24.
    Hukum hukumlogika peoporsi Kelompok5 1. Efsi wulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 25.
  • 27.
    contoh Tunjukkan bahwa p∨~(p∨q) dan p ∨~q keduanya ekivalen secara logika. ƒPenyelesaian p∨~(p ∨q) ⇔p∨(~p ∧~q) (Hukum De Mogran) ⇔(p∨~p) ∧(p∨~q) (Hukum distributif) ⇔T ∧(p∨~q) (Hukurn negasi) ⇔p∨~q (Hukum identitas)
  • 28.
    Proporsi bersyarat (implikasi) Kelompok5 1. Efsi wulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 29.
    Pengertian implikasi • Implikasiadalah peryataan majemuk yang menggunakan kata hubung ”bila …., maka ….” • Pernyataan tunggal yang pertama disebut anteseden dan yang kedua disebut konsekuen. • Misalkan p dan q adalah proposisi. Proposisi majemuk “jika p maka q” disebut proposisi bersyarat(implikasi) dan dilambangkan dengan p →q
  • 30.
    Dalam bahasa sehari-harikita memakai implikasi dalam bermacam-macam arti, misalnya: a) Untuk menyatakan suatu syarat: “Bila kamu tidak membeli karcis, maka kamu tidak akan diperbolehkan masuk”. b) Untuk menyatakan suatu hubungan sebab akibat:” Bila kehujanan, maka Tono pasti sakit”. c) Untuk menyatakan suatu tanda:”Bila bel berbunyi, maka mahasiswa masuk ke dalam ruang kuliah.
  • 31.
    definisi Suatu implikasi bernilaibenar bila antesedennya salah atau konsekuennya benar (jadi suatu Implikasi bernilai salah hanya apabila anteseden benar dan konsekuennya salah).
  • 32.
  • 33.
    contoh • ƒJika sayabenar semua dalam ujian, maka saya mendapat nilai 100. • ƒJika suhu udara mencapai 800c maka alarm akan berbunyi • ƒJika anda tidak mendaftar ulang, maka anda dianggap mengundurkan diri.
  • 34.
  • 35.
    ada tiga varianproporsi bersyarat yaitu 1.Konvers, yaitu sebuah pernyataan yang benar tetapi tidak perlu benar. Hal ini disebabkan nilai kebenaran sebuah pernyataan tidak sama dengan konversnya. jika p → q maka konversnya q → p. 2.Invers, yaitu sebuah pernyataan yang diperoleh dengan membentuk sangkalan terhadap anteseden dan konsekuennya. Jika p → q maka invers ~ p → ~ q. 3.kontraposisi yaitu sebuah pernyataan yang selalu benar sebab kedua pernyataan ini saling logically equivalent (ekivalen secara logis). jika p → q maka kontrapositifnya ~ q → ~ p. Adapun tabel kebenarannya sbb;
  • 36.
    p q ~p~q p → q q → p ~ p → ~q ~ q → ~p T T F F T T T T T F F T F T T F F T T F T F F T F F T T T T T T
  • 37.
    Tabel di atasmemperlihatkan tabel kebenaran dari ketiga varian proposisi bersyarat tersebut. Dari tabel tersebut terlihat bahwa proposisi bersyarat p → q ekivalen secara logika dengan kontraposisinya, ~ q → ~p. Sedangkan konvers q →p ekivalen secara logika dengan invers ~ p → ~ q. Ekivalen secara yang dimaksud diatas adalah memiliki nilai kebenaran yang sama atau setara.
  • 38.
    contoh • Tentukan konvers,invers, dan kontraposisi dari pernyataaan berikut “jika Amir mempunyai mobil, maka ia orang kaya”. • Penyelesaian: • · Konvers (kebalikan) : q → p • Jika Amir orang kaya, maka ia mempunyai mobil. • · Invers : ~ p → ~ q • Jika Amir tidak mempunyai mobil, maka ia bukan orang kaya. • · Kontraposisi : ~ q → ~ p • Jika Amir bukan orang kaya, maka ia tidak mempunyai mobil.
  • 39.
    biimplikasi Kelompok 5 1. Efsiwulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 40.
    Peryataan majemuk yangmenggunakan kata hubung “Bila dan hanya bila” disebut ekuivalensi atau biimplikasi. Kata hubung tersebut disajikan dengan lambangnya “ ” Definisi: Suatu ekuivalensi bernilai benar bila kedua pernyataan tunggalnya mempunyai nilai kebenaran yang sama.
  • 41.
  • 42.
    contoh Suatu segitiga disebutsama kaki bila dan bila segitiga itumempunyai dua sisi yang sama panjang(maksudnya suatu ekuivalensi:”bila dan hanya bila”)
  • 43.
  • 44.
    inferensi Kelompok 5 1. Efsiwulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 45.
    Macam macam inferensi Adadua macam inferensi (penarikan kesimpulan), yaitu : 1) Inferensi Induksi 2) Inferensi Deduksi
  • 46.
    Inferensi induksi Penarikan kesimpulan(inferensi) dari premis terhadap konklusinya bisa benar tetapi juga bisa salah, karena premisnya masih “mungkin”. Inferensi dari premis menuju konklusi yang hanya berdasarkan atas kemungkinan saja dinamakan inferensi induksi.
  • 47.
    Contoh inferensi induksi 1)Semua angsa yang saya lihat warnanya putih 2) Saya telah melihat banyak angsa 3) Jadi, semua angsa warnanya putih Pernyataan (1) dan (2) merupakan premis-premis, dan sepintas seperti argumen yang baik, karena premis-premisnya memberi akibat yang logis terhadap konklusinya, meskipun baru berupa sesuatu yang “mungkin”
  • 48.
    Inferensi deduksi Penarikan kesimpulan(inferensi) argumen yang tepat tanpa berdasarkan kemungkinan disebut inferensi deduktif .
  • 49.
    Contoh inferensi deduksi 1)Semua manusia akan meninggal dunia 2) Romianti adalah seorang manusia 3) Jadi, Romianti akan meninggal dunia Pernyataan (1) dan (2) merupakan premis- premis yang benar dan jelaslah bahwa konklusinya juga benar , karena tidak ada kemungkinan lain selain “Romianti akan meninggal dunia”.
  • 50.
    argumen Kelompok 5 1. Efsiwulandari 2. Jela akbar 3. Nira puspitasari 4. Pitri mei suciati 5. Riko agustiawan
  • 51.
    Argumen merupakan serangkaian pernyataanyang mempunyai ungkapan pernyataan Penarikan kesimpulan. Dalam argumen terdapat kata- kata seperti : Jadi, maka, oleh karena itu, dsb.
  • 52.
    Argumen terdiri daripernyataan yang terbagi atas 2 kelompok, yaitu ; Pernyataan sebelum kata “jadi” yang disebut premis dan kelompok lain yang terdiri atas satu pernyataan yang disebut konklusi.
  • 53.
    contoh 1) Jika Aljabardan Logika diperlukan maka semua mahasiswa akan belajar matematika 2) Aljabar dan Logika diperlukan 3) Jadi semua mahasiswa akan belajar matematika Pernyataan (1) dan (2) merupakan premis, sedangkan pernyataan (3) merupakan konklusi