This document discusses bias and variance in machine learning models. It begins by introducing bias as a stronger force that is always present and harder to eliminate than variance. Several examples of bias are provided. Through simulations of sampling from a normal distribution, it is shown that sample statistics like the mean and standard deviation are always biased compared to the population parameters. Sample size also impacts bias, with larger samples having lower bias. Variance refers to a model's ability to generalize, with higher variance indicating overfitting. The tradeoff between bias and variance is that reducing one increases the other. Several techniques for optimizing this tradeoff are discussed, including cross-validation, bagging, boosting, dimensionality reduction, and changing the model complexity.