Dipta Das
LONGEST COMMON
SUBSEQUENCE
Dipta Das
SUBSEQUENCE
A subsequence of given sequence is just the given sequence with zero or
more elements left out. Example..
Dipta Das
COMMON SUBSEQUENCE
Assume Two Sequence
Sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y
Z={ B, C, A} length-3
Z={ B, C, A, B} length-4
Z={ B, C, B} length-3
Dipta Das
LONGEST COMMON SUBSEQUENCE
Theorem
Assume:
X=(X1, X2, X3…………………Xn)
Y=(Y1, Y2, Y3…………………Yn)
Any LCS of X and Y is Z, Z=(Z1, Z2,Z3……………..Zn)
IF Then
Xi = Yj Zk=Xi=Yj implies Zk-1 LCS of Xi-1 and Yj – 1
Xi ≠ Yj Zk ≠ Xi implies Zk-1 LCS of Xi-1 and Y
Xi ≠ Yj Zk ≠ Yj implies Zk-1 LCS of Yj-1 and X
Dipta Das
To Compare DNA of two (or more ) Different organisms
Dipta Das
EXAMPLE
Assume two DNA sequence
X = {ATGCTTC}
Y = {GCTCA}
Dipta Das
LCS EXAMPLE X = {ATGCTTC}
Y = {GCTCA}
A T G C T T C
G
C
T
C
A
1 2 3 4 5 6 7
1
2
3
4
5
Yj
Xi
0
0
Dipta Das
LCS EXAMPLE
A T G C T T C
0 0 0 0 0 0 0 0
G 0
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
1 2 3 4 5 6 7
1
2
3
4
5
Yj
Xi
0
0
Z[j,i]
Here I = 1, j = 1
Z[1,1]
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCAGA}
Yj
Xi
X Y
A G
Not Match
Maximum of
two box
z[J-1, i] and
[J, i-1]
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Z[1,1]
Z[j-1, i]=Z[1-1, 1]= Z[0,1]
Z[j, i-1]=Z[1, 1-1]= Z[1,0]
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y
A G
Not Match
Lets Take from Upper one
Arrow indicate from
where you Take the
maximum.
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCAGA}
Yj
Xi
X Y Max
T G 0
Not Match
Lets Take from left one
Arrow indicate from
where you Take the
maximum.
arrow
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCAGA}
Yj
Xi
X Y Max
G G
Match
arrow
When match arrow will
be diagonal because we
will increment the
value of this cell
Z[i-1, j-1] + 10 = 1
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
G G
Match
arrow
Incremented value X[i-1] Y[j-1]
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Z[I,j] = Z[3,1]
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {ACTCAGA}
Yj
Xi
X Y Max
C G 1
Not Match
Lets Take from left one
arrow
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
T G 1
Not Match
Lets Take from left one
arrow
0
0
1 2 3 4 5 6 7
1
2
3
4
5
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
T G 1
Not Match
Lets Take from left one
arrow
0
0
1 2 3 4 5 6 7
1
2
3
4
5
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
C G 1
Not Match
Lets Take from left one
arrow
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
A C 0
Not Match
Lets Take from left one
arrow
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
A C 0
Not Match
Lets Take from Upper one
arrow
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
G C 1
Not Match
Lets Take from left one
arrow
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1 2
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
C C
Match
arrow
Increment Z[i-1,j-1]
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1 2 2
T 0
C 0
A 0
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
T C 2
Not Match
Lets Take from left one
arrow
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1 2 2 2 2
T 0 0 1 1 2 3 3 3
C 0 0 1 1 2 3 3 4
A 0 1 1 1 2 3 3 4
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
X Y Max
T G 1
Not Match
Lets Take from left one
arrow
In the same way…
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1 2 2 2 2
T 0 0 1 1 2 3 3 3
C 0 0 1 1 2 3 3 4
A 0 1 1 1 2 3 3 4
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
Firstly have to point out
highest value
For left and upper arrow
we will follow the
direction
For diagonal arrow we
will point out the
character for this cell.
1 2 3 4 5 6 7
1
2
3
4
5
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1 2 2 2 2
T 0 0 1 1 2 3 3 3
C 0 0 1 1 2 3 3 4
A 0 1 1 1 2 3 3 4
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
LCS Z= G
1 2 3 4 5 6 7
1
2
3
4
5
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1 2 2 2 2
T 0 0 1 1 2 3 3 3
C 0 0 1 1 2 3 3 4
A 0 1 1 1 2 3 3 4
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
LCS Z= GC
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1 2 2 2 2
T 0 0 1 1 2 3 3 3
C 0 0 1 1 2 3 3 4
A 0 1 1 1 2 3 3 4
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
LCS Z= GCT
1 2 3 4 5 6 7
1
2
3
4
5
Dipta Das
LCS EXAMPLE
Xi A T G C T T C
YJ 0 0 0 0 0 0 0 0
G 0 0 0 1 1 1 1 1
C 0 0 0 1 2 2 2 2
T 0 0 1 1 2 3 3 3
C 0 0 1 1 2 3 3 4
A 0 1 1 1 2 3 3 4
X = {ATGCTTC}
Y = {GCTCA}
Yj
Xi
LCS Z= {GCTC}
1 2 3 4 5 6 7
1
2
3
4
5
0
0
Dipta Das
ANY QUESTION?
Dipta Das
Thank You!

Longest common subsequence

  • 1.
  • 2.
    Dipta Das SUBSEQUENCE A subsequenceof given sequence is just the given sequence with zero or more elements left out. Example..
  • 3.
    Dipta Das COMMON SUBSEQUENCE AssumeTwo Sequence Sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y Z={ B, C, A} length-3 Z={ B, C, A, B} length-4 Z={ B, C, B} length-3
  • 4.
    Dipta Das LONGEST COMMONSUBSEQUENCE Theorem Assume: X=(X1, X2, X3…………………Xn) Y=(Y1, Y2, Y3…………………Yn) Any LCS of X and Y is Z, Z=(Z1, Z2,Z3……………..Zn) IF Then Xi = Yj Zk=Xi=Yj implies Zk-1 LCS of Xi-1 and Yj – 1 Xi ≠ Yj Zk ≠ Xi implies Zk-1 LCS of Xi-1 and Y Xi ≠ Yj Zk ≠ Yj implies Zk-1 LCS of Yj-1 and X
  • 5.
    Dipta Das To CompareDNA of two (or more ) Different organisms
  • 6.
    Dipta Das EXAMPLE Assume twoDNA sequence X = {ATGCTTC} Y = {GCTCA}
  • 7.
    Dipta Das LCS EXAMPLEX = {ATGCTTC} Y = {GCTCA} A T G C T T C G C T C A 1 2 3 4 5 6 7 1 2 3 4 5 Yj Xi 0 0
  • 8.
    Dipta Das LCS EXAMPLE AT G C T T C 0 0 0 0 0 0 0 0 G 0 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} 1 2 3 4 5 6 7 1 2 3 4 5 Yj Xi 0 0 Z[j,i] Here I = 1, j = 1 Z[1,1]
  • 9.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCAGA} Yj Xi X Y A G Not Match Maximum of two box z[J-1, i] and [J, i-1] 1 2 3 4 5 6 7 1 2 3 4 5 0 0 Z[1,1] Z[j-1, i]=Z[1-1, 1]= Z[0,1] Z[j, i-1]=Z[1, 1-1]= Z[1,0]
  • 10.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y A G Not Match Lets Take from Upper one Arrow indicate from where you Take the maximum. 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 11.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCAGA} Yj Xi X Y Max T G 0 Not Match Lets Take from left one Arrow indicate from where you Take the maximum. arrow 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 12.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCAGA} Yj Xi X Y Max G G Match arrow When match arrow will be diagonal because we will increment the value of this cell Z[i-1, j-1] + 10 = 1 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 13.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max G G Match arrow Incremented value X[i-1] Y[j-1] 1 2 3 4 5 6 7 1 2 3 4 5 0 0 Z[I,j] = Z[3,1]
  • 14.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {ACTCAGA} Yj Xi X Y Max C G 1 Not Match Lets Take from left one arrow 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 15.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max T G 1 Not Match Lets Take from left one arrow 0 0 1 2 3 4 5 6 7 1 2 3 4 5
  • 16.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max T G 1 Not Match Lets Take from left one arrow 0 0 1 2 3 4 5 6 7 1 2 3 4 5
  • 17.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max C G 1 Not Match Lets Take from left one arrow 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 18.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max A C 0 Not Match Lets Take from left one arrow 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 19.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max A C 0 Not Match Lets Take from Upper one arrow 0 0
  • 20.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max G C 1 Not Match Lets Take from left one arrow 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 21.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 2 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max C C Match arrow Increment Z[i-1,j-1] 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 22.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 2 2 T 0 C 0 A 0 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max T C 2 Not Match Lets Take from left one arrow 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 23.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 2 2 2 2 T 0 0 1 1 2 3 3 3 C 0 0 1 1 2 3 3 4 A 0 1 1 1 2 3 3 4 X = {ATGCTTC} Y = {GCTCA} Yj Xi X Y Max T G 1 Not Match Lets Take from left one arrow In the same way… 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 24.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 2 2 2 2 T 0 0 1 1 2 3 3 3 C 0 0 1 1 2 3 3 4 A 0 1 1 1 2 3 3 4 X = {ATGCTTC} Y = {GCTCA} Yj Xi Firstly have to point out highest value For left and upper arrow we will follow the direction For diagonal arrow we will point out the character for this cell. 1 2 3 4 5 6 7 1 2 3 4 5
  • 25.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 2 2 2 2 T 0 0 1 1 2 3 3 3 C 0 0 1 1 2 3 3 4 A 0 1 1 1 2 3 3 4 X = {ATGCTTC} Y = {GCTCA} Yj Xi LCS Z= G 1 2 3 4 5 6 7 1 2 3 4 5
  • 26.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 2 2 2 2 T 0 0 1 1 2 3 3 3 C 0 0 1 1 2 3 3 4 A 0 1 1 1 2 3 3 4 X = {ATGCTTC} Y = {GCTCA} Yj Xi LCS Z= GC 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 27.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 2 2 2 2 T 0 0 1 1 2 3 3 3 C 0 0 1 1 2 3 3 4 A 0 1 1 1 2 3 3 4 X = {ATGCTTC} Y = {GCTCA} Yj Xi LCS Z= GCT 1 2 3 4 5 6 7 1 2 3 4 5
  • 28.
    Dipta Das LCS EXAMPLE XiA T G C T T C YJ 0 0 0 0 0 0 0 0 G 0 0 0 1 1 1 1 1 C 0 0 0 1 2 2 2 2 T 0 0 1 1 2 3 3 3 C 0 0 1 1 2 3 3 4 A 0 1 1 1 2 3 3 4 X = {ATGCTTC} Y = {GCTCA} Yj Xi LCS Z= {GCTC} 1 2 3 4 5 6 7 1 2 3 4 5 0 0
  • 29.
  • 30.