SlideShare a Scribd company logo
Chapter 2:
Diode Applications
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Load-Line Analysis
2
The load line plots all possible
combinations of diode current (ID)
and voltage (VD) for a given circuit.
The maximum ID equals E/R, and
the maximum VD equals E.
The point where the load line and
the characteristic curve intersect is
the Q-point, which identifies ID and
VD for a particular diode in a given
circuit.
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Series Diode Configurations
Constants
• Silicon Diode: VD = 0.7 V
• Germanium Diode: VD = 0.3 V
Analysis (for silicon)
• VD = 0.7 V (or VD = E if E < 0.7 V)
• VR = E – VD
• ID = IR = IT = VR / R
3
Forward Bias
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Series Diode Configurations
Diodes ideally behave as open circuits
Analysis
• VD = E
• VR = 0 V
• ID = 0 A
4
Reverse Bias
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Parallel Configurations
5
mA
14
2
mA
28
D2
I
D1
I
mA
28
.33kΩ
V
.7
V
10
R
D
V
E
R
I
V
9.3
R
V
V
0.7
O
V
D2
V
D1
V
V
0.7
D
V













Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Half-Wave Rectification
6
The diode only
conducts when it is
forward biased,
therefore only half
of the AC cycle
passes through the
diode to the
output.
The DC output voltage is 0.318Vm, where Vm = the peak AC voltage.
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
PIV (PRV)
7
Because the diode is only forward biased for one-half of the AC cycle, it is
also reverse biased for one-half cycle.
It is important that the reverse breakdown voltage rating of the diode be
high enough to withstand the peak, reverse-biasing AC voltage.
PIV (or PRV) > Vm
• PIV = Peak inverse voltage
• PRV = Peak reverse voltage
• Vm = Peak AC voltage
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Full-Wave Rectification
8
• Half-wave: Vdc = 0.318Vm
• Full-wave: Vdc = 0.636Vm
The rectification process can be improved by
using a full-wave rectifier circuit.
Full-wave rectification produces a greater
DC output:
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Full-Wave Rectification
9
Bridge Rectifier
• Four diodes are connected in a
bridge configuration
• VDC = 0.636Vm
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Full-Wave Rectification
10
Center-Tapped Transformer
Rectifier
Requires
• Two diodes
• Center-tapped transformer
VDC = 0.636Vm
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Summary of Rectifier Circuits
11
Vm = peak of the AC voltage.
In the center tapped transformer rectifier circuit, the peak AC voltage
is the transformer secondary voltage to the tap.
Rectifier Ideal VDC Realistic VDC
Half Wave Rectifier VDC = 0.318Vm VDC = 0.318Vm – 0.7
Bridge Rectifier VDC = 0.636Vm VDC = 0.636Vm – 2(0.7 V)
Center-Tapped Transformer
Rectifier
VDC = 0.636Vm VDC = 0.636Vm – 0.7 V
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Diode Clippers
•
12
The diode in a series clipper “clips”
any voltage that does not forward
bias it:
•A reverse-biasing polarity
•A forward-biasing polarity less than
0.7 V (for a silicon diode)
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Biased Clippers
13
Adding a DC source in
series with the clipping
diode changes the
effective forward bias of
the diode.
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Parallel Clippers
14
The diode in a parallel clipper
circuit “clips” any voltage that
forward bias it.
DC biasing can be added in
series with the diode to change
the clipping level.
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Summary of Clipper Circuits
15
more…
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Summary of Clipper Circuits
16
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Clampers
17
A diode and capacitor can be
combined to “clamp” an AC
signal to a specific DC level.
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Biased Clamper Circuits
18
The input signal can be any type
of waveform such as sine, square,
and triangle waves.
The DC source lets you adjust
the DC camping level.
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Summary of Clamper Circuits
19
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Zener Diodes
20
The Zener is a diode operated
in reverse bias at the Zener
Voltage (Vz).
• When Vi  VZ
– The Zener is on
– Voltage across the Zener is VZ
– Zener current: IZ = IR – IRL
– The Zener Power: PZ = VZIZ
• When Vi < VZ
– The Zener is off
– The Zener acts as an open circuit
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Zener Resistor Values
21
ZK
R
L I
I
I 

min
min
max
L
Z
L
I
V
R 
min
max
L
Z
L
L
L
R
V
R
V
I 

Z
i
Z
L
V
V
RV
R


min
If R is too large, the Zener diode cannot conduct because the available amount of
current is less than the minimum current rating, IZK. The minimum current is
given by:
The maximum value of resistance is:
If R is too small, the Zener current exceeds the maximum current
rating, IZM . The maximum current for the circuit is given by:
The minimum value of resistance is:
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Voltage-Multiplier Circuits
• Voltage Doubler
• Voltage Tripler
• Voltage Quadrupler
22
Voltage multiplier circuits use a combination of diodes and
capacitors to step up the output voltage of rectifier circuits.
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Voltage Doubler
23
This half-wave voltage doubler’s output can be calculated by:
Vout = VC2 = 2Vm
where Vm = peak secondary voltage of the transformer
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Voltage Doubler
24
• Positive Half-Cycle
o D1 conducts
o D2 is switched off
o Capacitor C1 charges to Vm
• Negative Half-Cycle
o D1 is switched off
o D2 conducts
o Capacitor C2 charges to Vm
Vout = VC2 = 2Vm
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Voltage Tripler and Quadrupler
25
Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 • All rights reserved.
Electronic Devices and Circuit Theory, 10/e
Robert L. Boylestad and Louis Nashelsky
Practical Applications
• Rectifier Circuits
– Conversions of AC to DC for DC operated circuits
– Battery Charging Circuits
• Simple Diode Circuits
– Protective Circuits against
– Overcurrent
– Polarity Reversal
– Currents caused by an inductive kick in a relay circuit
• Zener Circuits
– Overvoltage Protection
– Setting Reference Voltages
26

More Related Content

Similar to Lecture_02_Diode_Applications.ppt

ene103_lec1.pdf
ene103_lec1.pdfene103_lec1.pdf
ene103_lec1.pdf
RahulJaiswal851029
 
Chapter 4 Boylstead DC Biasing-BJTs.pptx
Chapter 4 Boylstead DC Biasing-BJTs.pptxChapter 4 Boylstead DC Biasing-BJTs.pptx
Chapter 4 Boylstead DC Biasing-BJTs.pptx
AneesSohail1
 
Bem (7)
Bem (7)Bem (7)
Electronic Devices Ninth Edition Floyd thired e
Electronic Devices Ninth Edition Floyd thired eElectronic Devices Ninth Edition Floyd thired e
Electronic Devices Ninth Edition Floyd thired e
mohdrashdan7
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4Shiwam Isrie
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-13
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-13Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-13
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-13Shiwam Isrie
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5Shiwam Isrie
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16Shiwam Isrie
 
BJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdfBJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdf
ShanmukhSaiR
 
JUNCTION DIODE APPLICATIONS
JUNCTION DIODE APPLICATIONSJUNCTION DIODE APPLICATIONS
JUNCTION DIODE APPLICATIONS
Asmita Bhagdikar
 
Chapter17
Chapter17Chapter17
Electronics 1 : Chapter # 04 : Diode Applications and Types
Electronics 1 : Chapter # 04 : Diode Applications and TypesElectronics 1 : Chapter # 04 : Diode Applications and Types
Electronics 1 : Chapter # 04 : Diode Applications and Types
Sk_Group
 
Bem (8)
Bem (8)Bem (8)
B-stad_CH_01.ppt
B-stad_CH_01.pptB-stad_CH_01.ppt
B-stad_CH_01.ppt
VikasMahor3
 
CH01-Semiconductor Diodes.ppt.pdf
CH01-Semiconductor Diodes.ppt.pdfCH01-Semiconductor Diodes.ppt.pdf
CH01-Semiconductor Diodes.ppt.pdf
rajatrokade185
 
13 linear digital i cs
13 linear digital i cs13 linear digital i cs
13 linear digital i cs
Tony Mac Apple
 
Dc basimg
Dc basimgDc basimg
Dc basimg
dahir osman
 

Similar to Lecture_02_Diode_Applications.ppt (20)

ene103_lec1.pdf
ene103_lec1.pdfene103_lec1.pdf
ene103_lec1.pdf
 
Chapter 4 Boylstead DC Biasing-BJTs.pptx
Chapter 4 Boylstead DC Biasing-BJTs.pptxChapter 4 Boylstead DC Biasing-BJTs.pptx
Chapter 4 Boylstead DC Biasing-BJTs.pptx
 
Bem (7)
Bem (7)Bem (7)
Bem (7)
 
Electronic Devices Ninth Edition Floyd thired e
Electronic Devices Ninth Edition Floyd thired eElectronic Devices Ninth Edition Floyd thired e
Electronic Devices Ninth Edition Floyd thired e
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-4
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-13
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-13Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-13
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-13
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-5
 
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-16
 
Ripple factor
Ripple factorRipple factor
Ripple factor
 
BJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdfBJT AC Analysis - Gdlc.pdf
BJT AC Analysis - Gdlc.pdf
 
JUNCTION DIODE APPLICATIONS
JUNCTION DIODE APPLICATIONSJUNCTION DIODE APPLICATIONS
JUNCTION DIODE APPLICATIONS
 
Chapter17
Chapter17Chapter17
Chapter17
 
Electronics 1 : Chapter # 04 : Diode Applications and Types
Electronics 1 : Chapter # 04 : Diode Applications and TypesElectronics 1 : Chapter # 04 : Diode Applications and Types
Electronics 1 : Chapter # 04 : Diode Applications and Types
 
Bem (8)
Bem (8)Bem (8)
Bem (8)
 
B-stad_CH_01.ppt
B-stad_CH_01.pptB-stad_CH_01.ppt
B-stad_CH_01.ppt
 
CH01-Semiconductor Diodes.ppt.pdf
CH01-Semiconductor Diodes.ppt.pdfCH01-Semiconductor Diodes.ppt.pdf
CH01-Semiconductor Diodes.ppt.pdf
 
13 linear digital i cs
13 linear digital i cs13 linear digital i cs
13 linear digital i cs
 
L3 electronics pn junction
L3 electronics   pn junctionL3 electronics   pn junction
L3 electronics pn junction
 
Ch01
Ch01Ch01
Ch01
 
Dc basimg
Dc basimgDc basimg
Dc basimg
 

Recently uploaded

Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 

Recently uploaded (20)

Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 

Lecture_02_Diode_Applications.ppt

  • 2. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Load-Line Analysis 2 The load line plots all possible combinations of diode current (ID) and voltage (VD) for a given circuit. The maximum ID equals E/R, and the maximum VD equals E. The point where the load line and the characteristic curve intersect is the Q-point, which identifies ID and VD for a particular diode in a given circuit.
  • 3. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Series Diode Configurations Constants • Silicon Diode: VD = 0.7 V • Germanium Diode: VD = 0.3 V Analysis (for silicon) • VD = 0.7 V (or VD = E if E < 0.7 V) • VR = E – VD • ID = IR = IT = VR / R 3 Forward Bias
  • 4. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Series Diode Configurations Diodes ideally behave as open circuits Analysis • VD = E • VR = 0 V • ID = 0 A 4 Reverse Bias
  • 5. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Parallel Configurations 5 mA 14 2 mA 28 D2 I D1 I mA 28 .33kΩ V .7 V 10 R D V E R I V 9.3 R V V 0.7 O V D2 V D1 V V 0.7 D V             
  • 6. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Half-Wave Rectification 6 The diode only conducts when it is forward biased, therefore only half of the AC cycle passes through the diode to the output. The DC output voltage is 0.318Vm, where Vm = the peak AC voltage.
  • 7. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky PIV (PRV) 7 Because the diode is only forward biased for one-half of the AC cycle, it is also reverse biased for one-half cycle. It is important that the reverse breakdown voltage rating of the diode be high enough to withstand the peak, reverse-biasing AC voltage. PIV (or PRV) > Vm • PIV = Peak inverse voltage • PRV = Peak reverse voltage • Vm = Peak AC voltage
  • 8. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Full-Wave Rectification 8 • Half-wave: Vdc = 0.318Vm • Full-wave: Vdc = 0.636Vm The rectification process can be improved by using a full-wave rectifier circuit. Full-wave rectification produces a greater DC output:
  • 9. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Full-Wave Rectification 9 Bridge Rectifier • Four diodes are connected in a bridge configuration • VDC = 0.636Vm
  • 10. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Full-Wave Rectification 10 Center-Tapped Transformer Rectifier Requires • Two diodes • Center-tapped transformer VDC = 0.636Vm
  • 11. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Summary of Rectifier Circuits 11 Vm = peak of the AC voltage. In the center tapped transformer rectifier circuit, the peak AC voltage is the transformer secondary voltage to the tap. Rectifier Ideal VDC Realistic VDC Half Wave Rectifier VDC = 0.318Vm VDC = 0.318Vm – 0.7 Bridge Rectifier VDC = 0.636Vm VDC = 0.636Vm – 2(0.7 V) Center-Tapped Transformer Rectifier VDC = 0.636Vm VDC = 0.636Vm – 0.7 V
  • 12. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Diode Clippers • 12 The diode in a series clipper “clips” any voltage that does not forward bias it: •A reverse-biasing polarity •A forward-biasing polarity less than 0.7 V (for a silicon diode)
  • 13. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Biased Clippers 13 Adding a DC source in series with the clipping diode changes the effective forward bias of the diode.
  • 14. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Parallel Clippers 14 The diode in a parallel clipper circuit “clips” any voltage that forward bias it. DC biasing can be added in series with the diode to change the clipping level.
  • 15. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Summary of Clipper Circuits 15 more…
  • 16. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Summary of Clipper Circuits 16
  • 17. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Clampers 17 A diode and capacitor can be combined to “clamp” an AC signal to a specific DC level.
  • 18. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Biased Clamper Circuits 18 The input signal can be any type of waveform such as sine, square, and triangle waves. The DC source lets you adjust the DC camping level.
  • 19. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Summary of Clamper Circuits 19
  • 20. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Zener Diodes 20 The Zener is a diode operated in reverse bias at the Zener Voltage (Vz). • When Vi  VZ – The Zener is on – Voltage across the Zener is VZ – Zener current: IZ = IR – IRL – The Zener Power: PZ = VZIZ • When Vi < VZ – The Zener is off – The Zener acts as an open circuit
  • 21. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Zener Resistor Values 21 ZK R L I I I   min min max L Z L I V R  min max L Z L L L R V R V I   Z i Z L V V RV R   min If R is too large, the Zener diode cannot conduct because the available amount of current is less than the minimum current rating, IZK. The minimum current is given by: The maximum value of resistance is: If R is too small, the Zener current exceeds the maximum current rating, IZM . The maximum current for the circuit is given by: The minimum value of resistance is:
  • 22. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Voltage-Multiplier Circuits • Voltage Doubler • Voltage Tripler • Voltage Quadrupler 22 Voltage multiplier circuits use a combination of diodes and capacitors to step up the output voltage of rectifier circuits.
  • 23. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Voltage Doubler 23 This half-wave voltage doubler’s output can be calculated by: Vout = VC2 = 2Vm where Vm = peak secondary voltage of the transformer
  • 24. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Voltage Doubler 24 • Positive Half-Cycle o D1 conducts o D2 is switched off o Capacitor C1 charges to Vm • Negative Half-Cycle o D1 is switched off o D2 conducts o Capacitor C2 charges to Vm Vout = VC2 = 2Vm
  • 25. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Voltage Tripler and Quadrupler 25
  • 26. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved. Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Practical Applications • Rectifier Circuits – Conversions of AC to DC for DC operated circuits – Battery Charging Circuits • Simple Diode Circuits – Protective Circuits against – Overcurrent – Polarity Reversal – Currents caused by an inductive kick in a relay circuit • Zener Circuits – Overvoltage Protection – Setting Reference Voltages 26