SlideShare a Scribd company logo
1 of 19
Applications 3.8 of the Derivative
2 
Motion (Physics)
3 
Example 1 – Analyzing the Motion of a Particle 
The position of a particle is given by the equation 
s = f (t) = t 
3 – 6t 
2 + 9t 
where t is measured in seconds and s in meters. 
(a) Find the velocity at time t. 
(b) What is the velocity after 2 s? After 4 s? 
(c) When is the particle at rest? 
(d) When is the particle moving forward (that is, in the 
positive direction)? 
(e) Draw a diagram to represent the motion of the particle.
4 
Example 1 – Analyzing the Motion of a Particle 
(f) Find the total distance traveled by the particle during the 
first five seconds. 
(g) Furthest to the right the particle goes in first 2 seconds? 
(h) Find the acceleration at time t and after 4 s. 
(i) Graph the position, velocity, and acceleration functions 
for 0 £ t £ 5. 
(j) When is the particle speeding up? When is it slowing 
down? 
cont’d
5 
Example 1 – Solution 
Solution: 
(a) The velocity function is the derivative of the position 
function. 
s = f (t) = t 
3 – 6t 
2 + 9t 
v (t) = = 3t 
2 – 12t + 9
6 
Example 1 – Solution 
(b) The velocity after 2 s means the instantaneous velocity 
when t = 2 , that is, 
v (2) = 
= –3 m/s 
The velocity after 4 s is 
v (4) = 3(4)2 – 12(4) + 9 
= 9 m/s 
cont’d 
= 3(2)2 – 12(2) + 9
7 
Example 1 – Solution 
(c) The particle is at rest when v (t) = 0, that is, 
3t 
2 – 12t + 9 = 3(t 
2 – 4t + 3) 
= 3(t – 1)(t – 3) 
= 0 
and this is true when t = 1 or t = 3. 
Thus the particle is at rest after 1 s and after 3 s. 
cont’d
Example 1 – Solution 
(d) The particle moves in the positive direction when v (t) > 0, 
8 
that is, 
3t 
2 – 12t + 9 = 3(t – 1)(t – 3) > 0 
This inequality is true when both factors are positive 
(t > 3) or when both factors are negative (t < 1). 
Thus the particle moves in the positive direction in the 
time intervals t < 1 and t > 3. 
It moves backward (in the negative direction) when 
1 < t < 3. 
cont’d
Example 1 – Solution 
(e) Using the information from part (d) we make a schematic 
cont’d 
9 
sketch in Figure 2 of the motion of the particle back and 
forth along a line (the s-axis). 
Figure 2
Example 1 – Solution 
(f) Because of what we learned in parts (d) and (e), we need 
10 
to calculate the distances traveled during the time 
intervals [0, 1], [1, 3], and [3, 5] separately. 
The distance traveled in the first second is 
| f (1) – f (0) | = | 4 – 0 | 
From t = 1 to t = 3 the distance traveled is 
| f (3) – f (1) | = | 0 – 4 | 
From t = 3 to t = 5 the distance traveled is 
| f (5) – f (3) | = | 20 – 0 | 
The total distance is 4 + 4 + 20 = 28 m. 
cont’d 
= 4 m 
= 4 m 
= 20 m
11 
Example 1 – Solution 
When at max distance – turn around  velocity = 0!! 
v(t) = 0 from part c was t=1, 3, throw out 3 not in interval. 
So max distance is s(1) = 4
Example 1 – Solution 
(h) The acceleration is the derivative of the velocity function: 
12 
a(t) = 
= 
= 6t – 12 
a(4) = 6(4) – 12 
= 12 m/s2 
cont’d
13 
Example 1 – Solution 
(i) Figure 3 shows the graphs of s, v, and a. 
cont’d 
Figure 3
cont’d 
14 
Example 1 – Solution 
(j) The particle speeds up when the velocity is positive and 
increasing (v and a are both positive) and also when the 
velocity is negative and decreasing (v and a are both 
negative). 
In other words, the particle speeds up when the velocity 
and acceleration have the same sign. (The particle is 
pushed in the same direction it is moving.) 
From Figure 3 we see that this happens when 1 < t < 2 
and when t > 3.
15 
Example 1 – Solution 
The particle slows down when v and a have opposite 
signs, that is, when 0 £ t < 1 and when 2 < t < 3. 
Figure 4 summarizes the motion of the particle. 
cont’d 
Figure 4
16 
Exercises
17 
Exercises (#10)
Exercises (#12) 
Sodium Chlorate crystals are easy to grow in the shape of 
cubes by allowing a solution of water and sodium chlorate to 
evaporate slowly. If V is the volume of such a cube with side 
length x, calculate dV/dx when x=3 mm and explain its 
meaning. 
18
19 
Exercises (#4)

More Related Content

What's hot

Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...saahil kshatriya
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinFredy Mojica
 
1982 a simple molecular statistical treatment for cholesterics
1982 a simple molecular statistical treatment for cholesterics1982 a simple molecular statistical treatment for cholesterics
1982 a simple molecular statistical treatment for cholestericspmloscholte
 
Differential equations final -mams
Differential equations final -mamsDifferential equations final -mams
Differential equations final -mamsarmanimams
 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasdfoxtrot jp R
 
Phase diagram for a zero-temperature Glauber dynamics under partially synchro...
Phase diagram for a zero-temperature Glauber dynamics under partially synchro...Phase diagram for a zero-temperature Glauber dynamics under partially synchro...
Phase diagram for a zero-temperature Glauber dynamics under partially synchro...Daniel Kosalla
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace TransformVishnu V
 
Kostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsKostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsSEENET-MTP
 
Guia Fisica Comipems
Guia Fisica ComipemsGuia Fisica Comipems
Guia Fisica ComipemsToño Avilix
 
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...SEENET-MTP
 
Aipmt 2015 answer key & solutions
Aipmt 2015 answer key & solutionsAipmt 2015 answer key & solutions
Aipmt 2015 answer key & solutionsPradeep Kumar
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeDheirya Joshi
 
Radial distribution function and most probable distance of 1s and 2s electron
Radial distribution function and most probable distance of 1s and 2s electronRadial distribution function and most probable distance of 1s and 2s electron
Radial distribution function and most probable distance of 1s and 2s electronMithil Fal Desai
 
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...Shu Tanaka
 

What's hot (20)

Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
 
Solucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica GoldsteinSolucionario Mecácnica Clásica Goldstein
Solucionario Mecácnica Clásica Goldstein
 
1982 a simple molecular statistical treatment for cholesterics
1982 a simple molecular statistical treatment for cholesterics1982 a simple molecular statistical treatment for cholesterics
1982 a simple molecular statistical treatment for cholesterics
 
Differential equations final -mams
Differential equations final -mamsDifferential equations final -mams
Differential equations final -mams
 
Hawkinrad a sourceasd
Hawkinrad a sourceasdHawkinrad a sourceasd
Hawkinrad a sourceasd
 
Phase diagram for a zero-temperature Glauber dynamics under partially synchro...
Phase diagram for a zero-temperature Glauber dynamics under partially synchro...Phase diagram for a zero-temperature Glauber dynamics under partially synchro...
Phase diagram for a zero-temperature Glauber dynamics under partially synchro...
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
Kostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and ApplicationsKostadin Trencevski - Noncommutative Coordinates and Applications
Kostadin Trencevski - Noncommutative Coordinates and Applications
 
Guia Fisica Comipems
Guia Fisica ComipemsGuia Fisica Comipems
Guia Fisica Comipems
 
Kinematika Partikel Part I
Kinematika Partikel Part IKinematika Partikel Part I
Kinematika Partikel Part I
 
Maths 3 ppt
Maths 3 pptMaths 3 ppt
Maths 3 ppt
 
03 time and motion
03 time and motion03 time and motion
03 time and motion
 
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
 
Aipmt 2015 answer key & solutions
Aipmt 2015 answer key & solutionsAipmt 2015 answer key & solutions
Aipmt 2015 answer key & solutions
 
Applications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First DegreeApplications of Differential Equations of First order and First Degree
Applications of Differential Equations of First order and First Degree
 
Ch06 2
Ch06 2Ch06 2
Ch06 2
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Radial distribution function and most probable distance of 1s and 2s electron
Radial distribution function and most probable distance of 1s and 2s electronRadial distribution function and most probable distance of 1s and 2s electron
Radial distribution function and most probable distance of 1s and 2s electron
 
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
Second-Order Phase Transition in Heisenberg Model on Triangular Lattice with ...
 
Miao
MiaoMiao
Miao
 

Viewers also liked

Lecture 7(b) derivative as a function
Lecture 7(b)   derivative as a functionLecture 7(b)   derivative as a function
Lecture 7(b) derivative as a functionnjit-ronbrown
 
Lecture 7 Derivatives
Lecture 7   DerivativesLecture 7   Derivatives
Lecture 7 Derivativesnjit-ronbrown
 
Lecture 1 admin & representing fcts
Lecture 1   admin & representing fctsLecture 1   admin & representing fcts
Lecture 1 admin & representing fctsnjit-ronbrown
 
Lecture 8 power & exp rules
Lecture 8   power & exp rulesLecture 8   power & exp rules
Lecture 8 power & exp rulesnjit-ronbrown
 
Unit C 1.06 and 1.07 Function Equations
Unit C 1.06 and 1.07 Function EquationsUnit C 1.06 and 1.07 Function Equations
Unit C 1.06 and 1.07 Function Equationsstfleming
 
Lecture 9 derivatives of trig functions - section 3.3
Lecture 9   derivatives of trig functions - section 3.3Lecture 9   derivatives of trig functions - section 3.3
Lecture 9 derivatives of trig functions - section 3.3njit-ronbrown
 
Lecture 2 family of fcts
Lecture 2   family of fctsLecture 2   family of fcts
Lecture 2 family of fctsnjit-ronbrown
 
Lecture 7(b) derivative as a function
Lecture 7(b)   derivative as a functionLecture 7(b)   derivative as a function
Lecture 7(b) derivative as a functionnjit-ronbrown
 
Lecture 6 limits with infinity
Lecture 6   limits with infinityLecture 6   limits with infinity
Lecture 6 limits with infinitynjit-ronbrown
 
Lecture 10 chain rule - section 3.4
Lecture 10   chain rule - section 3.4Lecture 10   chain rule - section 3.4
Lecture 10 chain rule - section 3.4njit-ronbrown
 
Lecture 01 - Section 1.1 & 1.2 Row Operations & Row Reduction
Lecture 01 - Section 1.1 & 1.2 Row Operations & Row ReductionLecture 01 - Section 1.1 & 1.2 Row Operations & Row Reduction
Lecture 01 - Section 1.1 & 1.2 Row Operations & Row Reductionnjit-ronbrown
 
Lecture 6 limits with infinity
Lecture 6   limits with infinityLecture 6   limits with infinity
Lecture 6 limits with infinitynjit-ronbrown
 
Lecture 11 implicit differentiation - section 3.5
Lecture 11   implicit differentiation - section 3.5Lecture 11   implicit differentiation - section 3.5
Lecture 11 implicit differentiation - section 3.5njit-ronbrown
 
Lecture 3 tangent & velocity problems
Lecture 3   tangent & velocity problemsLecture 3   tangent & velocity problems
Lecture 3 tangent & velocity problemsnjit-ronbrown
 
Lecture 5 limit laws
Lecture 5   limit lawsLecture 5   limit laws
Lecture 5 limit lawsnjit-ronbrown
 
Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a functionnjit-ronbrown
 
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7
Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7njit-ronbrown
 
Lecture 12 orhogonality - 6.1 6.2 6.3
Lecture 12   orhogonality - 6.1 6.2 6.3Lecture 12   orhogonality - 6.1 6.2 6.3
Lecture 12 orhogonality - 6.1 6.2 6.3njit-ronbrown
 
Lecture 8 derivative rules
Lecture 8   derivative rulesLecture 8   derivative rules
Lecture 8 derivative rulesnjit-ronbrown
 

Viewers also liked (20)

Lecture 7(b) derivative as a function
Lecture 7(b)   derivative as a functionLecture 7(b)   derivative as a function
Lecture 7(b) derivative as a function
 
Lecture 7 Derivatives
Lecture 7   DerivativesLecture 7   Derivatives
Lecture 7 Derivatives
 
Lecture 1 admin & representing fcts
Lecture 1   admin & representing fctsLecture 1   admin & representing fcts
Lecture 1 admin & representing fcts
 
Lecture 8 power & exp rules
Lecture 8   power & exp rulesLecture 8   power & exp rules
Lecture 8 power & exp rules
 
Unit C 1.06 and 1.07 Function Equations
Unit C 1.06 and 1.07 Function EquationsUnit C 1.06 and 1.07 Function Equations
Unit C 1.06 and 1.07 Function Equations
 
Lecture 02
Lecture 02Lecture 02
Lecture 02
 
Lecture 9 derivatives of trig functions - section 3.3
Lecture 9   derivatives of trig functions - section 3.3Lecture 9   derivatives of trig functions - section 3.3
Lecture 9 derivatives of trig functions - section 3.3
 
Lecture 2 family of fcts
Lecture 2   family of fctsLecture 2   family of fcts
Lecture 2 family of fcts
 
Lecture 7(b) derivative as a function
Lecture 7(b)   derivative as a functionLecture 7(b)   derivative as a function
Lecture 7(b) derivative as a function
 
Lecture 6 limits with infinity
Lecture 6   limits with infinityLecture 6   limits with infinity
Lecture 6 limits with infinity
 
Lecture 10 chain rule - section 3.4
Lecture 10   chain rule - section 3.4Lecture 10   chain rule - section 3.4
Lecture 10 chain rule - section 3.4
 
Lecture 01 - Section 1.1 & 1.2 Row Operations & Row Reduction
Lecture 01 - Section 1.1 & 1.2 Row Operations & Row ReductionLecture 01 - Section 1.1 & 1.2 Row Operations & Row Reduction
Lecture 01 - Section 1.1 & 1.2 Row Operations & Row Reduction
 
Lecture 6 limits with infinity
Lecture 6   limits with infinityLecture 6   limits with infinity
Lecture 6 limits with infinity
 
Lecture 11 implicit differentiation - section 3.5
Lecture 11   implicit differentiation - section 3.5Lecture 11   implicit differentiation - section 3.5
Lecture 11 implicit differentiation - section 3.5
 
Lecture 3 tangent & velocity problems
Lecture 3   tangent & velocity problemsLecture 3   tangent & velocity problems
Lecture 3 tangent & velocity problems
 
Lecture 5 limit laws
Lecture 5   limit lawsLecture 5   limit laws
Lecture 5 limit laws
 
Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a function
 
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7
Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7
 
Lecture 12 orhogonality - 6.1 6.2 6.3
Lecture 12   orhogonality - 6.1 6.2 6.3Lecture 12   orhogonality - 6.1 6.2 6.3
Lecture 12 orhogonality - 6.1 6.2 6.3
 
Lecture 8 derivative rules
Lecture 8   derivative rulesLecture 8   derivative rules
Lecture 8 derivative rules
 

Similar to Lecture 13 applications - section 3.8

_lecture_03_curves_motion_in_3-space.pdf
_lecture_03_curves_motion_in_3-space.pdf_lecture_03_curves_motion_in_3-space.pdf
_lecture_03_curves_motion_in_3-space.pdfLeoIrsi
 
Chapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptxChapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptxAkramMusa5
 
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.pdf
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.pdfKINEMATICS GRAPHICAL QUESTIONS 24-05-2021.pdf
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.pdfIndu381
 
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.docx
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.docxKINEMATICS GRAPHICAL QUESTIONS 24-05-2021.docx
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.docxIndu381
 
Lecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfLecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfCyberMohdSalahShoty
 
PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...
PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...
PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...dimatoprate1
 
CH12 - 1 - KinematicEquations.pdf
CH12 - 1 - KinematicEquations.pdfCH12 - 1 - KinematicEquations.pdf
CH12 - 1 - KinematicEquations.pdfMarvinGonzaga7
 
Motion Graph & equations
Motion Graph & equationsMotion Graph & equations
Motion Graph & equationsNurul Fadhilah
 
Motion graphs
Motion graphsMotion graphs
Motion graphsndward
 

Similar to Lecture 13 applications - section 3.8 (11)

_lecture_03_curves_motion_in_3-space.pdf
_lecture_03_curves_motion_in_3-space.pdf_lecture_03_curves_motion_in_3-space.pdf
_lecture_03_curves_motion_in_3-space.pdf
 
Chapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptxChapter 12 (sec 12.1,12.2).pptx
Chapter 12 (sec 12.1,12.2).pptx
 
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.pdf
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.pdfKINEMATICS GRAPHICAL QUESTIONS 24-05-2021.pdf
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.pdf
 
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.docx
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.docxKINEMATICS GRAPHICAL QUESTIONS 24-05-2021.docx
KINEMATICS GRAPHICAL QUESTIONS 24-05-2021.docx
 
Lecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfLecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdf
 
Calc 2.2b
Calc 2.2bCalc 2.2b
Calc 2.2b
 
PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...
PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...
PHYSICS MCQS FOR IIT JEE NEET IAS SAT MAT Multiple Choice Questions Answers F...
 
CH12 - 1 - KinematicEquations.pdf
CH12 - 1 - KinematicEquations.pdfCH12 - 1 - KinematicEquations.pdf
CH12 - 1 - KinematicEquations.pdf
 
Motion Graph & equations
Motion Graph & equationsMotion Graph & equations
Motion Graph & equations
 
Rectilinear motion
Rectilinear motionRectilinear motion
Rectilinear motion
 
Motion graphs
Motion graphsMotion graphs
Motion graphs
 

More from njit-ronbrown

Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5njit-ronbrown
 
Lecture 9 eigenvalues - 5-1 & 5-2
Lecture 9   eigenvalues -  5-1 & 5-2Lecture 9   eigenvalues -  5-1 & 5-2
Lecture 9 eigenvalues - 5-1 & 5-2njit-ronbrown
 
Lecture 9 dim & rank - 4-5 & 4-6
Lecture 9   dim & rank -  4-5 & 4-6Lecture 9   dim & rank -  4-5 & 4-6
Lecture 9 dim & rank - 4-5 & 4-6njit-ronbrown
 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6njit-ronbrown
 
Lecture 7 determinants cramers spaces - section 3-2 3-3 and 4-1
Lecture 7   determinants cramers spaces - section 3-2 3-3 and 4-1Lecture 7   determinants cramers spaces - section 3-2 3-3 and 4-1
Lecture 7 determinants cramers spaces - section 3-2 3-3 and 4-1njit-ronbrown
 
Lecture 6 lu factorization & determinants - section 2-5 2-7 3-1 and 3-2
Lecture 6   lu factorization & determinants - section 2-5 2-7 3-1 and 3-2Lecture 6   lu factorization & determinants - section 2-5 2-7 3-1 and 3-2
Lecture 6 lu factorization & determinants - section 2-5 2-7 3-1 and 3-2njit-ronbrown
 
Lecture 5 inverse of matrices - section 2-2 and 2-3
Lecture 5   inverse of matrices - section 2-2 and 2-3Lecture 5   inverse of matrices - section 2-2 and 2-3
Lecture 5 inverse of matrices - section 2-2 and 2-3njit-ronbrown
 
Lecture 4 chapter 1 review section 2-1
Lecture 4   chapter 1 review section 2-1Lecture 4   chapter 1 review section 2-1
Lecture 4 chapter 1 review section 2-1njit-ronbrown
 
Lecture 4 chapter 1 review section 2-1
Lecture 4   chapter 1 review section 2-1Lecture 4   chapter 1 review section 2-1
Lecture 4 chapter 1 review section 2-1njit-ronbrown
 
Lecture 3 section 1-7, 1-8 and 1-9
Lecture 3   section 1-7, 1-8 and 1-9Lecture 3   section 1-7, 1-8 and 1-9
Lecture 3 section 1-7, 1-8 and 1-9njit-ronbrown
 
Lecture 01 - Row Operations & Row Reduction
Lecture 01 - Row Operations & Row ReductionLecture 01 - Row Operations & Row Reduction
Lecture 01 - Row Operations & Row Reductionnjit-ronbrown
 
Lecture 20 fundamental theorem of calc - section 5.3
Lecture 20   fundamental theorem of calc - section 5.3Lecture 20   fundamental theorem of calc - section 5.3
Lecture 20 fundamental theorem of calc - section 5.3njit-ronbrown
 
Lecture 18 antiderivatives - section 4.8
Lecture 18   antiderivatives - section 4.8Lecture 18   antiderivatives - section 4.8
Lecture 18 antiderivatives - section 4.8njit-ronbrown
 
Lecture 17 optimization - section 4.6
Lecture 17   optimization - section 4.6Lecture 17   optimization - section 4.6
Lecture 17 optimization - section 4.6njit-ronbrown
 
Lecture 16 graphing - section 4.3
Lecture 16   graphing - section 4.3Lecture 16   graphing - section 4.3
Lecture 16 graphing - section 4.3njit-ronbrown
 
Lecture 15 max min - section 4.2
Lecture 15   max min - section 4.2Lecture 15   max min - section 4.2
Lecture 15 max min - section 4.2njit-ronbrown
 
Lecture 14 related rates - section 4.1
Lecture 14   related rates - section 4.1Lecture 14   related rates - section 4.1
Lecture 14 related rates - section 4.1njit-ronbrown
 

More from njit-ronbrown (17)

Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
 
Lecture 9 eigenvalues - 5-1 & 5-2
Lecture 9   eigenvalues -  5-1 & 5-2Lecture 9   eigenvalues -  5-1 & 5-2
Lecture 9 eigenvalues - 5-1 & 5-2
 
Lecture 9 dim & rank - 4-5 & 4-6
Lecture 9   dim & rank -  4-5 & 4-6Lecture 9   dim & rank -  4-5 & 4-6
Lecture 9 dim & rank - 4-5 & 4-6
 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
 
Lecture 7 determinants cramers spaces - section 3-2 3-3 and 4-1
Lecture 7   determinants cramers spaces - section 3-2 3-3 and 4-1Lecture 7   determinants cramers spaces - section 3-2 3-3 and 4-1
Lecture 7 determinants cramers spaces - section 3-2 3-3 and 4-1
 
Lecture 6 lu factorization & determinants - section 2-5 2-7 3-1 and 3-2
Lecture 6   lu factorization & determinants - section 2-5 2-7 3-1 and 3-2Lecture 6   lu factorization & determinants - section 2-5 2-7 3-1 and 3-2
Lecture 6 lu factorization & determinants - section 2-5 2-7 3-1 and 3-2
 
Lecture 5 inverse of matrices - section 2-2 and 2-3
Lecture 5   inverse of matrices - section 2-2 and 2-3Lecture 5   inverse of matrices - section 2-2 and 2-3
Lecture 5 inverse of matrices - section 2-2 and 2-3
 
Lecture 4 chapter 1 review section 2-1
Lecture 4   chapter 1 review section 2-1Lecture 4   chapter 1 review section 2-1
Lecture 4 chapter 1 review section 2-1
 
Lecture 4 chapter 1 review section 2-1
Lecture 4   chapter 1 review section 2-1Lecture 4   chapter 1 review section 2-1
Lecture 4 chapter 1 review section 2-1
 
Lecture 3 section 1-7, 1-8 and 1-9
Lecture 3   section 1-7, 1-8 and 1-9Lecture 3   section 1-7, 1-8 and 1-9
Lecture 3 section 1-7, 1-8 and 1-9
 
Lecture 01 - Row Operations & Row Reduction
Lecture 01 - Row Operations & Row ReductionLecture 01 - Row Operations & Row Reduction
Lecture 01 - Row Operations & Row Reduction
 
Lecture 20 fundamental theorem of calc - section 5.3
Lecture 20   fundamental theorem of calc - section 5.3Lecture 20   fundamental theorem of calc - section 5.3
Lecture 20 fundamental theorem of calc - section 5.3
 
Lecture 18 antiderivatives - section 4.8
Lecture 18   antiderivatives - section 4.8Lecture 18   antiderivatives - section 4.8
Lecture 18 antiderivatives - section 4.8
 
Lecture 17 optimization - section 4.6
Lecture 17   optimization - section 4.6Lecture 17   optimization - section 4.6
Lecture 17 optimization - section 4.6
 
Lecture 16 graphing - section 4.3
Lecture 16   graphing - section 4.3Lecture 16   graphing - section 4.3
Lecture 16 graphing - section 4.3
 
Lecture 15 max min - section 4.2
Lecture 15   max min - section 4.2Lecture 15   max min - section 4.2
Lecture 15 max min - section 4.2
 
Lecture 14 related rates - section 4.1
Lecture 14   related rates - section 4.1Lecture 14   related rates - section 4.1
Lecture 14 related rates - section 4.1
 

Recently uploaded

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 

Recently uploaded (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 

Lecture 13 applications - section 3.8

  • 1. Applications 3.8 of the Derivative
  • 3. 3 Example 1 – Analyzing the Motion of a Particle The position of a particle is given by the equation s = f (t) = t 3 – 6t 2 + 9t where t is measured in seconds and s in meters. (a) Find the velocity at time t. (b) What is the velocity after 2 s? After 4 s? (c) When is the particle at rest? (d) When is the particle moving forward (that is, in the positive direction)? (e) Draw a diagram to represent the motion of the particle.
  • 4. 4 Example 1 – Analyzing the Motion of a Particle (f) Find the total distance traveled by the particle during the first five seconds. (g) Furthest to the right the particle goes in first 2 seconds? (h) Find the acceleration at time t and after 4 s. (i) Graph the position, velocity, and acceleration functions for 0 £ t £ 5. (j) When is the particle speeding up? When is it slowing down? cont’d
  • 5. 5 Example 1 – Solution Solution: (a) The velocity function is the derivative of the position function. s = f (t) = t 3 – 6t 2 + 9t v (t) = = 3t 2 – 12t + 9
  • 6. 6 Example 1 – Solution (b) The velocity after 2 s means the instantaneous velocity when t = 2 , that is, v (2) = = –3 m/s The velocity after 4 s is v (4) = 3(4)2 – 12(4) + 9 = 9 m/s cont’d = 3(2)2 – 12(2) + 9
  • 7. 7 Example 1 – Solution (c) The particle is at rest when v (t) = 0, that is, 3t 2 – 12t + 9 = 3(t 2 – 4t + 3) = 3(t – 1)(t – 3) = 0 and this is true when t = 1 or t = 3. Thus the particle is at rest after 1 s and after 3 s. cont’d
  • 8. Example 1 – Solution (d) The particle moves in the positive direction when v (t) > 0, 8 that is, 3t 2 – 12t + 9 = 3(t – 1)(t – 3) > 0 This inequality is true when both factors are positive (t > 3) or when both factors are negative (t < 1). Thus the particle moves in the positive direction in the time intervals t < 1 and t > 3. It moves backward (in the negative direction) when 1 < t < 3. cont’d
  • 9. Example 1 – Solution (e) Using the information from part (d) we make a schematic cont’d 9 sketch in Figure 2 of the motion of the particle back and forth along a line (the s-axis). Figure 2
  • 10. Example 1 – Solution (f) Because of what we learned in parts (d) and (e), we need 10 to calculate the distances traveled during the time intervals [0, 1], [1, 3], and [3, 5] separately. The distance traveled in the first second is | f (1) – f (0) | = | 4 – 0 | From t = 1 to t = 3 the distance traveled is | f (3) – f (1) | = | 0 – 4 | From t = 3 to t = 5 the distance traveled is | f (5) – f (3) | = | 20 – 0 | The total distance is 4 + 4 + 20 = 28 m. cont’d = 4 m = 4 m = 20 m
  • 11. 11 Example 1 – Solution When at max distance – turn around  velocity = 0!! v(t) = 0 from part c was t=1, 3, throw out 3 not in interval. So max distance is s(1) = 4
  • 12. Example 1 – Solution (h) The acceleration is the derivative of the velocity function: 12 a(t) = = = 6t – 12 a(4) = 6(4) – 12 = 12 m/s2 cont’d
  • 13. 13 Example 1 – Solution (i) Figure 3 shows the graphs of s, v, and a. cont’d Figure 3
  • 14. cont’d 14 Example 1 – Solution (j) The particle speeds up when the velocity is positive and increasing (v and a are both positive) and also when the velocity is negative and decreasing (v and a are both negative). In other words, the particle speeds up when the velocity and acceleration have the same sign. (The particle is pushed in the same direction it is moving.) From Figure 3 we see that this happens when 1 < t < 2 and when t > 3.
  • 15. 15 Example 1 – Solution The particle slows down when v and a have opposite signs, that is, when 0 £ t < 1 and when 2 < t < 3. Figure 4 summarizes the motion of the particle. cont’d Figure 4
  • 18. Exercises (#12) Sodium Chlorate crystals are easy to grow in the shape of cubes by allowing a solution of water and sodium chlorate to evaporate slowly. If V is the volume of such a cube with side length x, calculate dV/dx when x=3 mm and explain its meaning. 18