SlideShare a Scribd company logo
Twitter: 3 categories 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
LEARNING MULTIFRACTAL 
STRUCTURE IN LARGE 
NETWORKS 
KDD 2014 
Austin Benson (arbenson@stanford.edu) 
Carlos Riquelme 
Sven Schmit 
Institute for Computational and Mathematical Engineering, 
Stanford University 
Purdue Machine Learning Seminar, Sept. 11 2014
Large-scale nonnegative matrix factorization 
with Jason Lee, Bartek Rajwa, David Gleich NIPS 2014
Fast matrix multiplication: 
bridging theory and practice 
with Grey Ballard 
Performance (24 cores) on N x 2800 x N 
20 
19 
18 
17 
16 
15 
14 
13 
12 
5000 10000 15000 20000 
dimension (N) 
Effective GFLOPS / core 
arXiv: 1409.2908, 2014 
MKL 
<4,2,4> 
<4,3,3> 
<3,2,3> 
<4,2,3> 
STRASSEN 
BINI 
SCHONHAGE 
sequential 
shared memory 
distributed memory 
high-performance
Setting 
• We want a simple, scalable method to model networks 
and generate random (undirected) graphs 
• Looking for graph generators that can mimic real world 
graph structure: degree distribution, large number of 
triangles, etc. 
Why? 
• Useful as null models 
• Helps to understanding graphs 
• Generate test problems
Lots of work in this area 
• Erdős-Rényi model [1959] 
• Watts-Strogatz model [1998] 
• Chung-Lu [2000] 
• Random Typing Graphs [Akoglu+2009] 
• Stochastic Kronecker Graphs [Leskovec+2010] 
• Mixed Kroncker Product Graph [Moreno+2010] 
• Multifractal Network Generators [Palla+2011] 
• Block two-level Erdős-Rényi [Seshadhri+2012] 
• Transitive Chung-Lu [Pfeiffer+2012]
Multifractal Network Generators (MFNG) 
• Simple, recursive model [Palla+ 2011] 
Parameters: 
• Symmetric probability matrix 
• Set of lengths that sum to 1 
• Number of recursive levels
MFNG – two levels of recursion 
1. Sample three nodes Uniform [0, 1] 
2. Find “category” at first level 
3. Expand interval back to [0, 1] 
4. Find “category” at second level 
1, 2 
2, 1 
2, 2 
Categories:
MFNG – two levels of recursion 
1, 2 
2, 1 
2, 2 
Categories:
MFNG – fractal interpretation
MFNG – general parameters 
• Number of categories: c 
• c x c symmetric probability matrix P 
• Length-c vector of lengths 
• Number of recursive levels, r 
c = r = 3
Scalability issues 
• Expanded probability matrix 
grows exponentially with 
number of recursive levels 
• This makes it difficult to do 
inference 
• We only have c + c(c – 1) / 2 
parameters with c categories
Recursive decomposition 
• Lemma [Benson+14]: Take r i.i.d. graph samples from 
MFNG process with one level of recursion. The 
distribution of the intersection of the graphs is identical to 
the same MFNG process with r recursive levels. 
• Proof: This follows from the fact that the categories of a 
node at each recursive level are independent.
Subgraph probabilities 
• Theorem [Benson+14]: Probability of subset of edges exists 
between any subset of nodes from MFNG process with r 
recursive levels is the rth power of the probability that the same 
subset of edges exists in same MFNG with one recursive level. 
Prob( ) = 
Probability of all 
three edges existing, 
given categories 
Probability of nodes 
having categories I, j, k
We can easily compute subgraph 
moments 
Any three nodes are equally likely to form 
a triangle before Uniform [0, 1] 
(before determining categories)
We can easily compute subgraph first 
moments 
Expected number of… 
Edges, wedges, 
3-stars, etc. 
Triangles, 
4-cliques, etc.
Can also get second moments 
Number of 
edges 
Indicator of 
edge (i, j) 
= Xij 
Wedge (i, j, k) 
Independent
Open triangles 
• We can only directly compute subgraph probabilities 
where the edges exist 
? 
Prob( ) = 
x 
Prob( ) – Prob( )
Method of Moments 
• Count number of wedges, 3-stars, triangles, 4-cliques, 
etc. in network of interest (fi) 
• Try to find parameters such that the expected values, 
E[Fi], match the empirical counts, fi 
Fast 
computation 
with our theory
Method of Moments 
• Computing fi can be expensive (4-cliques) 
 can use estimators [Seshadhri+13] 
• Not convex but fast 
 many random restarts
Graph property proxies 
• Power law degree distribution: edges, wedges, 3-stars, etc. 
• Clustering: cliques
We can recover the model 
Original MFNG  Single sample  Method of Moments  Recovered MFNG 
Original 
Recovered
Results on Twitter network 
230M 13.1M 
SKG method of moments [Gleich & Owen2012] 
KronFit [Leskovec+2010]
Results on Twitter network 
Twitter: 2 categories 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
Twitter: 3 categories 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
c = 2 c = 3
We need to fit all parameters
Results on citation network 
26.3M 1.3M
Results on citation network 
Citation: 2 categories 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
Citation: 3 categories 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
c = 2 c = 3
We need to fit all parameters
Oscillating degree distributions 
Interesting oscillations in 
degree distribution. Also 
observed in Stochastic 
Kronecker Graphs. 
Less noticeable when 
using three categories
Oscillating degree distributions 
At each recursive level, add noise to the 
probability matrix [Seshadhri+2013]: 
More noise leads to flatter degree distribution. 
(All with two categories.)
Per-degree clustering coefficient 
Facebook ego network Citation 
Avg. 
fraction 
of closed 
triangles 
Node degree
MFNG – naïve sampling is expensive 
1, 2 
2, 1 
2, 2 
Categories: 
How do we avoid 
O(n2) coin flips?
Recursive decomposition does not help 
• First idea: Use recursive decomposition. Generate 
r graphs and take the intersection. 
• With one level of recursion and two categories, 
there are four Erdős-Rényi components to 
consider. We can sample each one quickly. 
• When p22 isn’t close to 0 or close to 1, have to 
store a dense graph.
“Ball dropping” does not quite work 
• Second idea: adapt “ball dropping” scheme from 
SKG [Leskovec+2010]. 
Sample proportional to: 
… at each level 
Might get category pairs: (1, 1), (2, 2) 
Choose random pair from (blue, green, orange) 
Problem: just as likely to have 3 nodes fall into 
box where yellow node is
Adapt for number of nodes per box 
Sample proportional to: 
… at each level 
Might get category pairs: (1, 1), (2, 2) 
3 actual nodes: 3 possible edges 
Expected: 5(5 – 1)(1/4)^2 / 2 = 0.625 
Sample e ~ Poisson(3 / 0.625λ) 
Add e edges to the box 
Larger λ  need more samples, but less 
dependency between edges.
Fast sampling heuristic: overview 
Can compute these with methods presented earlier 
Sample proportional to: 
at each level 
Sample e ~ Poisson(actual / expected * λ) 
Add e edges to the box 
1. 
2. 
3. 
Repeat 2 and 3 until no more edges left
MFNG: what we have learned 
• Method of Moments works 
well to estimate MFNG 
parameters for real networks 
• Able to match degree 
distribution, even though we 
don’t explicitly fit for it 
• Per-degree clustering 
coefficient is still a challenge 
• We can sample quickly, but 
we would like an exact fast 
sampling algorithm
Twitter: 3 categories 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
LEARNING MULTIFRACTAL 
STRUCTURE IN LARGE 
NETWORKS 
KDD 2014 
Austin Benson (arbenson@stanford.edu) 
Carlos Riquelme 
Sven Schmit 
Institute for Computational and Mathematical Engineering, 
Stanford University 
Purdue Machine Learning Seminar, Sept. 11 2014

More Related Content

What's hot

Clustering techniques
Clustering techniquesClustering techniques
Clustering techniques
talktoharry
 
Training machine learning knn 2017
Training machine learning knn 2017Training machine learning knn 2017
Training machine learning knn 2017
Iwan Sofana
 
Introduction to data mining and machine learning
Introduction to data mining and machine learningIntroduction to data mining and machine learning
Introduction to data mining and machine learning
Tilani Gunawardena PhD(UNIBAS), BSc(Pera), FHEA(UK), CEng, MIESL
 
K - Nearest neighbor ( KNN )
K - Nearest neighbor  ( KNN )K - Nearest neighbor  ( KNN )
K - Nearest neighbor ( KNN )
Mohammad Junaid Khan
 
DATA MINING:Clustering Types
DATA MINING:Clustering TypesDATA MINING:Clustering Types
DATA MINING:Clustering Types
Ashwin Shenoy M
 
K-Means manual work
K-Means manual workK-Means manual work
K-Means manual work
Dr.E.N.Sathishkumar
 
Types of clustering and different types of clustering algorithms
Types of clustering and different types of clustering algorithmsTypes of clustering and different types of clustering algorithms
Types of clustering and different types of clustering algorithms
Prashanth Guntal
 
Kohonen self organizing maps
Kohonen self organizing mapsKohonen self organizing maps
Kohonen self organizing maps
raphaelkiminya
 
Optimizing Data Partitioning at Broadcasting the Data
Optimizing Data Partitioning at Broadcasting the DataOptimizing Data Partitioning at Broadcasting the Data
Optimizing Data Partitioning at Broadcasting the Data
Takashi Yamanoue
 
Cnn
CnnCnn
K-means clustering algorithm
K-means clustering algorithmK-means clustering algorithm
K-means clustering algorithm
Vinit Dantkale
 
Neural nw k means
Neural nw k meansNeural nw k means
Neural nw k means
Eng. Dr. Dennis N. Mwighusa
 
Basics of Machine Learning
Basics of Machine LearningBasics of Machine Learning
Basics of Machine Learning
Pranav Challa
 
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Universitat Politècnica de Catalunya
 
Machine learning applications in aerospace domain
Machine learning applications in aerospace domainMachine learning applications in aerospace domain
Machine learning applications in aerospace domain
홍배 김
 
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
Simplilearn
 
Svm vs ls svm
Svm vs ls svmSvm vs ls svm
Svm vs ls svm
Pulipaka Sai Ravi Teja
 
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Florent Renucci
 

What's hot (20)

End sem
End semEnd sem
End sem
 
Clustering techniques
Clustering techniquesClustering techniques
Clustering techniques
 
Training machine learning knn 2017
Training machine learning knn 2017Training machine learning knn 2017
Training machine learning knn 2017
 
Introduction to data mining and machine learning
Introduction to data mining and machine learningIntroduction to data mining and machine learning
Introduction to data mining and machine learning
 
K - Nearest neighbor ( KNN )
K - Nearest neighbor  ( KNN )K - Nearest neighbor  ( KNN )
K - Nearest neighbor ( KNN )
 
DATA MINING:Clustering Types
DATA MINING:Clustering TypesDATA MINING:Clustering Types
DATA MINING:Clustering Types
 
K-Means manual work
K-Means manual workK-Means manual work
K-Means manual work
 
Types of clustering and different types of clustering algorithms
Types of clustering and different types of clustering algorithmsTypes of clustering and different types of clustering algorithms
Types of clustering and different types of clustering algorithms
 
Kohonen self organizing maps
Kohonen self organizing mapsKohonen self organizing maps
Kohonen self organizing maps
 
Optimizing Data Partitioning at Broadcasting the Data
Optimizing Data Partitioning at Broadcasting the DataOptimizing Data Partitioning at Broadcasting the Data
Optimizing Data Partitioning at Broadcasting the Data
 
Kmeans
KmeansKmeans
Kmeans
 
Cnn
CnnCnn
Cnn
 
K-means clustering algorithm
K-means clustering algorithmK-means clustering algorithm
K-means clustering algorithm
 
Neural nw k means
Neural nw k meansNeural nw k means
Neural nw k means
 
Basics of Machine Learning
Basics of Machine LearningBasics of Machine Learning
Basics of Machine Learning
 
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
 
Machine learning applications in aerospace domain
Machine learning applications in aerospace domainMachine learning applications in aerospace domain
Machine learning applications in aerospace domain
 
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
 
Svm vs ls svm
Svm vs ls svmSvm vs ls svm
Svm vs ls svm
 
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
Manifold Blurring Mean Shift algorithms for manifold denoising, report, 2012
 

Similar to Learning multifractal structure in large networks (Purdue ML Seminar)

Trackster Pruning at the CMS High-Granularity Calorimeter
Trackster Pruning at the CMS High-Granularity CalorimeterTrackster Pruning at the CMS High-Granularity Calorimeter
Trackster Pruning at the CMS High-Granularity Calorimeter
Yousef Fadila
 
ML basic &amp; clustering
ML basic &amp; clusteringML basic &amp; clustering
ML basic &amp; clustering
monalisa Das
 
Learning multifractal structure in large networks (KDD 2014)
Learning multifractal structure in large networks (KDD 2014)Learning multifractal structure in large networks (KDD 2014)
Learning multifractal structure in large networks (KDD 2014)
Austin Benson
 
CLUSTER ANALYSIS ALGORITHMS.pptx
CLUSTER ANALYSIS ALGORITHMS.pptxCLUSTER ANALYSIS ALGORITHMS.pptx
CLUSTER ANALYSIS ALGORITHMS.pptx
ShwetapadmaBabu1
 
ensembles_emptytemplate_v2
ensembles_emptytemplate_v2ensembles_emptytemplate_v2
ensembles_emptytemplate_v2Shrayes Ramesh
 
Anomaly detection using deep one class classifier
Anomaly detection using deep one class classifierAnomaly detection using deep one class classifier
Anomaly detection using deep one class classifier
홍배 김
 
Efficient anomaly detection via matrix sketching
Efficient anomaly detection via matrix sketchingEfficient anomaly detection via matrix sketching
Efficient anomaly detection via matrix sketching
Hsing-chuan Hsieh
 
CS 354 More Graphics Pipeline
CS 354 More Graphics PipelineCS 354 More Graphics Pipeline
CS 354 More Graphics Pipeline
Mark Kilgard
 
CSA 3702 machine learning module 3
CSA 3702 machine learning module 3CSA 3702 machine learning module 3
CSA 3702 machine learning module 3
Nandhini S
 
Perspective in Informatics 3 - Assignment 2 - Answer Sheet
Perspective in Informatics 3 - Assignment 2 - Answer SheetPerspective in Informatics 3 - Assignment 2 - Answer Sheet
Perspective in Informatics 3 - Assignment 2 - Answer Sheet
Hoang Nguyen Phong
 
"An adaptive modular approach to the mining of sensor network ...
"An adaptive modular approach to the mining of sensor network ..."An adaptive modular approach to the mining of sensor network ...
"An adaptive modular approach to the mining of sensor network ...butest
 
K-Nearest Neighbor Classifier
K-Nearest Neighbor ClassifierK-Nearest Neighbor Classifier
K-Nearest Neighbor Classifier
Neha Kulkarni
 
K means report
K means reportK means report
K means report
Gaurav Handa
 
CNN for modeling sentence
CNN for modeling sentenceCNN for modeling sentence
CNN for modeling sentence
ANISH BHANUSHALI
 
clustering tendency
clustering tendencyclustering tendency
clustering tendency
Amir Shokri
 
Mit15 082 jf10_lec01
Mit15 082 jf10_lec01Mit15 082 jf10_lec01
Mit15 082 jf10_lec01Saad Liaqat
 
multiarmed bandit.ppt
multiarmed bandit.pptmultiarmed bandit.ppt
multiarmed bandit.ppt
LPrashanthi
 
Indexing Text with Approximate q-grams
Indexing Text with Approximate q-gramsIndexing Text with Approximate q-grams
Indexing Text with Approximate q-grams
Yasmine Long
 
Clustering.pptx
Clustering.pptxClustering.pptx
Clustering.pptx
19526YuvaKumarIrigi
 

Similar to Learning multifractal structure in large networks (Purdue ML Seminar) (20)

Trackster Pruning at the CMS High-Granularity Calorimeter
Trackster Pruning at the CMS High-Granularity CalorimeterTrackster Pruning at the CMS High-Granularity Calorimeter
Trackster Pruning at the CMS High-Granularity Calorimeter
 
ML basic &amp; clustering
ML basic &amp; clusteringML basic &amp; clustering
ML basic &amp; clustering
 
Learning multifractal structure in large networks (KDD 2014)
Learning multifractal structure in large networks (KDD 2014)Learning multifractal structure in large networks (KDD 2014)
Learning multifractal structure in large networks (KDD 2014)
 
CLUSTER ANALYSIS ALGORITHMS.pptx
CLUSTER ANALYSIS ALGORITHMS.pptxCLUSTER ANALYSIS ALGORITHMS.pptx
CLUSTER ANALYSIS ALGORITHMS.pptx
 
ensembles_emptytemplate_v2
ensembles_emptytemplate_v2ensembles_emptytemplate_v2
ensembles_emptytemplate_v2
 
Anomaly detection using deep one class classifier
Anomaly detection using deep one class classifierAnomaly detection using deep one class classifier
Anomaly detection using deep one class classifier
 
Efficient anomaly detection via matrix sketching
Efficient anomaly detection via matrix sketchingEfficient anomaly detection via matrix sketching
Efficient anomaly detection via matrix sketching
 
CS 354 More Graphics Pipeline
CS 354 More Graphics PipelineCS 354 More Graphics Pipeline
CS 354 More Graphics Pipeline
 
CSA 3702 machine learning module 3
CSA 3702 machine learning module 3CSA 3702 machine learning module 3
CSA 3702 machine learning module 3
 
Perspective in Informatics 3 - Assignment 2 - Answer Sheet
Perspective in Informatics 3 - Assignment 2 - Answer SheetPerspective in Informatics 3 - Assignment 2 - Answer Sheet
Perspective in Informatics 3 - Assignment 2 - Answer Sheet
 
"An adaptive modular approach to the mining of sensor network ...
"An adaptive modular approach to the mining of sensor network ..."An adaptive modular approach to the mining of sensor network ...
"An adaptive modular approach to the mining of sensor network ...
 
Ch07 linearspacealignment
Ch07 linearspacealignmentCh07 linearspacealignment
Ch07 linearspacealignment
 
K-Nearest Neighbor Classifier
K-Nearest Neighbor ClassifierK-Nearest Neighbor Classifier
K-Nearest Neighbor Classifier
 
K means report
K means reportK means report
K means report
 
CNN for modeling sentence
CNN for modeling sentenceCNN for modeling sentence
CNN for modeling sentence
 
clustering tendency
clustering tendencyclustering tendency
clustering tendency
 
Mit15 082 jf10_lec01
Mit15 082 jf10_lec01Mit15 082 jf10_lec01
Mit15 082 jf10_lec01
 
multiarmed bandit.ppt
multiarmed bandit.pptmultiarmed bandit.ppt
multiarmed bandit.ppt
 
Indexing Text with Approximate q-grams
Indexing Text with Approximate q-gramsIndexing Text with Approximate q-grams
Indexing Text with Approximate q-grams
 
Clustering.pptx
Clustering.pptxClustering.pptx
Clustering.pptx
 

More from Austin Benson

Hypergraph Cuts with General Splitting Functions (JMM)
Hypergraph Cuts with General Splitting Functions (JMM)Hypergraph Cuts with General Splitting Functions (JMM)
Hypergraph Cuts with General Splitting Functions (JMM)
Austin Benson
 
Spectral embeddings and evolving networks
Spectral embeddings and evolving networksSpectral embeddings and evolving networks
Spectral embeddings and evolving networks
Austin Benson
 
Computational Frameworks for Higher-order Network Data Analysis
Computational Frameworks for Higher-order Network Data AnalysisComputational Frameworks for Higher-order Network Data Analysis
Computational Frameworks for Higher-order Network Data Analysis
Austin Benson
 
Higher-order link prediction and other hypergraph modeling
Higher-order link prediction and other hypergraph modelingHigher-order link prediction and other hypergraph modeling
Higher-order link prediction and other hypergraph modeling
Austin Benson
 
Hypergraph Cuts with General Splitting Functions
Hypergraph Cuts with General Splitting FunctionsHypergraph Cuts with General Splitting Functions
Hypergraph Cuts with General Splitting Functions
Austin Benson
 
Hypergraph Cuts with General Splitting Functions
Hypergraph Cuts with General Splitting FunctionsHypergraph Cuts with General Splitting Functions
Hypergraph Cuts with General Splitting Functions
Austin Benson
 
Higher-order link prediction
Higher-order link predictionHigher-order link prediction
Higher-order link prediction
Austin Benson
 
Simplicial closure & higher-order link prediction
Simplicial closure & higher-order link predictionSimplicial closure & higher-order link prediction
Simplicial closure & higher-order link prediction
Austin Benson
 
Three hypergraph eigenvector centralities
Three hypergraph eigenvector centralitiesThree hypergraph eigenvector centralities
Three hypergraph eigenvector centralities
Austin Benson
 
Semi-supervised learning of edge flows
Semi-supervised learning of edge flowsSemi-supervised learning of edge flows
Semi-supervised learning of edge flows
Austin Benson
 
Choosing to grow a graph
Choosing to grow a graphChoosing to grow a graph
Choosing to grow a graph
Austin Benson
 
Link prediction in networks with core-fringe structure
Link prediction in networks with core-fringe structureLink prediction in networks with core-fringe structure
Link prediction in networks with core-fringe structure
Austin Benson
 
Higher-order Link Prediction GraphEx
Higher-order Link Prediction GraphExHigher-order Link Prediction GraphEx
Higher-order Link Prediction GraphEx
Austin Benson
 
Higher-order Link Prediction Syracuse
Higher-order Link Prediction SyracuseHigher-order Link Prediction Syracuse
Higher-order Link Prediction Syracuse
Austin Benson
 
Random spatial network models for core-periphery structure
Random spatial network models for core-periphery structureRandom spatial network models for core-periphery structure
Random spatial network models for core-periphery structure
Austin Benson
 
Random spatial network models for core-periphery structure.
Random spatial network models for core-periphery structure.Random spatial network models for core-periphery structure.
Random spatial network models for core-periphery structure.
Austin Benson
 
Simplicial closure & higher-order link prediction
Simplicial closure & higher-order link predictionSimplicial closure & higher-order link prediction
Simplicial closure & higher-order link prediction
Austin Benson
 
Simplicial closure and simplicial diffusions
Simplicial closure and simplicial diffusionsSimplicial closure and simplicial diffusions
Simplicial closure and simplicial diffusions
Austin Benson
 
Sampling methods for counting temporal motifs
Sampling methods for counting temporal motifsSampling methods for counting temporal motifs
Sampling methods for counting temporal motifs
Austin Benson
 
Set prediction three ways
Set prediction three waysSet prediction three ways
Set prediction three ways
Austin Benson
 

More from Austin Benson (20)

Hypergraph Cuts with General Splitting Functions (JMM)
Hypergraph Cuts with General Splitting Functions (JMM)Hypergraph Cuts with General Splitting Functions (JMM)
Hypergraph Cuts with General Splitting Functions (JMM)
 
Spectral embeddings and evolving networks
Spectral embeddings and evolving networksSpectral embeddings and evolving networks
Spectral embeddings and evolving networks
 
Computational Frameworks for Higher-order Network Data Analysis
Computational Frameworks for Higher-order Network Data AnalysisComputational Frameworks for Higher-order Network Data Analysis
Computational Frameworks for Higher-order Network Data Analysis
 
Higher-order link prediction and other hypergraph modeling
Higher-order link prediction and other hypergraph modelingHigher-order link prediction and other hypergraph modeling
Higher-order link prediction and other hypergraph modeling
 
Hypergraph Cuts with General Splitting Functions
Hypergraph Cuts with General Splitting FunctionsHypergraph Cuts with General Splitting Functions
Hypergraph Cuts with General Splitting Functions
 
Hypergraph Cuts with General Splitting Functions
Hypergraph Cuts with General Splitting FunctionsHypergraph Cuts with General Splitting Functions
Hypergraph Cuts with General Splitting Functions
 
Higher-order link prediction
Higher-order link predictionHigher-order link prediction
Higher-order link prediction
 
Simplicial closure & higher-order link prediction
Simplicial closure & higher-order link predictionSimplicial closure & higher-order link prediction
Simplicial closure & higher-order link prediction
 
Three hypergraph eigenvector centralities
Three hypergraph eigenvector centralitiesThree hypergraph eigenvector centralities
Three hypergraph eigenvector centralities
 
Semi-supervised learning of edge flows
Semi-supervised learning of edge flowsSemi-supervised learning of edge flows
Semi-supervised learning of edge flows
 
Choosing to grow a graph
Choosing to grow a graphChoosing to grow a graph
Choosing to grow a graph
 
Link prediction in networks with core-fringe structure
Link prediction in networks with core-fringe structureLink prediction in networks with core-fringe structure
Link prediction in networks with core-fringe structure
 
Higher-order Link Prediction GraphEx
Higher-order Link Prediction GraphExHigher-order Link Prediction GraphEx
Higher-order Link Prediction GraphEx
 
Higher-order Link Prediction Syracuse
Higher-order Link Prediction SyracuseHigher-order Link Prediction Syracuse
Higher-order Link Prediction Syracuse
 
Random spatial network models for core-periphery structure
Random spatial network models for core-periphery structureRandom spatial network models for core-periphery structure
Random spatial network models for core-periphery structure
 
Random spatial network models for core-periphery structure.
Random spatial network models for core-periphery structure.Random spatial network models for core-periphery structure.
Random spatial network models for core-periphery structure.
 
Simplicial closure & higher-order link prediction
Simplicial closure & higher-order link predictionSimplicial closure & higher-order link prediction
Simplicial closure & higher-order link prediction
 
Simplicial closure and simplicial diffusions
Simplicial closure and simplicial diffusionsSimplicial closure and simplicial diffusions
Simplicial closure and simplicial diffusions
 
Sampling methods for counting temporal motifs
Sampling methods for counting temporal motifsSampling methods for counting temporal motifs
Sampling methods for counting temporal motifs
 
Set prediction three ways
Set prediction three waysSet prediction three ways
Set prediction three ways
 

Recently uploaded

1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
Tiktokethiodaily
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
ewymefz
 
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
nscud
 
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
oz8q3jxlp
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
ewymefz
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Linda486226
 
一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
enxupq
 
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
mbawufebxi
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
benishzehra469
 
一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单
ocavb
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Subhajit Sahu
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
axoqas
 
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
AbhimanyuSinha9
 
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
slg6lamcq
 
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
axoqas
 
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
nscud
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
ArpitMalhotra16
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
enxupq
 
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
v3tuleee
 

Recently uploaded (20)

1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
1.Seydhcuxhxyxhccuuxuxyxyxmisolids 2019.pptx
 
Criminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdfCriminal IP - Threat Hunting Webinar.pdf
Criminal IP - Threat Hunting Webinar.pdf
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单
 
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
一比一原版(CBU毕业证)卡普顿大学毕业证成绩单
 
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
一比一原版(Deakin毕业证书)迪肯大学毕业证如何办理
 
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
一比一原版(UPenn毕业证)宾夕法尼亚大学毕业证成绩单
 
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdfSample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
Sample_Global Non-invasive Prenatal Testing (NIPT) Market, 2019-2030.pdf
 
一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单一比一原版(YU毕业证)约克大学毕业证成绩单
一比一原版(YU毕业证)约克大学毕业证成绩单
 
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
一比一原版(Bradford毕业证书)布拉德福德大学毕业证如何办理
 
Empowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptxEmpowering Data Analytics Ecosystem.pptx
Empowering Data Analytics Ecosystem.pptx
 
一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单一比一原版(TWU毕业证)西三一大学毕业证成绩单
一比一原版(TWU毕业证)西三一大学毕业证成绩单
 
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
Algorithmic optimizations for Dynamic Levelwise PageRank (from STICD) : SHORT...
 
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
哪里卖(usq毕业证书)南昆士兰大学毕业证研究生文凭证书托福证书原版一模一样
 
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...Best best suvichar in gujarati english meaning of this sentence as Silk road ...
Best best suvichar in gujarati english meaning of this sentence as Silk road ...
 
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide毕业证书)阿德莱德大学毕业证如何办理
 
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
做(mqu毕业证书)麦考瑞大学毕业证硕士文凭证书学费发票原版一模一样
 
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
一比一原版(CBU毕业证)不列颠海角大学毕业证成绩单
 
standardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghhstandardisation of garbhpala offhgfffghh
standardisation of garbhpala offhgfffghh
 
一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单一比一原版(QU毕业证)皇后大学毕业证成绩单
一比一原版(QU毕业证)皇后大学毕业证成绩单
 
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理一比一原版(UofS毕业证书)萨省大学毕业证如何办理
一比一原版(UofS毕业证书)萨省大学毕业证如何办理
 

Learning multifractal structure in large networks (Purdue ML Seminar)

  • 1. Twitter: 3 categories 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 LEARNING MULTIFRACTAL STRUCTURE IN LARGE NETWORKS KDD 2014 Austin Benson (arbenson@stanford.edu) Carlos Riquelme Sven Schmit Institute for Computational and Mathematical Engineering, Stanford University Purdue Machine Learning Seminar, Sept. 11 2014
  • 2. Large-scale nonnegative matrix factorization with Jason Lee, Bartek Rajwa, David Gleich NIPS 2014
  • 3. Fast matrix multiplication: bridging theory and practice with Grey Ballard Performance (24 cores) on N x 2800 x N 20 19 18 17 16 15 14 13 12 5000 10000 15000 20000 dimension (N) Effective GFLOPS / core arXiv: 1409.2908, 2014 MKL <4,2,4> <4,3,3> <3,2,3> <4,2,3> STRASSEN BINI SCHONHAGE sequential shared memory distributed memory high-performance
  • 4. Setting • We want a simple, scalable method to model networks and generate random (undirected) graphs • Looking for graph generators that can mimic real world graph structure: degree distribution, large number of triangles, etc. Why? • Useful as null models • Helps to understanding graphs • Generate test problems
  • 5. Lots of work in this area • Erdős-Rényi model [1959] • Watts-Strogatz model [1998] • Chung-Lu [2000] • Random Typing Graphs [Akoglu+2009] • Stochastic Kronecker Graphs [Leskovec+2010] • Mixed Kroncker Product Graph [Moreno+2010] • Multifractal Network Generators [Palla+2011] • Block two-level Erdős-Rényi [Seshadhri+2012] • Transitive Chung-Lu [Pfeiffer+2012]
  • 6. Multifractal Network Generators (MFNG) • Simple, recursive model [Palla+ 2011] Parameters: • Symmetric probability matrix • Set of lengths that sum to 1 • Number of recursive levels
  • 7. MFNG – two levels of recursion 1. Sample three nodes Uniform [0, 1] 2. Find “category” at first level 3. Expand interval back to [0, 1] 4. Find “category” at second level 1, 2 2, 1 2, 2 Categories:
  • 8. MFNG – two levels of recursion 1, 2 2, 1 2, 2 Categories:
  • 9. MFNG – fractal interpretation
  • 10. MFNG – general parameters • Number of categories: c • c x c symmetric probability matrix P • Length-c vector of lengths • Number of recursive levels, r c = r = 3
  • 11. Scalability issues • Expanded probability matrix grows exponentially with number of recursive levels • This makes it difficult to do inference • We only have c + c(c – 1) / 2 parameters with c categories
  • 12. Recursive decomposition • Lemma [Benson+14]: Take r i.i.d. graph samples from MFNG process with one level of recursion. The distribution of the intersection of the graphs is identical to the same MFNG process with r recursive levels. • Proof: This follows from the fact that the categories of a node at each recursive level are independent.
  • 13. Subgraph probabilities • Theorem [Benson+14]: Probability of subset of edges exists between any subset of nodes from MFNG process with r recursive levels is the rth power of the probability that the same subset of edges exists in same MFNG with one recursive level. Prob( ) = Probability of all three edges existing, given categories Probability of nodes having categories I, j, k
  • 14. We can easily compute subgraph moments Any three nodes are equally likely to form a triangle before Uniform [0, 1] (before determining categories)
  • 15. We can easily compute subgraph first moments Expected number of… Edges, wedges, 3-stars, etc. Triangles, 4-cliques, etc.
  • 16. Can also get second moments Number of edges Indicator of edge (i, j) = Xij Wedge (i, j, k) Independent
  • 17. Open triangles • We can only directly compute subgraph probabilities where the edges exist ? Prob( ) = x Prob( ) – Prob( )
  • 18. Method of Moments • Count number of wedges, 3-stars, triangles, 4-cliques, etc. in network of interest (fi) • Try to find parameters such that the expected values, E[Fi], match the empirical counts, fi Fast computation with our theory
  • 19. Method of Moments • Computing fi can be expensive (4-cliques)  can use estimators [Seshadhri+13] • Not convex but fast  many random restarts
  • 20. Graph property proxies • Power law degree distribution: edges, wedges, 3-stars, etc. • Clustering: cliques
  • 21. We can recover the model Original MFNG  Single sample  Method of Moments  Recovered MFNG Original Recovered
  • 22. Results on Twitter network 230M 13.1M SKG method of moments [Gleich & Owen2012] KronFit [Leskovec+2010]
  • 23. Results on Twitter network Twitter: 2 categories 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Twitter: 3 categories 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 c = 2 c = 3
  • 24. We need to fit all parameters
  • 25. Results on citation network 26.3M 1.3M
  • 26. Results on citation network Citation: 2 categories 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Citation: 3 categories 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 c = 2 c = 3
  • 27. We need to fit all parameters
  • 28. Oscillating degree distributions Interesting oscillations in degree distribution. Also observed in Stochastic Kronecker Graphs. Less noticeable when using three categories
  • 29. Oscillating degree distributions At each recursive level, add noise to the probability matrix [Seshadhri+2013]: More noise leads to flatter degree distribution. (All with two categories.)
  • 30. Per-degree clustering coefficient Facebook ego network Citation Avg. fraction of closed triangles Node degree
  • 31. MFNG – naïve sampling is expensive 1, 2 2, 1 2, 2 Categories: How do we avoid O(n2) coin flips?
  • 32. Recursive decomposition does not help • First idea: Use recursive decomposition. Generate r graphs and take the intersection. • With one level of recursion and two categories, there are four Erdős-Rényi components to consider. We can sample each one quickly. • When p22 isn’t close to 0 or close to 1, have to store a dense graph.
  • 33. “Ball dropping” does not quite work • Second idea: adapt “ball dropping” scheme from SKG [Leskovec+2010]. Sample proportional to: … at each level Might get category pairs: (1, 1), (2, 2) Choose random pair from (blue, green, orange) Problem: just as likely to have 3 nodes fall into box where yellow node is
  • 34. Adapt for number of nodes per box Sample proportional to: … at each level Might get category pairs: (1, 1), (2, 2) 3 actual nodes: 3 possible edges Expected: 5(5 – 1)(1/4)^2 / 2 = 0.625 Sample e ~ Poisson(3 / 0.625λ) Add e edges to the box Larger λ  need more samples, but less dependency between edges.
  • 35. Fast sampling heuristic: overview Can compute these with methods presented earlier Sample proportional to: at each level Sample e ~ Poisson(actual / expected * λ) Add e edges to the box 1. 2. 3. Repeat 2 and 3 until no more edges left
  • 36. MFNG: what we have learned • Method of Moments works well to estimate MFNG parameters for real networks • Able to match degree distribution, even though we don’t explicitly fit for it • Per-degree clustering coefficient is still a challenge • We can sample quickly, but we would like an exact fast sampling algorithm
  • 37. Twitter: 3 categories 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 LEARNING MULTIFRACTAL STRUCTURE IN LARGE NETWORKS KDD 2014 Austin Benson (arbenson@stanford.edu) Carlos Riquelme Sven Schmit Institute for Computational and Mathematical Engineering, Stanford University Purdue Machine Learning Seminar, Sept. 11 2014

Editor's Notes

  1. min_{mathcal{K}, H ge 0} ||A - A(:, mathcal{K})H ||
  2. C = A cdot B T_3 imes_{1} ext{vec}(A) imes_{2} ext{vec}(B) = egin{bmatrix} A_{11} & A_{12} & A_{21} & A_{22} end{bmatrix} egin{bmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ end{bmatrix} egin{bmatrix} B_{11} \ B_{12} \ B_{21} \ B_{22} end{bmatrix}
  3. mathbb{E}left(# ext{ triangles} ight) = mathbb{E}left(sum_{ ext{nodes } i, j, k}mathbb{I}left( ext{triangle }i, j, k ight) ight) = sum_{ ext{nodes } i, j, k}mathbb{P}left( ext{triangle }i, j, k ight) = {n choose 3} mathbb{P}left( ext{triangle }1, 2, 3 ight)
  4. mathbb{E}[X^2] = mathbb{E}left[ left(sum_{i < j} X_{ij} ight)left(sum_{i < j} X_{ij} ight) ight] = mathbb{E}left[ sum_{i < j}X^2_{ij} ight] + mathbb{E}left[ sum_{i, j eq k, i < j, k}X_{ij}X_{ik} ight] + mathbb{E}left[ sum_{i eq k, j eq z, i < j, k< z}X_{ij}X_{kz} ight]
  5. egin{aligned} & underset{P, ell, r}{ ext{minimize}} & & sum_{i}frac{|f_i - mathbb{E}[F_i]|}{f_i} \ & ext{subject to} & & 0 le p_{ij} = p_{ji} le 1, & 1 le i le j le c \ & & & 0 le ell_{i} le 1, & 1 le i le c \ & & & sum_{i=1}^{c}ell_i = 1 end{aligned}
  6. egin{table}[tb] centering egin{tabular}{l c c c c c c c c} & $|V|$ & $c$ & $r$ & $ell_1$ & $ell_2$ & $p_{11}$ & $p_{12}$ & $p_{22}$ \ & 6,000 & 2 & 10 & 0.25 & 0.75 & 0.59 & 0.43 & 0.78 \ & 6,000 & 2 & 9 & 0.2728 & 0.7272 & 0.5431 & 0.4101 & 0.7593 \ end{tabular} label{tab:mfng_recovery}
  7. Sample $mu_i sim ext{Uniform}[-b, b]$ P^{(i)} = egin{bmatrix} p_{11} -frac{2mu_i p_{11}}{p_{11} + p_{22}} & p_{12} + mu_i \ p_{21} + mu_i & p_{22} - frac{2mu_ip_{22}}{p_{11} + p_{22}} end{bmatrix} $P^{(i)} = min(max(P^{(i)}, 0), 1)$ entry-wise
  8. $(ell_{1}^2p_{11}, ell_{1}ell_{2}p_{12}, ell_{2}ell_{1}p_{21}, ell_2^2p_{22})$