SlideShare a Scribd company logo
Bipolar Junction Transistor Characterstics
Experiment - #8
Kehali B. Haileselassie and Kou Vue
11/14/2013

ELC ENG 330 – Electronics I

Fall 201
Purpose:
The purpose of this laboratory is to become familiar with the D.C. operation of the
bipolar junction transistor (BJT), and a basic D.C. circuit using the BJT, namely, the current
mirror.

Equipment
External Multi-meter (for current measurements)
Regulated Power Supply
2N3904
Resistors

Introduction
The objective of this lab is to analyze the characteristics of Transistor. A transistor is a three-

terminal device which allows a small current to control a much larger current, thus achieving a
“current gain.” this lab, we focus on BJTs. The three terminals of a transistor are the base (usually
used as the control terminal), the emitter and the collector. There are three parts of the lab and
voltage across Rc is measured and current Rc is computed. Once the measurement is taken results are
plotted on the graphs and DC current Gain, Incremental resistance etc. are found.

A bipolar junction transistor is formed by joining three sections of semiconductors
withalternatively differentdoping. The middle section (base) is narrow and one of the other
tworegions (emitter) is heavily doped. Two variants of BJT are possible: NPN and PNP.
In NPN transistors,electron flow is dominant while PNP transistors rely mostly on the flow of
holes. Therefore,to zeroth order, NPN and PNP transistors behave similarly except the sign of
current andvoltages are reversed.! In practice, NPN transistors are much morepopular than PNP
transistors because electrons move faster in a semiconductor. As a result,a NPN transistor has a
faster response time compared to a PNP transistor.
The BJT is a three-terminal semiconductor device containing two pn junctions. If
checked with an ohmmeter it appears to be two diodes of opposite polarity connected in series.
However, unlike two series diodes, the BJT can be used to amplify

Procedure

Components
Transistor (2N3904)

Value
-

Rc
Rb
Vbb DC Voltage Supply
Vcc Voltage Supply

100 Ohms
33KOhms
Vary
Vary

Figure_1

1. Connect the 2N3904 transistor up into the circuit as shown above; for your base and
Collectorresistors measure and record the exact values. (Set VBB and VCC voltages
set to zero).
2. Measure the voltage across RB while increasing the VBB supply voltage. Continue to
increase VBB until the voltage across RB reaches 1.65 volts in order to set up a base current
of 50 μA, which you can confirm by Ohm’s law.
3. Without changing VBB, increase VCC until the voltage from collector to emitter is +2.0
volts. Then, record the value of voltage across the resistor RC, and compute the collector
current (which equals the current through RC) by using Ohm’s Law applied to RC.
4. Without changing VBB, repeat step 3 by increasing VCC until the voltage from collector
to emitter is +4.0 volts. Record the value of voltage across the resistor RC, compute the
collector current as before, and enter the values into the table.
5. Repeat for VCC values of 6, 8 and 10 volts, and complete the table.
6. Next, reset VCC to a value of zero volts, and increase VBB until the voltage across RB is
3.3 volts, giving a base current of 100 μA.
7. Repeat steps 3, 4 and 5, completing the following table:
8. Next, reset VCC to a value of zero volts, and increase VBB until the voltage across RB is
4.95 volts, giving a base current of 150 μA.
9. Repeat steps 3, 4 and 5, completing the following table:
10. Plot the transistor characteristics on the following graph, using the values from the
three tables above. You should have three curves, labeled with IB = 50μA, 100μA and
150μA.
11. From your plotted curves, estimate the DC current gain (defined as βDC ≡ IC/IB) at a
value of VCE = 3 volts, for each value of base current (50μA, 100μA and 150μA).
12. Repeat step 11 at a value of VCE = 7.5 volts, for each value of base current (50μA,
100μA and 150μA).
13. Finally, for the case where IB = 150μA, compute the “incremental resistance”
ΔVCE/ΔIC = (VCE1 – VCE2)/(IC1 – IC2). Use the points at VCE = 10 volts and VCE = 2 volts,
on the IB = 150μA curve.
Results
Ib 50uA
Vce(Volts)Vrc (Volts) Irc = Ic = Vrc/Rc
2
1.12
0.0112
4
1.17
0.0117
6
1.23
0.0123
8
1.31
0.0131
10
1.41
0.0141
Ib 100uA
Vce(Volts)Vrc (Volts) Irc = Ic = Vrc/Rc
2
2.25
0.0225
4
2.5
0.025
6
2.69
0.0269
8
2.88
0.0288
10
3.1
0.031
Ib 150uA
Vce(Volts)Vrc (Volts) Irc = Ic = Vrc/Rc
2
3.09
0.0309
4
3.64
0.0364
6
3.96
0.0396
8
4.28
0.0428
10
4.5
0.045

Figure_2Voltage Vs Current Rb

Table_2
Voltage

IB = 150uA Ic A

3
7.5

(Ic/Ib) DC Current Gain
0.0309
206
0.0418
278.6666667

Table_3 DC Current Gain

Yes, the DC current gain is depending on IB.
Yes, the DC current gain is significantly depending on IB.
Change V
Ib = 150uA

Stimulation Result

Change I

8
Table_4 Incremental Resistance

Incremental Resistance
0.0141
567.3758865
Discussion &Analysis:
One of the Task of the transistor is to provide DC current gain. The measurement shows
exactly that. In the circuit input current Ib and output current is Ic and DC current gain can be
found using Ic/Ib and its shown in the figure 5 for voltage 3 and voltage 7.5. Also the
incremental resistance is found by dividing change in voltage by change in current. I think
current gain does not depend on the Ib, because if Ib increase then Icincreases with similar ratio.
As seen in figure 5, as voltage increases current gain increases as well. Resistance value is
medium and that is 568 ohms.Since BJT are useful in discrete circuit design, we analyzedthestaticcharacteristicof
BJT.We measured and plotted the I-V curve for collector current and collector-emitter voltage, while keeping baseemitter voltage constant.

Conclusion
A single npn BJT was used to drive this differential amplifier. The collector current entering
the npn BJT will be the current source driving the differential amplifier. The transistor is good
component to get amplified current using a very small current. Dc current gain increases as Voltage
is increases. But Dc current gain for the same voltage with the different base current is same. Each
part has different base current but if DC current gain is found for same voltage on different curves it
will come out to be about the same.

More Related Content

What's hot

Power electronics Uncontrolled Rectifiers - Diode Rectifiers
Power electronics   Uncontrolled Rectifiers - Diode RectifiersPower electronics   Uncontrolled Rectifiers - Diode Rectifiers
Power electronics Uncontrolled Rectifiers - Diode Rectifiers
Burdwan University
 
Bipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC Analysis
Jess Rangcasajo
 
SYNCHRONOUS MOTOR PROJECT REPORT
SYNCHRONOUS MOTOR PROJECT REPORT SYNCHRONOUS MOTOR PROJECT REPORT
SYNCHRONOUS MOTOR PROJECT REPORT
karmbir saini
 
single-phase-lab-report
single-phase-lab-reportsingle-phase-lab-report
single-phase-lab-reportMalik Zaid
 
Three Phase Bridge Rectifier
Three Phase Bridge RectifierThree Phase Bridge Rectifier
Three Phase Bridge Rectifier
arsalan raza
 
Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9kehali Haileselassie
 
U 4 ramp digital voltmeter
U 4 ramp digital voltmeterU 4 ramp digital voltmeter
U 4 ramp digital voltmeter
vmspraneeth
 
Three phase transformer
Three phase transformerThree phase transformer
Three phase transformer
ragulkncet
 
Thyrister/SCR
Thyrister/SCRThyrister/SCR
Thyrister/SCR
Ashvani Shukla
 
Thyristor
ThyristorThyristor
Thyristor
Vinod Srivastava
 
Variable Regulated Power Supply
Variable Regulated Power SupplyVariable Regulated Power Supply
Variable Regulated Power Supply
Bhanu Bhawesh
 
IGBT
IGBTIGBT
Rectifier
RectifierRectifier
Rectifier
SUMEER HUSSAIN
 
MOUNTING OF SCR
MOUNTING OF SCRMOUNTING OF SCR
MOUNTING OF SCR
RanjitKumar Parmar
 
Presentation 12v dc to 230v ac 100 wat invertor
Presentation 12v dc to 230v ac 100 wat invertorPresentation 12v dc to 230v ac 100 wat invertor
Presentation 12v dc to 230v ac 100 wat invertor
mirzaahmadali
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
Kausik das
 
A basic presentation on cycloconverter
A basic presentation on cycloconverterA basic presentation on cycloconverter
A basic presentation on cycloconverter
Rezvi Hossain
 
Electrical and-electronic-principles-and-technology-third-edition important book
Electrical and-electronic-principles-and-technology-third-edition important bookElectrical and-electronic-principles-and-technology-third-edition important book
Electrical and-electronic-principles-and-technology-third-edition important book
IYAKAREMYE Jean De Dieu
 
thevenin's theorem
thevenin's theoremthevenin's theorem
thevenin's theorem
Ashaduzzaman Kanon
 
Rectifier and Filter circuits (chapter14)
Rectifier and Filter circuits (chapter14)Rectifier and Filter circuits (chapter14)
Rectifier and Filter circuits (chapter14)
DHARUN MUGHILAN
 

What's hot (20)

Power electronics Uncontrolled Rectifiers - Diode Rectifiers
Power electronics   Uncontrolled Rectifiers - Diode RectifiersPower electronics   Uncontrolled Rectifiers - Diode Rectifiers
Power electronics Uncontrolled Rectifiers - Diode Rectifiers
 
Bipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC Analysis
 
SYNCHRONOUS MOTOR PROJECT REPORT
SYNCHRONOUS MOTOR PROJECT REPORT SYNCHRONOUS MOTOR PROJECT REPORT
SYNCHRONOUS MOTOR PROJECT REPORT
 
single-phase-lab-report
single-phase-lab-reportsingle-phase-lab-report
single-phase-lab-report
 
Three Phase Bridge Rectifier
Three Phase Bridge RectifierThree Phase Bridge Rectifier
Three Phase Bridge Rectifier
 
Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9
 
U 4 ramp digital voltmeter
U 4 ramp digital voltmeterU 4 ramp digital voltmeter
U 4 ramp digital voltmeter
 
Three phase transformer
Three phase transformerThree phase transformer
Three phase transformer
 
Thyrister/SCR
Thyrister/SCRThyrister/SCR
Thyrister/SCR
 
Thyristor
ThyristorThyristor
Thyristor
 
Variable Regulated Power Supply
Variable Regulated Power SupplyVariable Regulated Power Supply
Variable Regulated Power Supply
 
IGBT
IGBTIGBT
IGBT
 
Rectifier
RectifierRectifier
Rectifier
 
MOUNTING OF SCR
MOUNTING OF SCRMOUNTING OF SCR
MOUNTING OF SCR
 
Presentation 12v dc to 230v ac 100 wat invertor
Presentation 12v dc to 230v ac 100 wat invertorPresentation 12v dc to 230v ac 100 wat invertor
Presentation 12v dc to 230v ac 100 wat invertor
 
Op amp(operational amplifier)
Op amp(operational amplifier)Op amp(operational amplifier)
Op amp(operational amplifier)
 
A basic presentation on cycloconverter
A basic presentation on cycloconverterA basic presentation on cycloconverter
A basic presentation on cycloconverter
 
Electrical and-electronic-principles-and-technology-third-edition important book
Electrical and-electronic-principles-and-technology-third-edition important bookElectrical and-electronic-principles-and-technology-third-edition important book
Electrical and-electronic-principles-and-technology-third-edition important book
 
thevenin's theorem
thevenin's theoremthevenin's theorem
thevenin's theorem
 
Rectifier and Filter circuits (chapter14)
Rectifier and Filter circuits (chapter14)Rectifier and Filter circuits (chapter14)
Rectifier and Filter circuits (chapter14)
 

Viewers also liked

Steps in Simulation Study
Steps in Simulation StudySteps in Simulation Study
Steps in Simulation Study
Nalin Adhikari
 
Performance of dc motors experiment 2
Performance of dc motors experiment 2Performance of dc motors experiment 2
Performance of dc motors experiment 2
Karimi LordRamza
 
5 experiment -_characteristics_of_bipolar_junction_transistors
5 experiment -_characteristics_of_bipolar_junction_transistors5 experiment -_characteristics_of_bipolar_junction_transistors
5 experiment -_characteristics_of_bipolar_junction_transistorsengrsabi
 
146686534 ee-410-lab1-fall10-1305411901
146686534 ee-410-lab1-fall10-1305411901146686534 ee-410-lab1-fall10-1305411901
146686534 ee-410-lab1-fall10-1305411901
homeworkping3
 
Single stage bjt amplifier. experiment 6
Single stage bjt amplifier. experiment 6Single stage bjt amplifier. experiment 6
Single stage bjt amplifier. experiment 6
Karimi LordRamza
 
Experiment 2 AC Machines
Experiment 2 AC MachinesExperiment 2 AC Machines
Experiment 2 AC Machines
Karimi LordRamza
 
Dc servo motor
Dc servo motorDc servo motor
Dc servo motor
Jeegnesh Solanki
 

Viewers also liked (7)

Steps in Simulation Study
Steps in Simulation StudySteps in Simulation Study
Steps in Simulation Study
 
Performance of dc motors experiment 2
Performance of dc motors experiment 2Performance of dc motors experiment 2
Performance of dc motors experiment 2
 
5 experiment -_characteristics_of_bipolar_junction_transistors
5 experiment -_characteristics_of_bipolar_junction_transistors5 experiment -_characteristics_of_bipolar_junction_transistors
5 experiment -_characteristics_of_bipolar_junction_transistors
 
146686534 ee-410-lab1-fall10-1305411901
146686534 ee-410-lab1-fall10-1305411901146686534 ee-410-lab1-fall10-1305411901
146686534 ee-410-lab1-fall10-1305411901
 
Single stage bjt amplifier. experiment 6
Single stage bjt amplifier. experiment 6Single stage bjt amplifier. experiment 6
Single stage bjt amplifier. experiment 6
 
Experiment 2 AC Machines
Experiment 2 AC MachinesExperiment 2 AC Machines
Experiment 2 AC Machines
 
Dc servo motor
Dc servo motorDc servo motor
Dc servo motor
 

Similar to Lab 8 bipolar junction transistor characterstics

Intro electronics laboratory
Intro electronics laboratoryIntro electronics laboratory
Intro electronics laboratory
Thinh Pham Quoc
 
Multisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptxMultisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptx
wencove9
 
BJT & ITS BIASING
BJT & ITS BIASINGBJT & ITS BIASING
BJT & ITS BIASING
CharchilKajaliya
 
Basic lab 10
Basic lab 10Basic lab 10
Basic lab 10
muhmmadhassan4
 
Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9
kehali Haileselassie
 
Electronics and modern physics presentation
Electronics and modern physics presentationElectronics and modern physics presentation
Electronics and modern physics presentation
NoorulainRazzaq
 
BJT - Bipolar Junction Transistor / Electron Devices
BJT -  Bipolar Junction Transistor /  Electron DevicesBJT -  Bipolar Junction Transistor /  Electron Devices
BJT - Bipolar Junction Transistor / Electron Devices
Shiny Christobel
 
BJT by Emroz Sardar.pptx
BJT by Emroz Sardar.pptxBJT by Emroz Sardar.pptx
BJT by Emroz Sardar.pptx
Emroz Sardar
 
Cbcs e1 unit 3
Cbcs e1 unit 3Cbcs e1 unit 3
Cbcs e1 unit 3
MahiboobAliMulla
 
Physics Investigatory Project
Physics Investigatory ProjectPhysics Investigatory Project
Physics Investigatory Project
Nishant Jha
 
My_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdfMy_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdf
Elorme
 
ppt_ae.pdf
ppt_ae.pdfppt_ae.pdf
ppt_ae.pdf
aishwaryaaSanthosh
 
Bio-polar junction transistor (edc)
Bio-polar junction transistor  (edc)Bio-polar junction transistor  (edc)
Bio-polar junction transistor (edc)
Abhinay Potlabathini
 
Chapter-6 DC biasing-1.ppt
Chapter-6 DC biasing-1.pptChapter-6 DC biasing-1.ppt
Chapter-6 DC biasing-1.ppt
JeelBhanderi4
 
Arvind
ArvindArvind
Arvind
Arvind2311
 
BIASING OF BJT
BIASING OF BJT BIASING OF BJT
BIASING OF BJT
Prakash Rao
 
bjt ppt project.ppt
bjt ppt  project.pptbjt ppt  project.ppt
bjt ppt project.ppt
SURYAKANTASWAIN26
 
Lecture 8 bjt_1
Lecture 8 bjt_1Lecture 8 bjt_1
Lecture 8 bjt_1
Napex Terra
 

Similar to Lab 8 bipolar junction transistor characterstics (20)

Intro electronics laboratory
Intro electronics laboratoryIntro electronics laboratory
Intro electronics laboratory
 
Multisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptxMultisim_simulation_project_3_^0_4[1]-2.pptx
Multisim_simulation_project_3_^0_4[1]-2.pptx
 
BJT & ITS BIASING
BJT & ITS BIASINGBJT & ITS BIASING
BJT & ITS BIASING
 
Basic lab 10
Basic lab 10Basic lab 10
Basic lab 10
 
Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9
 
Electronics and modern physics presentation
Electronics and modern physics presentationElectronics and modern physics presentation
Electronics and modern physics presentation
 
BJT - Bipolar Junction Transistor / Electron Devices
BJT -  Bipolar Junction Transistor /  Electron DevicesBJT -  Bipolar Junction Transistor /  Electron Devices
BJT - Bipolar Junction Transistor / Electron Devices
 
BJT by Emroz Sardar.pptx
BJT by Emroz Sardar.pptxBJT by Emroz Sardar.pptx
BJT by Emroz Sardar.pptx
 
Cbcs e1 unit 3
Cbcs e1 unit 3Cbcs e1 unit 3
Cbcs e1 unit 3
 
BJT.ppt
BJT.pptBJT.ppt
BJT.ppt
 
Physics Investigatory Project
Physics Investigatory ProjectPhysics Investigatory Project
Physics Investigatory Project
 
My_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdfMy_lec_Bipolar_Junction_Transistor_text_book.pdf
My_lec_Bipolar_Junction_Transistor_text_book.pdf
 
7 trans
7 trans7 trans
7 trans
 
ppt_ae.pdf
ppt_ae.pdfppt_ae.pdf
ppt_ae.pdf
 
Bio-polar junction transistor (edc)
Bio-polar junction transistor  (edc)Bio-polar junction transistor  (edc)
Bio-polar junction transistor (edc)
 
Chapter-6 DC biasing-1.ppt
Chapter-6 DC biasing-1.pptChapter-6 DC biasing-1.ppt
Chapter-6 DC biasing-1.ppt
 
Arvind
ArvindArvind
Arvind
 
BIASING OF BJT
BIASING OF BJT BIASING OF BJT
BIASING OF BJT
 
bjt ppt project.ppt
bjt ppt  project.pptbjt ppt  project.ppt
bjt ppt project.ppt
 
Lecture 8 bjt_1
Lecture 8 bjt_1Lecture 8 bjt_1
Lecture 8 bjt_1
 

More from kehali Haileselassie

Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7  diode with operational amplifiers by kehali b. haileselassie and kouLab 7  diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
kehali Haileselassie
 
EE 305 Project_1 The Effective External Defibrillators
EE 305 Project_1 The Effective External Defibrillators EE 305 Project_1 The Effective External Defibrillators
EE 305 Project_1 The Effective External Defibrillators
kehali Haileselassie
 
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1  kirchhoff’s voltage and current law by kehali bekele haileselassieLab 1  kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
kehali Haileselassie
 
Lab 2 kirchhoffs voltage and current laws by kehali bekele haileselassie
Lab 2 kirchhoffs voltage and current laws by kehali bekele haileselassieLab 2 kirchhoffs voltage and current laws by kehali bekele haileselassie
Lab 2 kirchhoffs voltage and current laws by kehali bekele haileselassie
kehali Haileselassie
 
Lab 2 Kirchhoff’s Voltage and Current Laws for Circuits with Reactive Compon...
 Lab 2 Kirchhoff’s Voltage and Current Laws for Circuits with Reactive Compon... Lab 2 Kirchhoff’s Voltage and Current Laws for Circuits with Reactive Compon...
Lab 2 Kirchhoff’s Voltage and Current Laws for Circuits with Reactive Compon...
kehali Haileselassie
 
Engineering Mechanics Statics design problem # 5.4 concrete chut by Kehali...
Engineering Mechanics Statics  design problem  # 5.4  concrete chut by Kehali...Engineering Mechanics Statics  design problem  # 5.4  concrete chut by Kehali...
Engineering Mechanics Statics design problem # 5.4 concrete chut by Kehali...
kehali Haileselassie
 
Engineering Mechanics: Statics Design problem # 5.4 concrete chutw
 Engineering Mechanics: Statics Design  problem  # 5.4  concrete chutw Engineering Mechanics: Statics Design  problem  # 5.4  concrete chutw
Engineering Mechanics: Statics Design problem # 5.4 concrete chutw
kehali Haileselassie
 

More from kehali Haileselassie (7)

Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7  diode with operational amplifiers by kehali b. haileselassie and kouLab 7  diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
 
EE 305 Project_1 The Effective External Defibrillators
EE 305 Project_1 The Effective External Defibrillators EE 305 Project_1 The Effective External Defibrillators
EE 305 Project_1 The Effective External Defibrillators
 
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1  kirchhoff’s voltage and current law by kehali bekele haileselassieLab 1  kirchhoff’s voltage and current law by kehali bekele haileselassie
Lab 1 kirchhoff’s voltage and current law by kehali bekele haileselassie
 
Lab 2 kirchhoffs voltage and current laws by kehali bekele haileselassie
Lab 2 kirchhoffs voltage and current laws by kehali bekele haileselassieLab 2 kirchhoffs voltage and current laws by kehali bekele haileselassie
Lab 2 kirchhoffs voltage and current laws by kehali bekele haileselassie
 
Lab 2 Kirchhoff’s Voltage and Current Laws for Circuits with Reactive Compon...
 Lab 2 Kirchhoff’s Voltage and Current Laws for Circuits with Reactive Compon... Lab 2 Kirchhoff’s Voltage and Current Laws for Circuits with Reactive Compon...
Lab 2 Kirchhoff’s Voltage and Current Laws for Circuits with Reactive Compon...
 
Engineering Mechanics Statics design problem # 5.4 concrete chut by Kehali...
Engineering Mechanics Statics  design problem  # 5.4  concrete chut by Kehali...Engineering Mechanics Statics  design problem  # 5.4  concrete chut by Kehali...
Engineering Mechanics Statics design problem # 5.4 concrete chut by Kehali...
 
Engineering Mechanics: Statics Design problem # 5.4 concrete chutw
 Engineering Mechanics: Statics Design  problem  # 5.4  concrete chutw Engineering Mechanics: Statics Design  problem  # 5.4  concrete chutw
Engineering Mechanics: Statics Design problem # 5.4 concrete chutw
 

Recently uploaded

Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Aggregage
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
Pierluigi Pugliese
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
DianaGray10
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.
ViralQR
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
nkrafacyberclub
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
UiPathCommunity
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
RinaMondal9
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 

Recently uploaded (20)

Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Generative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to ProductionGenerative AI Deep Dive: Advancing from Proof of Concept to Production
Generative AI Deep Dive: Advancing from Proof of Concept to Production
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3UiPath Test Automation using UiPath Test Suite series, part 3
UiPath Test Automation using UiPath Test Suite series, part 3
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.Welocme to ViralQR, your best QR code generator.
Welocme to ViralQR, your best QR code generator.
 
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptxSecstrike : Reverse Engineering & Pwnable tools for CTF.pptx
Secstrike : Reverse Engineering & Pwnable tools for CTF.pptx
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
Le nuove frontiere dell'AI nell'RPA con UiPath Autopilot™
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Free Complete Python - A step towards Data Science
Free Complete Python - A step towards Data ScienceFree Complete Python - A step towards Data Science
Free Complete Python - A step towards Data Science
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 

Lab 8 bipolar junction transistor characterstics

  • 1. Bipolar Junction Transistor Characterstics Experiment - #8 Kehali B. Haileselassie and Kou Vue 11/14/2013 ELC ENG 330 – Electronics I Fall 201
  • 2. Purpose: The purpose of this laboratory is to become familiar with the D.C. operation of the bipolar junction transistor (BJT), and a basic D.C. circuit using the BJT, namely, the current mirror. Equipment External Multi-meter (for current measurements) Regulated Power Supply 2N3904 Resistors Introduction The objective of this lab is to analyze the characteristics of Transistor. A transistor is a three- terminal device which allows a small current to control a much larger current, thus achieving a “current gain.” this lab, we focus on BJTs. The three terminals of a transistor are the base (usually used as the control terminal), the emitter and the collector. There are three parts of the lab and voltage across Rc is measured and current Rc is computed. Once the measurement is taken results are plotted on the graphs and DC current Gain, Incremental resistance etc. are found. A bipolar junction transistor is formed by joining three sections of semiconductors withalternatively differentdoping. The middle section (base) is narrow and one of the other tworegions (emitter) is heavily doped. Two variants of BJT are possible: NPN and PNP.
  • 3. In NPN transistors,electron flow is dominant while PNP transistors rely mostly on the flow of holes. Therefore,to zeroth order, NPN and PNP transistors behave similarly except the sign of current andvoltages are reversed.! In practice, NPN transistors are much morepopular than PNP transistors because electrons move faster in a semiconductor. As a result,a NPN transistor has a faster response time compared to a PNP transistor. The BJT is a three-terminal semiconductor device containing two pn junctions. If checked with an ohmmeter it appears to be two diodes of opposite polarity connected in series. However, unlike two series diodes, the BJT can be used to amplify Procedure Components Transistor (2N3904) Value - Rc Rb Vbb DC Voltage Supply Vcc Voltage Supply 100 Ohms 33KOhms Vary Vary Figure_1 1. Connect the 2N3904 transistor up into the circuit as shown above; for your base and Collectorresistors measure and record the exact values. (Set VBB and VCC voltages
  • 4. set to zero). 2. Measure the voltage across RB while increasing the VBB supply voltage. Continue to increase VBB until the voltage across RB reaches 1.65 volts in order to set up a base current of 50 μA, which you can confirm by Ohm’s law. 3. Without changing VBB, increase VCC until the voltage from collector to emitter is +2.0 volts. Then, record the value of voltage across the resistor RC, and compute the collector current (which equals the current through RC) by using Ohm’s Law applied to RC. 4. Without changing VBB, repeat step 3 by increasing VCC until the voltage from collector to emitter is +4.0 volts. Record the value of voltage across the resistor RC, compute the collector current as before, and enter the values into the table. 5. Repeat for VCC values of 6, 8 and 10 volts, and complete the table. 6. Next, reset VCC to a value of zero volts, and increase VBB until the voltage across RB is 3.3 volts, giving a base current of 100 μA. 7. Repeat steps 3, 4 and 5, completing the following table: 8. Next, reset VCC to a value of zero volts, and increase VBB until the voltage across RB is 4.95 volts, giving a base current of 150 μA. 9. Repeat steps 3, 4 and 5, completing the following table: 10. Plot the transistor characteristics on the following graph, using the values from the
  • 5. three tables above. You should have three curves, labeled with IB = 50μA, 100μA and 150μA. 11. From your plotted curves, estimate the DC current gain (defined as βDC ≡ IC/IB) at a value of VCE = 3 volts, for each value of base current (50μA, 100μA and 150μA). 12. Repeat step 11 at a value of VCE = 7.5 volts, for each value of base current (50μA, 100μA and 150μA). 13. Finally, for the case where IB = 150μA, compute the “incremental resistance” ΔVCE/ΔIC = (VCE1 – VCE2)/(IC1 – IC2). Use the points at VCE = 10 volts and VCE = 2 volts, on the IB = 150μA curve.
  • 6. Results Ib 50uA Vce(Volts)Vrc (Volts) Irc = Ic = Vrc/Rc 2 1.12 0.0112 4 1.17 0.0117 6 1.23 0.0123 8 1.31 0.0131 10 1.41 0.0141 Ib 100uA Vce(Volts)Vrc (Volts) Irc = Ic = Vrc/Rc 2 2.25 0.0225 4 2.5 0.025 6 2.69 0.0269 8 2.88 0.0288 10 3.1 0.031 Ib 150uA Vce(Volts)Vrc (Volts) Irc = Ic = Vrc/Rc 2 3.09 0.0309 4 3.64 0.0364 6 3.96 0.0396 8 4.28 0.0428 10 4.5 0.045 Figure_2Voltage Vs Current Rb Table_2
  • 7. Voltage IB = 150uA Ic A 3 7.5 (Ic/Ib) DC Current Gain 0.0309 206 0.0418 278.6666667 Table_3 DC Current Gain Yes, the DC current gain is depending on IB. Yes, the DC current gain is significantly depending on IB. Change V Ib = 150uA Stimulation Result Change I 8 Table_4 Incremental Resistance Incremental Resistance 0.0141 567.3758865
  • 8. Discussion &Analysis: One of the Task of the transistor is to provide DC current gain. The measurement shows exactly that. In the circuit input current Ib and output current is Ic and DC current gain can be found using Ic/Ib and its shown in the figure 5 for voltage 3 and voltage 7.5. Also the incremental resistance is found by dividing change in voltage by change in current. I think current gain does not depend on the Ib, because if Ib increase then Icincreases with similar ratio. As seen in figure 5, as voltage increases current gain increases as well. Resistance value is medium and that is 568 ohms.Since BJT are useful in discrete circuit design, we analyzedthestaticcharacteristicof
  • 9. BJT.We measured and plotted the I-V curve for collector current and collector-emitter voltage, while keeping baseemitter voltage constant. Conclusion A single npn BJT was used to drive this differential amplifier. The collector current entering the npn BJT will be the current source driving the differential amplifier. The transistor is good component to get amplified current using a very small current. Dc current gain increases as Voltage is increases. But Dc current gain for the same voltage with the different base current is same. Each part has different base current but if DC current gain is found for same voltage on different curves it will come out to be about the same.