SlideShare a Scribd company logo
1 of 15
L3b-1
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Ideal CSTR
Design Eq
with XA:
Review: Design Eq & Conversion
D
a
d
C
a
c
B
a
b
A 
fedAmoles
reactedAmoles
XA 
BATCH
SYSTEM: A0Aj0jj XNNN   








j
A0A
j
j0TjT XNNNN 
FLOW
SYSTEM: A0Aj0jj XFFF   








j
A0A
j
j0TjT XFFFF 
r
XF
V
A
A0A


Vr
dt
dX
N A
A
0A 
Ideal Batch Reactor
Design Eq with XA:



AX
0 A
A
0A
Vr
dX
Nt
A
A
0A r
dV
dX
F 
Ideal SS PFR
Design Eq with XA:



AX
0 A
A
0A
r
dX
FV
'r
dW
dX
F A
A
0A 
Ideal SS PBR
Design Eq with XA:



AX
0 A
A
0A
'r
dX
FW
j≡ stoichiometric coefficient;
positive for products, negative
for reactants
L3b-2
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Review: Sizing CSTRsWe can determine the volume of the CSTR required to achieve a specific
conversion if we know how the reaction rate rj depends on the conversion Xj
A
A
0A
CSTR
A
A0A
CSTR X
r
F
V
r
XF
V 









Ideal SS
CSTR
design eq.
Volume is
product of FA0/-rA
and XA
• Plot FA0/-rA vs XA (Levenspiel plot)
• VCSTR is the rectangle with a base of XA,exit and a height of FA0/-rA at XA,exit

FA 0
rA
X
Area = Volume of CSTR
X1
V 
FA 0
rA



X1
 X1
L3b-3
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
FA 0
rA
Area = Volume of PFR
V 
0
X1

FA 0
rA





dX
X1
Area = VPFR or Wcatalyst, PBR
dX
'r
F
W
1X
0 A
0A
 







Review: Sizing PFRs & PBRs
We can determine the volume (catalyst weight) of a PFR (PBR) required to
achieve a specific Xj if we know how the reaction rate rj depends on Xj
A
exit,AX
0 A
0A
PFR
exit,AX
0 A
A
0APFR dX
r
F
V
r
dX
FV  









Ideal PFR
design eq.
• Plot FA0/-rA vs XA (Experimentally determined numerical values)
• VPFR (WPBR) is the area under the curve FA0/-rA vs XA,exit
A
exit,AX
0 A
0A
PBR
exit,AX
0 A
A
0APBR dX
r
F
W
r
dX
FW  








Ideal PBR
design eq.
dX
r
F
V
1X
0 A
0A
 







L3b-4
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Numerical Evaluation of Integrals (A.4)
Simpson’s one-third rule (3-point):
        210
2X
0
XfXf4Xf
3
h
dxxf 
hXX
2
XX
h 01
02 


Trapezoidal rule (2-point):
      10
1X
0
XfXf
2
h
dxxf 
01 XXh 
Simpson’s three-eights rule (4-point):
          3210
3X
0
XfXf3Xf3Xfh
8
3
dxxf 
3
XX
h 03 

h2XXhXX 0201 
Simpson’s five-point quadrature :
            43210
4X
0
XfXf4Xf2Xf4Xf
3
h
dxxf 
4
XX
h 04 

L3b-5
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Review: Reactors in Series
2 CSTRs 2 PFRs
CSTR→PFR
VCSTR1 VPFR2
VPFR2VCSTR1
VCSTR2
VPFR1
VPFR1
VCSTR2
VCSTR1 + VPFR2
≠
VPFR1 + CCSTR2
PFR→CSTR
A
A0
r-
F
 
i j
CSTRPFRPFR VVV
If is monotonically
increasing then:
CSTR
i j
CSTRPFR VVV  
L3b-6
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
Chapter 2 Examples
L3b-7
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
1. Calculate FA0/-rA for each conversion value in the tableFA0/-rA
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
Convert to seconds→
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
-rA is in terms of mol/dm3∙s
L3b-8
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A(
0
0)
AF
r

3
3
mol
0.0053
d
mol
0.867
s
s
m
m
d

164
1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


-rA is in terms of mol/dm3∙s
164
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
Convert to seconds→
L3b-9
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A(
0
0)
AF
r

3
3
mol
0.0053
d
mol
0.867
s
s
m
m
d

164
1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X1=0.3
FA0, X0 X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


-rA is in terms of mol/dm3∙s
164
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
min
mol
52F 0A 
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
Convert to seconds→ For each –rA that corresponds to
a XA value, use FA0 to calculate
FA0/-rA & fill in the table
L3b-10
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
X1=0.3
FA0, X0
A( 0.85)
3A0
3
mol
0.867F s
molr
0.001
dm s
867 dm 


1. Calculate FA0/-rA for each conversion value in the table
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
Calculate the reactor volumes for each configuration shown below for the reaction data
in the table when the molar flow rate is 52 mol/min.
FA0, X0
X1=0.3
X2=0.8
Config 1
X2=0.8
Config 2
A
exit,AX
in,AX A
0A
nPFR dX
r
F
V  






 ←Use numerical
methods to solve
 in,Aout,A
nA
0A
nCSTR XX
r
F
V 


Convert to seconds→
min
mol
52F 0A 
-rA is in terms of mol/dm3∙s
XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n
00
1
52 8
60
67
 
 
 
 A
mol min
m
mol
. F
sin s
L3b-11
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
FA0, X0
X1=0.3
X2=0.8
Config 1
Reactor 1, PFR from XA0=0 to XA=0.3:


 

 
   
 

        


A
A AA
A A0
A
0.3
A0
PFR1 A
0
A0
X
0
A X
A0
A
X 0.3
0.20A .X 1A 0
F 3 0.3 0
V dX 3
F F
3
rr
F
rr8 3
F
r
4-pt rule:
     1
0.3 A0
PFR A0
3
A
16
F 3
V dX 0.1 3 3 1
r 8
934 173 5167 1.6 dm         
  

A,out
2CSTR
A0
A,o A i
X
, nut
A
F
XV X
r
    2
3
CSTR 694 0.8 3470.3 dmV
Total volume for configuration 1: 51.6 dm3 + 347 dm3 = 398.6 dm3 = 399 dm3
←Use numerical
methods to solve
PFR1 CSTR2
0 
  
 

XA,exit A
PFRn AXA,in A
F
V dX
r
L3b-12
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85
-rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001
FA0/-rA 164 167 173 193 217 263 347 482 694 867
Reactor 1, CSTR from XA0=0 to XA=0.3:
Need to evaluate at 6 pts, but since
there is no 6-pt rule, break it up
 0
0
1 0
3
A
A .
A,outCSTR A
F
XV X
r
 

Total volume for configuration 2: 58 dm3 + 173 dm3 = 231 dm3
X1=0.3
FA0, X0 X2=0.8
Config 2
    CSTR
3
0. 583 0193 dmV  

A0
PFR2 A
A
0.8
0.3
F
V dX
r
 
     PFRV
... .                     
 
263 263 34217
3
4 3 3
8 33 2
482193 694
0 08 5
7
0 30 5
3 point rule 4 point rule
3
173 dm
PFR2CSTR1
   
 
0.
A0 A0
PF
0.3
R2 A A
A
05
.
.
5
8
A0
F F
V dX dX
r r
Must evaluate as many
pts as possible when
the curve isn’t flat
L3b-13
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
ACSTR
A
A
V
X
C
r
 
    
 
 0
0
CSTR
A
A
A
V
C
r
X
 
   
 
00
For a given CA0, the space time  needed to achieve 80% conversion in a
CSTR is 5 h. Determine (if possible) the CSTR volume required to process 2
ft3/min and achieve 80% conversion for the same reaction using the same CA0.
What is the space velocity (SV) for this system?
space time holding time mean residenceh
V
time

    
0
5
=5 h 0=2 ft3/min
 
ft
min h
hV
min  
      
3
60
5
2 3
V ft  600
V
SV



0 1Space
velocity:
-1
h
SV . h   

0 2
5
1 1
Notice that we did not need to solve the CSTR design equation to solve this problem.
Also, this answer does not depend on the type of flow reactor used.
XA=0.8
A
CSTR A
AF
r
XV
 
  
 
0 A
A
CSTR
A
C
r
V
X
 
  



0
0
   0
0
V
V 


L3b-14
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
XA,exit
PFR
A
A
X AA,in
C
V dX
r
 
    
 
 0
0
A product is produced by a nonisothermal, nonelementary, multiple-reaction
mechanism. Assume the volumetric flow rate is constant & the same in both reactors.
Data for this reaction is shown in the graph below. Use this graph to determine which
of the 2 configurations that follow give the smaller total reactor volume.
FA0, X0
X1=0.3
X2=0.7
Config 2
X1=0.3
FA0, X0 X2=0.7
Config 1
 A
CSTR A,out A,in
A
V X X
r
C 
  
 
 0
0
Shown on graph
XA,exit
PFRn A
AA,in
A
X
V dX
F
r
 
   
 
0
CSTR
A
A
A
V X
r
F 
  
 
0
• Since 0 is the same in both reactors, we can use this graph to compare the 2
configurations
• PFR- volume is 0 multiplied by the area under the curve between XA,in & XA,out
• CSTR- volume is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
L3b-15
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.
A product is produced by a nonisothermal, nonelementary, multiple-reaction
mechanism. Assume the volumetric flow rate is constant & the same in both reactors.
Data for this reaction is shown in the graph below. Use this graph to determine which
of the 2 configurations that follow give the smaller total reactor volume.
FA0, X0
X1=0.3
X2=0.7
Config 2
X1=0.3
FA0, X0 X2=0.7
Config 1
• PFR- V is 0 multiplied by the area under the curve between XA,in & XA,out
• CSTR- V is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
Config 1 Config 2
Less shaded area
Config 2 (PFRXA,out=0.3 first, and CSTRXA,out=0.7 second) has the smaller VTotal
XA=0.3
XA=0.7
XA=0.3
XA=0.7

More Related Content

What's hot

Plate heat exchangers
Plate heat exchangersPlate heat exchangers
Plate heat exchangerstst34
 
Filtration of Liquids - Chapter 4 solution (Particle Technology by Holdich)
Filtration of Liquids - Chapter 4 solution (Particle Technology by Holdich)Filtration of Liquids - Chapter 4 solution (Particle Technology by Holdich)
Filtration of Liquids - Chapter 4 solution (Particle Technology by Holdich)Bobby Canja
 
Shell and tube heat exchanger
Shell and tube heat exchangerShell and tube heat exchanger
Shell and tube heat exchangerPraveen Sharma
 
Modeling of constant holdup cstr
Modeling of constant holdup cstrModeling of constant holdup cstr
Modeling of constant holdup cstrKarnav Rana
 
Chemical Design of Extraction Column
Chemical Design of Extraction ColumnChemical Design of Extraction Column
Chemical Design of Extraction ColumnAmirul Izan
 
Evaporation- Equipment and Design of Evaporators
Evaporation- Equipment and Design of EvaporatorsEvaporation- Equipment and Design of Evaporators
Evaporation- Equipment and Design of EvaporatorsMeesha Singh
 
McCABE-THIELE DESIGN METHOD
McCABE-THIELE DESIGN METHODMcCABE-THIELE DESIGN METHOD
McCABE-THIELE DESIGN METHODMeet Patel
 
Ch 6- fugacidad mezcla
Ch 6- fugacidad mezclaCh 6- fugacidad mezcla
Ch 6- fugacidad mezclaGiovanni Hoyos
 
Chap 1(a) molecular-diffusion_in_gas(2)
Chap 1(a) molecular-diffusion_in_gas(2)Chap 1(a) molecular-diffusion_in_gas(2)
Chap 1(a) molecular-diffusion_in_gas(2)Charice Wan
 
Heat exchanger design
Heat exchanger designHeat exchanger design
Heat exchanger designadnanali309
 
Product and Process Design Principles Synthesis, Analysis, and Evaluation by...
Product and Process Design Principles  Synthesis, Analysis, and Evaluation by...Product and Process Design Principles  Synthesis, Analysis, and Evaluation by...
Product and Process Design Principles Synthesis, Analysis, and Evaluation by...Er. Rahul Jarariya
 

What's hot (20)

Plate heat exchangers
Plate heat exchangersPlate heat exchangers
Plate heat exchangers
 
Filtration of Liquids - Chapter 4 solution (Particle Technology by Holdich)
Filtration of Liquids - Chapter 4 solution (Particle Technology by Holdich)Filtration of Liquids - Chapter 4 solution (Particle Technology by Holdich)
Filtration of Liquids - Chapter 4 solution (Particle Technology by Holdich)
 
Evaporation
EvaporationEvaporation
Evaporation
 
1.2 Flash distillation
1.2 Flash distillation1.2 Flash distillation
1.2 Flash distillation
 
Mixing systems
Mixing systemsMixing systems
Mixing systems
 
Shell and tube heat exchanger
Shell and tube heat exchangerShell and tube heat exchanger
Shell and tube heat exchanger
 
Modeling of constant holdup cstr
Modeling of constant holdup cstrModeling of constant holdup cstr
Modeling of constant holdup cstr
 
Bwt
BwtBwt
Bwt
 
Evaporators
EvaporatorsEvaporators
Evaporators
 
Chemical Design of Extraction Column
Chemical Design of Extraction ColumnChemical Design of Extraction Column
Chemical Design of Extraction Column
 
Evaporation- Equipment and Design of Evaporators
Evaporation- Equipment and Design of EvaporatorsEvaporation- Equipment and Design of Evaporators
Evaporation- Equipment and Design of Evaporators
 
McCABE-THIELE DESIGN METHOD
McCABE-THIELE DESIGN METHODMcCABE-THIELE DESIGN METHOD
McCABE-THIELE DESIGN METHOD
 
2.2 McCabe-Thiele method
2.2 McCabe-Thiele method2.2 McCabe-Thiele method
2.2 McCabe-Thiele method
 
Ch 6- fugacidad mezcla
Ch 6- fugacidad mezclaCh 6- fugacidad mezcla
Ch 6- fugacidad mezcla
 
Chap 1(a) molecular-diffusion_in_gas(2)
Chap 1(a) molecular-diffusion_in_gas(2)Chap 1(a) molecular-diffusion_in_gas(2)
Chap 1(a) molecular-diffusion_in_gas(2)
 
Particle Technology- Centrifugal Separation
Particle Technology- Centrifugal SeparationParticle Technology- Centrifugal Separation
Particle Technology- Centrifugal Separation
 
Heat exchanger design
Heat exchanger designHeat exchanger design
Heat exchanger design
 
Designing of liquid liquid extraction columns
Designing of liquid liquid extraction columnsDesigning of liquid liquid extraction columns
Designing of liquid liquid extraction columns
 
Product and Process Design Principles Synthesis, Analysis, and Evaluation by...
Product and Process Design Principles  Synthesis, Analysis, and Evaluation by...Product and Process Design Principles  Synthesis, Analysis, and Evaluation by...
Product and Process Design Principles Synthesis, Analysis, and Evaluation by...
 
Particle Technology- Filtration
Particle Technology- FiltrationParticle Technology- Filtration
Particle Technology- Filtration
 

Similar to L3b reactor sizing example problems

L3b reactor sizing example problems
L3b reactor sizing example problemsL3b reactor sizing example problems
L3b reactor sizing example problemsAbdelfattah Amari
 
L4 Rate laws and stoichiometry.pptx
L4 Rate laws and stoichiometry.pptxL4 Rate laws and stoichiometry.pptx
L4 Rate laws and stoichiometry.pptxssuserdea4ba
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxSatyamJaiswal90
 
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxL7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxPatelkevinJayeshkuma
 
Flow cytometry
Flow cytometryFlow cytometry
Flow cytometryqlqiao
 
transfarmers and generators
transfarmers and generatorstransfarmers and generators
transfarmers and generatorssridharGowda20
 
L9b Selectivity example problems.pptx
L9b Selectivity example problems.pptxL9b Selectivity example problems.pptx
L9b Selectivity example problems.pptxssuserc6fd3e
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Tim Krimmel, MEM
 
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Non-Uniqueness in Reservoir Models of Fractured Horizontal WellsNon-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Non-Uniqueness in Reservoir Models of Fractured Horizontal WellsNarayan Nair
 
Performance evaluation of nested costas codes
Performance evaluation of nested costas codesPerformance evaluation of nested costas codes
Performance evaluation of nested costas codesAnithaBhavani1
 
Aircraft propulsion ideal turbofan performance
Aircraft propulsion   ideal turbofan performanceAircraft propulsion   ideal turbofan performance
Aircraft propulsion ideal turbofan performanceAnurak Atthasit
 

Similar to L3b reactor sizing example problems (20)

L3b reactor sizing example problems
L3b reactor sizing example problemsL3b reactor sizing example problems
L3b reactor sizing example problems
 
Lec4_PDF.pdf
Lec4_PDF.pdfLec4_PDF.pdf
Lec4_PDF.pdf
 
conversion and reactor sizing
conversion and reactor sizingconversion and reactor sizing
conversion and reactor sizing
 
L4 Rate laws and stoichiometry.pptx
L4 Rate laws and stoichiometry.pptxL4 Rate laws and stoichiometry.pptx
L4 Rate laws and stoichiometry.pptx
 
ideal reactors
ideal reactorsideal reactors
ideal reactors
 
L18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptxL18b Deducing mechanisms example problems.pptx
L18b Deducing mechanisms example problems.pptx
 
9214541.pptx
9214541.pptx9214541.pptx
9214541.pptx
 
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptxL7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
L7b Pressure drop, CSTR start up and semibatch reactors examples.pptx
 
14 activefilters
14 activefilters14 activefilters
14 activefilters
 
Reactor3 (2)
Reactor3 (2)Reactor3 (2)
Reactor3 (2)
 
2009 TRB Workshop
2009 TRB Workshop2009 TRB Workshop
2009 TRB Workshop
 
Flow cytometry
Flow cytometryFlow cytometry
Flow cytometry
 
transfarmers and generators
transfarmers and generatorstransfarmers and generators
transfarmers and generators
 
L9b Selectivity example problems.pptx
L9b Selectivity example problems.pptxL9b Selectivity example problems.pptx
L9b Selectivity example problems.pptx
 
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016Vapor Combustor Improvement Project LinkedIn Presentation February 2016
Vapor Combustor Improvement Project LinkedIn Presentation February 2016
 
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Non-Uniqueness in Reservoir Models of Fractured Horizontal WellsNon-Uniqueness in Reservoir Models of Fractured Horizontal Wells
Non-Uniqueness in Reservoir Models of Fractured Horizontal Wells
 
Performance evaluation of nested costas codes
Performance evaluation of nested costas codesPerformance evaluation of nested costas codes
Performance evaluation of nested costas codes
 
Reactor3
Reactor3Reactor3
Reactor3
 
Lec4 anim
Lec4 animLec4 anim
Lec4 anim
 
Aircraft propulsion ideal turbofan performance
Aircraft propulsion   ideal turbofan performanceAircraft propulsion   ideal turbofan performance
Aircraft propulsion ideal turbofan performance
 

Recently uploaded

Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 

Recently uploaded (20)

Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 

L3b reactor sizing example problems

  • 1. L3b-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with XA: Review: Design Eq & Conversion D a d C a c B a b A  fedAmoles reactedAmoles XA  BATCH SYSTEM: A0Aj0jj XNNN            j A0A j j0TjT XNNNN  FLOW SYSTEM: A0Aj0jj XFFF            j A0A j j0TjT XFFFF  r XF V A A0A   Vr dt dX N A A 0A  Ideal Batch Reactor Design Eq with XA:    AX 0 A A 0A Vr dX Nt A A 0A r dV dX F  Ideal SS PFR Design Eq with XA:    AX 0 A A 0A r dX FV 'r dW dX F A A 0A  Ideal SS PBR Design Eq with XA:    AX 0 A A 0A 'r dX FW j≡ stoichiometric coefficient; positive for products, negative for reactants
  • 2. L3b-2 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Review: Sizing CSTRsWe can determine the volume of the CSTR required to achieve a specific conversion if we know how the reaction rate rj depends on the conversion Xj A A 0A CSTR A A0A CSTR X r F V r XF V           Ideal SS CSTR design eq. Volume is product of FA0/-rA and XA • Plot FA0/-rA vs XA (Levenspiel plot) • VCSTR is the rectangle with a base of XA,exit and a height of FA0/-rA at XA,exit  FA 0 rA X Area = Volume of CSTR X1 V  FA 0 rA    X1  X1
  • 3. L3b-3 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. FA 0 rA Area = Volume of PFR V  0 X1  FA 0 rA      dX X1 Area = VPFR or Wcatalyst, PBR dX 'r F W 1X 0 A 0A          Review: Sizing PFRs & PBRs We can determine the volume (catalyst weight) of a PFR (PBR) required to achieve a specific Xj if we know how the reaction rate rj depends on Xj A exit,AX 0 A 0A PFR exit,AX 0 A A 0APFR dX r F V r dX FV            Ideal PFR design eq. • Plot FA0/-rA vs XA (Experimentally determined numerical values) • VPFR (WPBR) is the area under the curve FA0/-rA vs XA,exit A exit,AX 0 A 0A PBR exit,AX 0 A A 0APBR dX r F W r dX FW           Ideal PBR design eq. dX r F V 1X 0 A 0A         
  • 4. L3b-4 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Numerical Evaluation of Integrals (A.4) Simpson’s one-third rule (3-point):         210 2X 0 XfXf4Xf 3 h dxxf  hXX 2 XX h 01 02    Trapezoidal rule (2-point):       10 1X 0 XfXf 2 h dxxf  01 XXh  Simpson’s three-eights rule (4-point):           3210 3X 0 XfXf3Xf3Xfh 8 3 dxxf  3 XX h 03   h2XXhXX 0201  Simpson’s five-point quadrature :             43210 4X 0 XfXf4Xf2Xf4Xf 3 h dxxf  4 XX h 04  
  • 5. L3b-5 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Review: Reactors in Series 2 CSTRs 2 PFRs CSTR→PFR VCSTR1 VPFR2 VPFR2VCSTR1 VCSTR2 VPFR1 VPFR1 VCSTR2 VCSTR1 + VPFR2 ≠ VPFR1 + CCSTR2 PFR→CSTR A A0 r- F   i j CSTRPFRPFR VVV If is monotonically increasing then: CSTR i j CSTRPFR VVV  
  • 6. L3b-6 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Chapter 2 Examples
  • 7. L3b-7 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 1. Calculate FA0/-rA for each conversion value in the tableFA0/-rA Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n Convert to seconds→ min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s -rA is in terms of mol/dm3∙s
  • 8. L3b-8 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A( 0 0) AF r  3 3 mol 0.0053 d mol 0.867 s s m m d  164 1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    -rA is in terms of mol/dm3∙s 164 XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s Convert to seconds→
  • 9. L3b-9 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A( 0 0) AF r  3 3 mol 0.0053 d mol 0.867 s s m m d  164 1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X1=0.3 FA0, X0 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    -rA is in terms of mol/dm3∙s 164 XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n min mol 52F 0A  00 1 52 8 60 67        A mol min m mol . F sin s Convert to seconds→ For each –rA that corresponds to a XA value, use FA0 to calculate FA0/-rA & fill in the table
  • 10. L3b-10 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. X1=0.3 FA0, X0 A( 0.85) 3A0 3 mol 0.867F s molr 0.001 dm s 867 dm    1. Calculate FA0/-rA for each conversion value in the table XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 Calculate the reactor volumes for each configuration shown below for the reaction data in the table when the molar flow rate is 52 mol/min. FA0, X0 X1=0.3 X2=0.8 Config 1 X2=0.8 Config 2 A exit,AX in,AX A 0A nPFR dX r F V          ←Use numerical methods to solve  in,Aout,A nA 0A nCSTR XX r F V    Convert to seconds→ min mol 52F 0A  -rA is in terms of mol/dm3∙s XA,out and XA,in respectively, are the conversion at the outlet and inlet of reactor n 00 1 52 8 60 67        A mol min m mol . F sin s
  • 11. L3b-11 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 FA0, X0 X1=0.3 X2=0.8 Config 1 Reactor 1, PFR from XA0=0 to XA=0.3:                          A A AA A A0 A 0.3 A0 PFR1 A 0 A0 X 0 A X A0 A X 0.3 0.20A .X 1A 0 F 3 0.3 0 V dX 3 F F 3 rr F rr8 3 F r 4-pt rule:      1 0.3 A0 PFR A0 3 A 16 F 3 V dX 0.1 3 3 1 r 8 934 173 5167 1.6 dm              A,out 2CSTR A0 A,o A i X , nut A F XV X r     2 3 CSTR 694 0.8 3470.3 dmV Total volume for configuration 1: 51.6 dm3 + 347 dm3 = 398.6 dm3 = 399 dm3 ←Use numerical methods to solve PFR1 CSTR2 0        XA,exit A PFRn AXA,in A F V dX r
  • 12. L3b-12 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 -rA 0.0053 0.0052 0.0050 0.0045 0.0040 0.0033 0.0025 0.0018 0.00125 0.001 FA0/-rA 164 167 173 193 217 263 347 482 694 867 Reactor 1, CSTR from XA0=0 to XA=0.3: Need to evaluate at 6 pts, but since there is no 6-pt rule, break it up  0 0 1 0 3 A A . A,outCSTR A F XV X r    Total volume for configuration 2: 58 dm3 + 173 dm3 = 231 dm3 X1=0.3 FA0, X0 X2=0.8 Config 2     CSTR 3 0. 583 0193 dmV    A0 PFR2 A A 0.8 0.3 F V dX r        PFRV ... .                        263 263 34217 3 4 3 3 8 33 2 482193 694 0 08 5 7 0 30 5 3 point rule 4 point rule 3 173 dm PFR2CSTR1       0. A0 A0 PF 0.3 R2 A A A 05 . . 5 8 A0 F F V dX dX r r Must evaluate as many pts as possible when the curve isn’t flat
  • 13. L3b-13 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. ACSTR A A V X C r           0 0 CSTR A A A V C r X         00 For a given CA0, the space time  needed to achieve 80% conversion in a CSTR is 5 h. Determine (if possible) the CSTR volume required to process 2 ft3/min and achieve 80% conversion for the same reaction using the same CA0. What is the space velocity (SV) for this system? space time holding time mean residenceh V time       0 5 =5 h 0=2 ft3/min   ft min h hV min          3 60 5 2 3 V ft  600 V SV    0 1Space velocity: -1 h SV . h     0 2 5 1 1 Notice that we did not need to solve the CSTR design equation to solve this problem. Also, this answer does not depend on the type of flow reactor used. XA=0.8 A CSTR A AF r XV        0 A A CSTR A C r V X         0 0    0 0 V V   
  • 14. L3b-14 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. XA,exit PFR A A X AA,in C V dX r           0 0 A product is produced by a nonisothermal, nonelementary, multiple-reaction mechanism. Assume the volumetric flow rate is constant & the same in both reactors. Data for this reaction is shown in the graph below. Use this graph to determine which of the 2 configurations that follow give the smaller total reactor volume. FA0, X0 X1=0.3 X2=0.7 Config 2 X1=0.3 FA0, X0 X2=0.7 Config 1  A CSTR A,out A,in A V X X r C        0 0 Shown on graph XA,exit PFRn A AA,in A X V dX F r         0 CSTR A A A V X r F       0 • Since 0 is the same in both reactors, we can use this graph to compare the 2 configurations • PFR- volume is 0 multiplied by the area under the curve between XA,in & XA,out • CSTR- volume is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in)
  • 15. L3b-15 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. A product is produced by a nonisothermal, nonelementary, multiple-reaction mechanism. Assume the volumetric flow rate is constant & the same in both reactors. Data for this reaction is shown in the graph below. Use this graph to determine which of the 2 configurations that follow give the smaller total reactor volume. FA0, X0 X1=0.3 X2=0.7 Config 2 X1=0.3 FA0, X0 X2=0.7 Config 1 • PFR- V is 0 multiplied by the area under the curve between XA,in & XA,out • CSTR- V is 0 multiplied by the product of CA0/-rA,outlet times (XA,out - XA,in) Config 1 Config 2 Less shaded area Config 2 (PFRXA,out=0.3 first, and CSTRXA,out=0.7 second) has the smaller VTotal XA=0.3 XA=0.7 XA=0.3 XA=0.7