SlideShare a Scribd company logo
 	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
2	
  
v Part	
  1	
  Energy	
  and	
  the	
  
need	
  for	
  Photovoltaics	
  
v Part	
  2	
  HIT	
  solar	
  cells/
modules	
  
v  Part	
  1	
  Energy	
  and	
  the	
  need	
  for	
  Photovoltaics	
  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
1.  Total	
  World	
  Energy	
  ConsumpAon	
  
2.  Global	
  Warming	
  
4.  Is	
  it	
  Possible	
  To	
  Reduce	
  Electricity	
  ConsumpAon?	
  
5.  Electricity	
  used	
  for	
  more	
  and	
  more	
  tasks	
  !	
  
	
  
	
  
7.  PV	
  Market	
  SituaAon	
  
8.  Choice	
  of	
  PV	
  Technology	
  for	
  2025	
  ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
3	
  
Total	
  World	
  Energy	
  ConsumpAon	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
4	
  
Source:	
  EPFL	
  Press/PPUR	
  «	
  Guide	
  de	
  la	
  technique	
  »,	
  Vol.	
  2	
  «	
  	
  L’énergie	
  »	
  	
  
Average	
  Yearly	
  Increase	
  of	
  Energy	
  ConsumpAon	
  	
  	
  
4%	
   4.1%	
  2%	
  
Coal	
  
Petrol	
  
Gas	
  
Hydro	
  +	
  Nuclear	
  
only	
  a	
  small	
  fracAon	
  
Start	
  of	
  Petrol	
  Age	
  
The	
  use	
  of	
  	
  
coal,	
  petrol	
  and	
  gas	
  	
  
for	
  energy	
  supply	
  	
  
is	
  one	
  of	
  the	
  	
  
main	
  causes	
  	
  
for	
  global	
  warming	
  
Sources	
  of	
  Global	
  Warming	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
5	
  
Burning	
  of	
  coal,	
  	
  
natural	
  gas,	
  and	
  oil	
  	
  
for	
  electricity	
  and	
  heat	
  
§  fossil	
  fuels	
  burned	
  on-­‐site	
  	
  
at	
  faciliKes	
  for	
  energy	
  
•  emissions	
  from	
  chemical,	
  metallurgical,	
  	
  
&	
  mineral	
  transf.	
  processes	
  	
  
not	
  associated	
  with	
  energy	
  consumpKon.	
  
DeforestaKon,	
  
	
  land	
  clearing	
  for	
  agriculture,	
  	
  
and	
  fires	
  or	
  decay	
  of	
  peat	
  soils	
  
Management	
  	
  
of	
  agricultural	
  soils	
  
livestock,	
  	
  
rice	
  producKon,	
  	
  
and	
  biomass	
  burning.	
  
fossil	
  fuels	
  burned	
  	
  
for	
  road,	
  rail,	
  air,	
  	
  
and	
  marine	
  	
  
transportaKon	
  
burning	
  fuels	
  for	
  heat	
  in	
  buildings	
  	
  
or	
  cooking	
  in	
  homes	
  
Source:	
  IPCC	
  (2007)	
  
Sources	
  of	
  Global	
  Warming	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
6	
  
CO2	
  from	
  Energy	
  Supply	
  
Source:	
  IEA,	
  Key	
  World	
  Energy	
  StaAsAcs	
  (2012)	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
7	
  
Hydro	
  
	
  
	
  
Nuclear	
  
	
  
Gas	
  
	
  
Petroleum	
  
	
  
	
  
Coal	
  
	
  
	
  
	
  
	
  
à	
  Two	
  lines	
  of	
  acAon	
  
1. Reduce	
  Electricity	
  ConsumpAon,	
  
2. Promote:	
  Hydro,	
  Wind	
  and	
  Solar	
  
Avoid	
  Global	
  Warming	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
8	
  
	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
9	
  
Avoid	
  	
  
Nuclear	
  Catastrophes	
  
	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
10	
  
à	
  Two	
  lines	
  of	
  acAon	
  
1. Reduce	
  Electricity	
  ConsumpAon,	
  
2. Promote:	
  Hydro,	
  Wind	
  and	
  Solar	
  
Photovoltaic	
  
Reduce	
  Electricity	
  ConsumpAon?	
  
	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
11	
  
TWh/year	
  
20’000	
  
	
  
16’000	
  
	
  
12’000	
  
	
  
	
  8’000	
  
	
  
World	
  
Electricity	
  
ConsumpAon	
  	
  
conAnues	
  	
  
to	
  increase	
  	
  
by	
  4	
  to	
  5	
  %	
  	
  
per	
  year.	
  
Because:	
  
1)  Emerging	
  Countries	
  (China,	
  India,..)	
  show	
  very	
  strong	
  increase	
  
2)  Electricity	
  is	
  being	
  used	
  for	
  more	
  and	
  more	
  tasks	
  
Approx.	
  5%	
  /year	
  
Reduce	
  Electricity	
  ConsumpAon?	
  
	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
12	
  
It	
  will	
  not	
  be	
  possible	
  in	
  the	
  next	
  50	
  years	
  to	
  globally	
  reduce	
  electricity	
  consumpAon	
  
Electricity	
  	
  ConsumpAon	
  is	
  NOW	
  Growing	
  at	
  a	
  fast	
  rate	
  
1)  Electricity	
  use	
  is	
  spreading	
  in	
  developing	
  and	
  emerging	
  countries	
  
2)  Even	
  in	
  Industrialized	
  countries	
  Electricity	
  used	
  for	
  more	
  and	
  more	
  tasks	
  
Example:	
  
Switzerland	
  
Hydropower	
  
From	
  Rivers	
  
Nuclear	
  
	
  power	
  
GeneraKon	
  
Hydropower	
  	
  
from	
  	
  	
  
Storage	
  Lakes	
  
Three	
  main	
  forms	
  of	
  renewable	
  
electricity	
  for	
  the	
  next	
  decade	
  
1)  Hydroelectricity	
  	
  
Provides	
  basic	
  generaAon	
  capacity	
  
Hydroelectric	
  storage	
  lakes	
  ideal	
  for	
  storing	
  current	
  
2)  Wind	
  Energy	
  
Provides	
  current	
  during	
  windy	
  season	
  
(Switzerland:	
  Autumn,	
  Winter)	
  
(Korea:………)	
  
3)  Solar	
  Photovoltaic	
  
Provides	
  current	
  during	
  sunny	
  season	
  
(Switzerland:	
  Summer)	
  
(Korea:………)	
  
These	
  three	
  forms	
  of	
  energy	
  have	
  to	
  be	
  developed	
  
together,	
  in	
  order	
  to	
  master	
  the	
  storage	
  problems	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
13	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
14	
  
Energy	
  
Form	
  
Storage	
   Regularity	
   LocaAon	
   Small	
  
InstallaAons	
  
CiAzen	
  
ParAcipaAon	
  
Hydro	
  
Storage	
  
Lake	
  
yes	
   yes	
   Specific	
   Possible,	
  
but	
  costly	
  
indirect	
  
Hydro	
  
River	
  
no	
   yes	
   Specific	
  	
   Difficult	
   indirect	
  
Wind	
   no	
   no	
   Widespread	
   Not	
  feasible	
   indirect	
  
Solar	
   no	
   no	
   Everywhere	
   Yes,	
  easy	
   Yes,	
  direct	
  
Three	
  main	
  forms	
  of	
  renewable	
  
electricity	
  for	
  the	
  next	
  decade	
  
Solar	
  Photovoltaic	
  	
  is	
  the	
  only	
  one	
  of	
  these	
  three	
  	
  energy	
  forms,	
  where	
  small,	
  individually-­‐
owned	
  installaAons	
  	
  are	
  possible	
  	
  and	
  can	
  	
  be	
  set	
  up	
  almost	
  everywhere	
  –	
  it	
  will	
  therefore	
  
have	
  to	
  contribute	
  the	
  majority	
  of	
  capacity	
  increase	
  during	
  the	
  next	
  decade.	
  
World	
  Annual	
  ProducAon	
  of	
  Hydroelectric	
  Current	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
15	
  
OCDE
China
Africa
EX-URSS
Asia
(w/o China)
Europe (non-OCDE)
South America
à  In	
  most	
  countries	
  hydroelectric	
  power	
  	
  
has	
  reached	
  a	
  stable	
  plateau	
  
There	
  is	
  likle	
  scope	
  for	
  further	
  increase:	
  
à We	
  need	
  Wind	
  and	
  Solar	
  Electricity	
  
à In	
  Korea	
  there	
  is	
  sAll	
  scope	
  for	
  increase	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
16	
  
Source:	
  	
  
TN	
  ConsulAng	
  	
  
Zürich	
  
à	
  During	
  60	
  years,	
  development	
  was	
  very	
  slow,	
  	
  
only	
  in	
  1950	
  did	
  hydroelectric	
  power	
  «take	
  off»	
  
A	
  similar	
  long	
  «incubaAon	
  period»	
  
should	
  be	
  expected	
  for	
  Photovoltaics	
  
Stable	
  	
  
plateau	
  
Hydroelectric	
  Power	
  in	
  Switzerland	
  
0	
  
100	
  
200	
  
300	
  
400	
  
500	
  
1965	
   1970	
   1975	
   1980	
   1985	
   1990	
   1995	
   2000	
   2005	
   2010	
   2015	
  
SérTotal	
  
Electricity	
  ProducAon	
  in	
  Korea	
  
(hydroelectric	
  power	
  is	
  negligible)	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
17	
  
.	
   Source:	
  Korea	
  Electric	
  Power	
  CorporaAon	
  -­‐50	
  
0	
  
50	
  
100	
  
150	
  
200	
  
250	
  
300	
  
350	
  
1965	
   1970	
   1975	
   1980	
   1985	
   1990	
   1995	
   2000	
   2005	
   2010	
   2015	
  
Séries1	
  
Séries2	
  
Séries3	
  
Thermal	
  
	
  
Hydro	
  
	
  
Nuclear	
  
High	
  potenAal	
  	
  
for	
  increasing	
  	
  
hydroelectric	
  	
  
current	
  generaAon	
  	
  
in	
  Korea	
  ?	
  
Wind	
  Energy	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
18	
  
Wind	
  Energy	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
19	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
20	
  
Solar	
  Photovoltaic	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
21	
  
x	
  
2014:	
  
50	
  GWp	
  
Source:	
  	
  
Bloomberg	
  	
  
Report	
  
Sept	
  2014	
  
Source:	
  European	
  Photovoltaic	
  Industries	
  AssociaAon	
  (EPIA),	
  	
  
“Global	
  Market	
  Outlook	
  for	
  Photovoltaics	
  2013-­‐2017”	
  
	
  (take	
  the	
  “policy-­‐driven	
  scenario”)	
  
Solar	
  Photovoltaic	
  
To	
  solve	
  the	
  storage	
  problem	
  all	
  3	
  forms	
  are	
  needed:	
  
	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
22	
  
Three	
  main	
  forms	
  of	
  renewable	
  
electricity	
  for	
  the	
  next	
  decade	
  
!"#$%"&'("%)*+%+),&-./0$123./4&
&
!"#$%&'()!)'(*+,-.'/012'(*31'45/6'782*'
9,1,:*'+9'12;<=>-?'@;-;A+<'B#7'
/4'
5)&6+((&/.)&7"&2.00+7("&+/&)8"&/"9)&:;&,"<*0&).&=(.7<((,&*"#$%"&"("%)*+%+),&%./0$123./&
'("%)*+%+),&&-./0$123./&+0&>?@&A*.6+/=&<)&<&B<0)&*<)"&
CD  '("%)*+%+),&$0"&+0&02*"<#+/=&+/&#"E"(.2+/=&</#&"1"*=+/=&%.$/)*+"0&
FD  'E"/&+/&5/#$0)*+<(+G"#&%.$/)*+"0&'("%)*+%+),&$0"#&B.*&1.*"&</#&1.*"&)<0H0&
'9<12("I&
J6+)G"*(</#&
)CD:+3+E*:'
F:+?'";G*:@'
%,A-*H:'
'3+E*:'
I*<*:HJ+<'
)CD:+3+E*:''
9:+?'''
(1+:HK*'LHM*@'
① HYDROELECTRIC	
  POWER,	
  
where	
  storage	
  lakes	
  will	
  
provide	
  basic	
  storage	
  
② WIND	
  POWER	
  to	
  provide	
  
current	
  during	
  the	
  night	
  +	
  
windy	
  Winter	
  months	
  
③ SOLAR	
  PHOTOVOLTAICS	
  
for	
  summer	
  and	
  sunny	
  days	
  
CombinaAon	
  of	
  Solar	
  and	
  Wind	
  avoids	
  the	
  need	
  for	
  seasonal	
  storage	
  
IMT
INSTITUT DE
MICROTECHNIQUE
NEUCHÂTEL
The Photovoltaic Market Situation
ARVIND SHAH Seoul, 18th Sept 2014 "The future of
thin-film silicon PV"
Module Production Volume Trends
23
Nuclear Reactors, supply now 10% of the World's Electricity , i.e. 2500 TWh/year.
By 2025, PV Modules will be able to supply the same amount of Electricity.
Annual PV module production will then be 600 GWp
Arvind Shah, A.N. Tiwari, SOLMAT 119 (2013) iii-iv – Editor's Preface to the Special Issue on Thin-film solar cells
2025
The	
  Photovoltaic	
  Market	
  SituaAon	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
24	
  
0.1	
  
1	
  
10	
  
1980	
   1990	
   2000	
   2010	
   2020	
   2030	
   2040	
  
Module	
  Price	
  	
  in	
  USA	
  	
  	
  $/Wp	
  	
  
Year	
  
Séries1	
  
Expon.	
  (Séries1)	
  
Price	
  crash	
  due	
  to	
  overcapacity	
  
	
  	
  	
  
Module	
  Price	
  	
  
in	
  (USA)	
  $/Wp	
  	
  
(not	
  corrected	
  
	
  	
  for	
  infla4on)	
  
	
  
Source:	
  1985-­‐2010	
  Data	
  from	
  Navigant	
  (Paula	
  Mints)	
  
Expected	
  
Price	
  
For	
  2020	
  
IMT
INSTITUT DE
MICROTECHNIQUE
NEUCHÂTEL ARVIND SHAH Seoul, 18th Sept 2014 "The future of
thin-film silicon PV"
Source:	
  EPIA:	
  “Global	
  Market	
  Outlook	
  for	
  Photovoltaics”	
  (published	
  June	
  2013)	
  
End of
overcapacity:
Hopefully in 2017
Global PV Production Capacity versus annual PV market	
  
YEAR 2012
Factor ~2
overcapacity
16
The Photovoltaic Market Situation
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
IN 2012 ALL TYPES of Thin-film solar cells “went crashing down”
	
   Thin	
  Film	
  2012–2016:	
  Technologies,	
  Markets	
  and	
  
Strategies	
  for	
  Survival	
  –	
  MJ	
  Shiao,	
  Senior	
  Analyst,	
  
Solar	
  Markets	
  |	
  GTM	
  Research	
  
26	
  
The Photovoltaic Market Crash
Harry	
  Truman	
  
Energy Payback Times (EPBT)
(this is an aspect which will play an increasing role in the future)
2010
AssumpAons:	
  	
  
•  1700	
  kWh/	
  m2	
  solar	
  
radiaAon	
  (Southern	
  
Europe)	
  
•  OpAmal	
  module	
  
inclinaAon	
  
Source:	
  Mariska	
  deWild	
  Scholten,	
  European	
  PV	
  Conference	
  2011	
  
:
u  Modules
produced with
Chinese
polysilicon
à  slightly
higher EPBT
values,
à  much higher
carbon
footprints
u  Future thin-film
silicon modules
with improved
laminates
should have
strongly
reduced values
of EPBT
IMT
INSTITUT DE
MICROTECHNIQUE
NEUCHÂTEL ARVIND SHAH Seoul, 18th Sept 2014 "The future of
thin-film silicon PV"
In 2025, we should be producing 600 GWp PV Modules
At that moment we may expect:
a)  Chineses module produecers wiil pay a higher Electricity
price than they pay today ((3 to 4 Eurocents/kWh)
b)  Cost of polysilicon ingots would have increased again
c)  Raw material prices and availability will increasingls
influence Photovoltaic Module Prices
d)  The following raw materials will be in short supply:
Ag, In, Ga, Te…….
àThe following cells will be of particular interest:
ü Crystalline silicon wafer-based cells with low
wafer thickness and high eficiencies
ü Thin-film solar cells
	
  
28
Choice of PV Technology for 2025
IMT
INSTITUT DE
MICROTECHNIQUE
NEUCHÂTEL ARVIND SHAH Seoul, 18th Sept 2014 "The future of
thin-film silicon PV"
In 2025, we should be producing 600 GWp PV Modules
And it will have to be from one of the 4 known materials:	
  
29
Choice of PV Technology for 2025
No
.
Material Module
Efficiency
(stabilized)
Advantage Drawback
present Prediction
2025
1a c-Si
high eff.
18% 22% High efficiency η
Abundant materials
High
Production energy (PE)
1b c-Si
«usual»
15% 18% Quite High η
Abundant materials
Very High
Production energy (PE)
2 tf-Si 9% 14% Abundant materials
Ideal for BIPV, low PE
Low efficiency η
3 CIGS 10% 15% Moderate η
Ideal for BIPV, low PE
Ga rare
4 CdTe 10% 15% Moderate η
Ideal for BIPV, low PE
Cd toxic, Te rare
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
30	
  
v Part	
  2	
  HIT	
  cells	
  and	
  modules	
  
1.  c-­‐Si/a-­‐Si	
  HeterojuncAon	
  cells	
  (HIT	
  
cells):	
  Sanyo	
  Results	
  
2.  c-­‐Si/a-­‐Si	
  HeterojuncAon	
  cells	
  (HIT	
  
cells):	
  Neuchâtel	
  Results	
  
HIT	
  solar	
  cells/modules	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
31	
  
HIT	
  cell	
  efficiency	
  record	
  is	
  24.7%	
  	
  (M.	
  Taguchi	
  et	
  al.,	
  IEEE	
  J.	
  	
  OF	
  PV,	
  Vol.	
  4,	
  	
  JAN	
  2014,	
  pp.	
  96-­‐99)	
  
98 I
Fig. 3. Approaches for achieving higher conversion efficiency in HIT solar
cells.
conductivity and the optical transmittance of TCO layers at the
same time by designing the deposition process and optimizing
Fig. 4. I–V
µm thicknes
Technology)
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
32	
  
HIT	
  solar	
  cells/modules	
  
Sanyo/Panasonic	
  Results	
  
M.	
  Taguchi	
  et	
  al.,	
  IEEE	
  J.	
  	
  OF	
  PV,	
  Vol.	
  4,	
  	
  JAN	
  2014,	
  p.	
  98)	
  
IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 1, JANUARY 2014
nversion efficiency in HIT solar
ance of TCO layers at the
n process and optimizing
lity in our TCO films step
ng the carrier density and
near infrared region [11].
sults and obtained a spec-
Fig. 4. I–V characteristics of the 24.7% efficiency an HIT solar cell with 98-
µm thickness at the R&D stage (certified by Advanced Industrial Science and
Technology). The cell is with a silver back reflector to avoid any fluctuation of
the reflection with the measurement stage.
TABLE II
I–V CHARACTERISTICS OF THE HIT SOLAR CELLS FABRICATED
WITH 98-µM-THICK AND 151-µM-THICK WAFERS (R&D STAGE)
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
33	
  
HIT	
  solar	
  cells/modules	
  
Sanyo/Panasonic	
  Results	
  
24.7%	
  efficiency	
  obtained	
  for	
  a100cm2	
  lab	
  cell	
  with	
  a	
  98μm	
  thick	
  wafer	
  
Roth	
  &	
  Rau	
  Research	
  SA:	
  Equipment	
  to	
  produce	
  HIT	
  Modules	
  at<	
  0.6	
  €/Wp.	
  	
  
Ag	
  uAlizaAon	
  lower:	
  
•  For	
  monofacial	
  cells:	
  <40mg	
  vs	
  >200	
  mg/6’’	
  wafer	
  
•  For	
  bifacial:	
  <100	
  mg	
  vs	
  >400	
  mg/6’’	
  wafer	
  
•  Done	
  by	
  regular	
  screen	
  prinKng	
  	
  
No	
  Busbars	
  
“Smart	
  Wire”	
  Method	
  used	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
34	
  
HIT	
  solar	
  cells/modules	
  
Neuchâtel	
  Results	
  
From: Strahm Benjamin <Benjamin.Strahm@roth-rau.ch>
Subject: HJT status
Date: August 26, 2014 12:18:53 PM GMT+02:00
To: SHAH Arvind <Arvind.Shah@unine.ch>
Cc: DESPEISSE Matthieu <Matthieu.DESPEISSE@csem.ch>
2 Attachments, 1.9 MB
!"#$%&'"#"(%#)* +%,-.+"/&01$1234/2512
!"#$%&'($)"*+,- #"./,-(#%&/*%!0/)-) -1/+$#-&0(2/$$,+-)
!-,,
)-!").(!-,,(-**+!+-&!' 345678 395:(;395<=8>?
!-,,(%)-% :77(!#3 39@(!#3
#%0-)+%, AA BC(;DC=(!EF+
!"##-&0 #%,("$0+#+G-.(*")($)"./!0+"& "$0+#+G-.(*")($)"./!0+"&
#"./,-
#"./,-($"H-) 34<(I$(;J3(K(:3<##= 97J(I$(;L7(K(:<L##=
#"./,-(0-!M&","N' !-,,(+&0-)!"&&-!0+"&(H+0M()+OO"&2 !-,,(+&0-)!"&-!0+"&(H+0M(F#%)0I+)-
!"##$%&'()*+,
-#"./"%0)*+%"*1#$/"+%0"2%/#)+"/%.3$45%56"%72)//%8**$9!:;%<'$="15%.*+%$4'%14''"*5%/5.54/%$*%7)9!:;%1"##/%.
;6"%>.)*%+)00"'"*1"%2)56%7.*@$A-.*./$*)1%.'"%56"%0$##$2)*BC
%
%
(
(
(
(
(
(
(
(
(
(
(
P(M"$-('"/(H+,,(*+&.(%,,(0M-(&-!-22%)'(+&*")#%0+"&(*")('"/)($)-2-&0%0+"&25
Q%&'(0M%&R2(+&(%.S%&!-(0"($%)0+!+$%0-(+&(0M-($)"#"0+"&("*("/)(0-!M&","N'(%&.($)"./!02(%&.('"/(%)-(H-,!"#-(0"(S+2+0(/2(HM-&-S-)('"
(
F+&!-)-,'T
HIT	
  solar	
  cells/modules	
  
Neuchâtel	
  Results	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
35	
  
“Smart	
  Wire”	
  Technology	
  
An	
  invenAon	
  of	
  Meyer-­‐Burger	
  
Used	
  in	
  Neuchâtel	
  modules	
  
Foil-­‐wire	
  electrode	
  
The	
  foils	
  and	
  the	
  wires	
  are	
  connected	
  alternately	
  	
  
(the	
  wires	
  pass	
  over	
  the	
  top	
  on	
  the	
  
	
  first	
  piece	
  and	
  underneath	
  the	
  foil	
  on	
  the	
  next)	
  	
  
to	
  form	
  the	
  coil	
  with	
  the	
  foil-­‐wire	
  electrode.	
  
Cell	
  connecAon	
  
The	
  solar	
  cells	
  are	
  linked	
  by	
  means	
  of	
  the	
  wire-­‐	
  foil	
  electrode	
  to	
  form	
  a	
  string.	
  
	
  The	
  electrical	
  interconnecKon	
  of	
  the	
  string	
  only	
  takes	
  place	
  during	
  the	
  laminaKng	
  process.	
  
EncapsulaAon	
  
In	
  order	
  to	
  protect	
  the	
  cells	
  from	
  environmental	
  influences,	
  the	
  individual	
  layers	
  	
  
are	
  bonded	
  together	
  under	
  vacuum,	
  using	
  pressure	
  and	
  heat,	
  to	
  form	
  the	
  final	
  solar	
  module.	
  
The	
  electrical	
  connecKon	
  takes	
  place	
  during	
  the	
  laminaKng	
  process	
  without	
  the	
  addiKon	
  of	
  flux	
  	
  
Electrical	
  connecKon	
  at	
  low	
  temperature	
  reducess	
  brilleness	
  of	
  the	
  cells.	
  
•  Roth	
  &	
  Rau	
  Research	
  SA	
  demonstrated	
  23.1%GT(*)	
  efficiency	
  on	
  156mm	
  CZ	
  wafers	
  
with	
  a	
  BussBar	
  less	
  design.	
  
•  	
  23.5%GT	
  efficiency	
  has	
  been	
  demonstrated	
  on	
  Float	
  Zone	
  (FZ)	
  156mm	
  wafers.	
  
•  process	
  has	
  been	
  transferred	
  successfully	
  to	
  HELiAPECVD	
  and	
  HELiAPVD	
  mass	
  
producKon	
  plaporms	
  with	
  a	
  measured	
  efficiency	
  of	
  22.7%GT	
  for	
  156mm	
  cells.	
  
ARVIND	
  SHAH	
  Seoul,	
  18th	
  Sept	
  2014	
  "The	
  
future	
  of	
  thin-­‐film	
  silicon	
  PV"	
  
36	
  
HIT	
  solar	
  cells/modules	
  
Neuchâtel	
  Results	
  
IMT
INSTITUT DE
MICROTECHNIQUE
NEUCHÂTEL
ARVIND SHAH Seoul, 18th Sept 2014 "The future of
thin-film silicon PV"
37

More Related Content

What's hot

Energy 5 09
Energy 5 09Energy 5 09
Conserving Energy and Going Green Class 5 Gulf Coast Community College Encore
Conserving Energy and Going Green Class 5 Gulf Coast Community College EncoreConserving Energy and Going Green Class 5 Gulf Coast Community College Encore
Japan’s renewable energy revolution
Japan’s renewable energy revolutionJapan’s renewable energy revolution
Japan’s renewable energy revolution
Eric Johnston
 
Wind Power
Wind PowerWind Power
Wind Power
jacksonthree
 
Wind power
Wind powerWind power
Wind power
ecunnin
 
Энергетика для эпохи глобального потепления. Роальд Сагдеев.
Энергетика для эпохи глобального потепления. Роальд Сагдеев.Энергетика для эпохи глобального потепления. Роальд Сагдеев.
Энергетика для эпохи глобального потепления. Роальд Сагдеев.
Alexander Dubynin
 
Pekka_Pohjanne_VTT_Growth_Lab_Resource_Sufficiency_Nov_2018
Pekka_Pohjanne_VTT_Growth_Lab_Resource_Sufficiency_Nov_2018Pekka_Pohjanne_VTT_Growth_Lab_Resource_Sufficiency_Nov_2018
Pekka_Pohjanne_VTT_Growth_Lab_Resource_Sufficiency_Nov_2018
VTT Technical Research Centre of Finland Ltd
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
Hydeas2
 
Solar power in britain pdi
Solar power in britain pdiSolar power in britain pdi
Solar power in britain pdi
jeanphilippeguy
 
Energy, climate change
Energy, climate changeEnergy, climate change
Energy, climate change
L
 
Wind Energy: Analysis and Application-Crimson Publishers
Wind Energy: Analysis and Application-Crimson PublishersWind Energy: Analysis and Application-Crimson Publishers
Wind Energy: Analysis and Application-Crimson Publishers
CrimsonpublishersPRSP
 
The Switch, October 2015. How PV will become the dominant source of world ene...
The Switch, October 2015. How PV will become the dominant source of world ene...The Switch, October 2015. How PV will become the dominant source of world ene...
The Switch, October 2015. How PV will become the dominant source of world ene...
Chris Goodall
 
Summary Presentation for The Great Transition: Shifting from Fossil Fuels to ...
Summary Presentation for The Great Transition: Shifting from Fossil Fuels to ...Summary Presentation for The Great Transition: Shifting from Fossil Fuels to ...
Summary Presentation for The Great Transition: Shifting from Fossil Fuels to ...
Earth Policy Institute
 
Wind Mill Industry Analysis by Using Porter's Five Model
Wind Mill Industry Analysis by Using Porter's Five ModelWind Mill Industry Analysis by Using Porter's Five Model
Wind Mill Industry Analysis by Using Porter's Five Model
Jaya Saxena
 
Green Jobs Green New York
Green Jobs Green New YorkGreen Jobs Green New York
Green Jobs Green New York
Dennis Conard
 
Harnessing renewable energy in crz territory. by-Dr Arceivala
Harnessing renewable energy in crz territory. by-Dr Arceivala Harnessing renewable energy in crz territory. by-Dr Arceivala
Harnessing renewable energy in crz territory. by-Dr Arceivala
Ecotist
 
CCXG Global Forum October 2018, Energy in transition by L. Varro
CCXG Global Forum October 2018, Energy in transition by L. Varro CCXG Global Forum October 2018, Energy in transition by L. Varro
CCXG Global Forum October 2018, Energy in transition by L. Varro
OECD Environment
 
History of wind power
History of wind powerHistory of wind power
History of wind power
ASHWANI BHARATI
 
Solar investment-case-mac-solar
Solar investment-case-mac-solarSolar investment-case-mac-solar
Solar investment-case-mac-solar
macsolar77
 
Solar investment-case-mac-solar
Solar investment-case-mac-solarSolar investment-case-mac-solar
Solar investment-case-mac-solar
macsolar77
 

What's hot (20)

Energy 5 09
Energy 5 09Energy 5 09
Energy 5 09
 
Conserving Energy and Going Green Class 5 Gulf Coast Community College Encore
Conserving Energy and Going Green Class 5 Gulf Coast Community College EncoreConserving Energy and Going Green Class 5 Gulf Coast Community College Encore
Conserving Energy and Going Green Class 5 Gulf Coast Community College Encore
 
Japan’s renewable energy revolution
Japan’s renewable energy revolutionJapan’s renewable energy revolution
Japan’s renewable energy revolution
 
Wind Power
Wind PowerWind Power
Wind Power
 
Wind power
Wind powerWind power
Wind power
 
Энергетика для эпохи глобального потепления. Роальд Сагдеев.
Энергетика для эпохи глобального потепления. Роальд Сагдеев.Энергетика для эпохи глобального потепления. Роальд Сагдеев.
Энергетика для эпохи глобального потепления. Роальд Сагдеев.
 
Pekka_Pohjanne_VTT_Growth_Lab_Resource_Sufficiency_Nov_2018
Pekka_Pohjanne_VTT_Growth_Lab_Resource_Sufficiency_Nov_2018Pekka_Pohjanne_VTT_Growth_Lab_Resource_Sufficiency_Nov_2018
Pekka_Pohjanne_VTT_Growth_Lab_Resource_Sufficiency_Nov_2018
 
Wind Energy
Wind EnergyWind Energy
Wind Energy
 
Solar power in britain pdi
Solar power in britain pdiSolar power in britain pdi
Solar power in britain pdi
 
Energy, climate change
Energy, climate changeEnergy, climate change
Energy, climate change
 
Wind Energy: Analysis and Application-Crimson Publishers
Wind Energy: Analysis and Application-Crimson PublishersWind Energy: Analysis and Application-Crimson Publishers
Wind Energy: Analysis and Application-Crimson Publishers
 
The Switch, October 2015. How PV will become the dominant source of world ene...
The Switch, October 2015. How PV will become the dominant source of world ene...The Switch, October 2015. How PV will become the dominant source of world ene...
The Switch, October 2015. How PV will become the dominant source of world ene...
 
Summary Presentation for The Great Transition: Shifting from Fossil Fuels to ...
Summary Presentation for The Great Transition: Shifting from Fossil Fuels to ...Summary Presentation for The Great Transition: Shifting from Fossil Fuels to ...
Summary Presentation for The Great Transition: Shifting from Fossil Fuels to ...
 
Wind Mill Industry Analysis by Using Porter's Five Model
Wind Mill Industry Analysis by Using Porter's Five ModelWind Mill Industry Analysis by Using Porter's Five Model
Wind Mill Industry Analysis by Using Porter's Five Model
 
Green Jobs Green New York
Green Jobs Green New YorkGreen Jobs Green New York
Green Jobs Green New York
 
Harnessing renewable energy in crz territory. by-Dr Arceivala
Harnessing renewable energy in crz territory. by-Dr Arceivala Harnessing renewable energy in crz territory. by-Dr Arceivala
Harnessing renewable energy in crz territory. by-Dr Arceivala
 
CCXG Global Forum October 2018, Energy in transition by L. Varro
CCXG Global Forum October 2018, Energy in transition by L. Varro CCXG Global Forum October 2018, Energy in transition by L. Varro
CCXG Global Forum October 2018, Energy in transition by L. Varro
 
History of wind power
History of wind powerHistory of wind power
History of wind power
 
Solar investment-case-mac-solar
Solar investment-case-mac-solarSolar investment-case-mac-solar
Solar investment-case-mac-solar
 
Solar investment-case-mac-solar
Solar investment-case-mac-solarSolar investment-case-mac-solar
Solar investment-case-mac-solar
 

Viewers also liked

Talk_Budapest_for Greensolar Management 3rd_July_2013-1
Talk_Budapest_for Greensolar Management 3rd_July_2013-1Talk_Budapest_for Greensolar Management 3rd_July_2013-1
Talk_Budapest_for Greensolar Management 3rd_July_2013-1
Arvind Shah
 
solar technology
solar technologysolar technology
solar technology
Kundan Gupta
 
JAPAN_UKM_AMIN_22 Sept 2014 1
JAPAN_UKM_AMIN_22 Sept 2014 1JAPAN_UKM_AMIN_22 Sept 2014 1
JAPAN_UKM_AMIN_22 Sept 2014 1
Dr. Mohammad Aminul Islam
 
Amorphous si
Amorphous siAmorphous si
Amorphous si
Kamini Turan
 
Final difence presentation
Final difence presentationFinal difence presentation
Final difence presentation
H. M. Ariful .
 
poorly soluble drugs and solid dispersions
poorly soluble drugs and solid dispersionspoorly soluble drugs and solid dispersions
poorly soluble drugs and solid dispersions
rcdreddi
 
Lecture 10: Solar Cell Technologies
Lecture 10: Solar Cell TechnologiesLecture 10: Solar Cell Technologies
Lecture 10: Solar Cell Technologies
University of Liverpool
 
Amorphous and crystalline solids by www.topcoaching.com
Amorphous and crystalline solids by www.topcoaching.comAmorphous and crystalline solids by www.topcoaching.com
Amorphous and crystalline solids by www.topcoaching.com
Jyoti Gulati
 
Solar Power 2020: India On A National Solar Mission
Solar Power 2020: India On A National Solar MissionSolar Power 2020: India On A National Solar Mission
Solar Power 2020: India On A National Solar Mission
HIMADRI BANERJI
 
Solar panels
Solar panelsSolar panels
Solar panels
vexedconch
 
METHODS OF IMPROVING STEAM TURBINE PERFORMANCE
METHODS OF IMPROVING STEAM TURBINE PERFORMANCEMETHODS OF IMPROVING STEAM TURBINE PERFORMANCE
METHODS OF IMPROVING STEAM TURBINE PERFORMANCE
Vanita Thakkar
 
SOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGYSOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGY
Vanita Thakkar
 
Indian Scene_solar energy
Indian Scene_solar energyIndian Scene_solar energy
Indian Scene_solar energy
Bharath P
 
Solar cell
Solar cellSolar cell
Solar cell
Anjali Patra
 
Solar Energy Presentation
Solar Energy PresentationSolar Energy Presentation
Solar Energy Presentation
Kurt Kublbeck
 
Solar power.ppt
Solar power.pptSolar power.ppt
Solar power.ppt
Fauzia Samreen
 
Solar energy and PV cells
Solar energy and PV cellsSolar energy and PV cells
Solar energy and PV cells
Surbhi Agarwal
 
Solar panel Technology ppt
Solar panel Technology pptSolar panel Technology ppt
Solar panel Technology ppt
Gourav Kumar
 
Project on Solar Energy
Project on Solar EnergyProject on Solar Energy
Project on Solar Energy
gagneeshkaur
 
Presentation on solar cell
Presentation on solar cellPresentation on solar cell
Presentation on solar cell
Omar SYED
 

Viewers also liked (20)

Talk_Budapest_for Greensolar Management 3rd_July_2013-1
Talk_Budapest_for Greensolar Management 3rd_July_2013-1Talk_Budapest_for Greensolar Management 3rd_July_2013-1
Talk_Budapest_for Greensolar Management 3rd_July_2013-1
 
solar technology
solar technologysolar technology
solar technology
 
JAPAN_UKM_AMIN_22 Sept 2014 1
JAPAN_UKM_AMIN_22 Sept 2014 1JAPAN_UKM_AMIN_22 Sept 2014 1
JAPAN_UKM_AMIN_22 Sept 2014 1
 
Amorphous si
Amorphous siAmorphous si
Amorphous si
 
Final difence presentation
Final difence presentationFinal difence presentation
Final difence presentation
 
poorly soluble drugs and solid dispersions
poorly soluble drugs and solid dispersionspoorly soluble drugs and solid dispersions
poorly soluble drugs and solid dispersions
 
Lecture 10: Solar Cell Technologies
Lecture 10: Solar Cell TechnologiesLecture 10: Solar Cell Technologies
Lecture 10: Solar Cell Technologies
 
Amorphous and crystalline solids by www.topcoaching.com
Amorphous and crystalline solids by www.topcoaching.comAmorphous and crystalline solids by www.topcoaching.com
Amorphous and crystalline solids by www.topcoaching.com
 
Solar Power 2020: India On A National Solar Mission
Solar Power 2020: India On A National Solar MissionSolar Power 2020: India On A National Solar Mission
Solar Power 2020: India On A National Solar Mission
 
Solar panels
Solar panelsSolar panels
Solar panels
 
METHODS OF IMPROVING STEAM TURBINE PERFORMANCE
METHODS OF IMPROVING STEAM TURBINE PERFORMANCEMETHODS OF IMPROVING STEAM TURBINE PERFORMANCE
METHODS OF IMPROVING STEAM TURBINE PERFORMANCE
 
SOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGYSOLAR ENERGY TECHNOLOGY
SOLAR ENERGY TECHNOLOGY
 
Indian Scene_solar energy
Indian Scene_solar energyIndian Scene_solar energy
Indian Scene_solar energy
 
Solar cell
Solar cellSolar cell
Solar cell
 
Solar Energy Presentation
Solar Energy PresentationSolar Energy Presentation
Solar Energy Presentation
 
Solar power.ppt
Solar power.pptSolar power.ppt
Solar power.ppt
 
Solar energy and PV cells
Solar energy and PV cellsSolar energy and PV cells
Solar energy and PV cells
 
Solar panel Technology ppt
Solar panel Technology pptSolar panel Technology ppt
Solar panel Technology ppt
 
Project on Solar Energy
Project on Solar EnergyProject on Solar Energy
Project on Solar Energy
 
Presentation on solar cell
Presentation on solar cellPresentation on solar cell
Presentation on solar cell
 

Similar to Korea_new_truncated

Solar System Report
Solar System ReportSolar System Report
Solar System Report
Engr Muhammad Arshad
 
Dm24727732
Dm24727732Dm24727732
Dm24727732
IJERA Editor
 
Solar Charged E-Vehicle
Solar Charged E-VehicleSolar Charged E-Vehicle
Solar Charged E-Vehicle
DipAhmed2
 
Solar energy – current status and future trends - Klaus Jäger
Solar energy – current status and future trends - Klaus JägerSolar energy – current status and future trends - Klaus Jäger
Solar energy – current status and future trends - Klaus Jäger
UNICORNS IN TECH
 
Technology Forecast for Solar PV Presentation 2014
Technology Forecast for Solar PV Presentation 2014Technology Forecast for Solar PV Presentation 2014
Technology Forecast for Solar PV Presentation 2014
Stuart Rock
 
adunhumphrey_scientific paper-1
adunhumphrey_scientific paper-1adunhumphrey_scientific paper-1
adunhumphrey_scientific paper-1
Humphrey Adun
 
Solar Power vs Wind Power for Individuals - Henrik Frank
Solar Power vs Wind Power for Individuals - Henrik FrankSolar Power vs Wind Power for Individuals - Henrik Frank
Solar Power vs Wind Power for Individuals - Henrik Frank
Henrik Frank
 
Design and Implementation of a Solar Power System
Design and Implementation of a Solar Power SystemDesign and Implementation of a Solar Power System
Design and Implementation of a Solar Power System
ijtsrd
 
Valone - Future Energy Tech - 2015 WEEC - final
Valone - Future Energy Tech - 2015 WEEC - finalValone - Future Energy Tech - 2015 WEEC - final
Valone - Future Energy Tech - 2015 WEEC - final
Thomas Valone PhD
 
Report
ReportReport
solar cell by jerox
solar cell by jeroxsolar cell by jerox
solar cell by jerox
jaygo91
 
ENERGY AND ENERGY SYSTEMS OF THE FUTURE : Keynote address at ICCES14 at M E A...
ENERGY AND ENERGY SYSTEMS OF THE FUTURE : Keynote address at ICCES14 at M E A...ENERGY AND ENERGY SYSTEMS OF THE FUTURE : Keynote address at ICCES14 at M E A...
ENERGY AND ENERGY SYSTEMS OF THE FUTURE : Keynote address at ICCES14 at M E A...
Prof. Mohandas K P
 
Thin-Film solar cell working principle and new emerging trend in its technology
Thin-Film solar cell working principle and new emerging trend in its technologyThin-Film solar cell working principle and new emerging trend in its technology
Thin-Film solar cell working principle and new emerging trend in its technology
abhishekapple56
 
Dinesh final 1
Dinesh final 1Dinesh final 1
Dinesh final 1
dinesh babar
 
rural electrification
rural electrificationrural electrification
rural electrification
anudeep123
 
Floating Solar Photovoltaic system An Emerging Technology
Floating Solar Photovoltaic system An Emerging TechnologyFloating Solar Photovoltaic system An Emerging Technology
Floating Solar Photovoltaic system An Emerging Technology
Pooja Agarwal
 
solar PV
solar PVsolar PV
solar PV
khalid khan
 
Comparison of Solar Energy System with Conventional Power System : A Case Stu...
Comparison of Solar Energy System with Conventional Power System : A Case Stu...Comparison of Solar Energy System with Conventional Power System : A Case Stu...
Comparison of Solar Energy System with Conventional Power System : A Case Stu...
IRJET Journal
 
Solar Report WSL
Solar Report WSLSolar Report WSL
Solar Report WSL
Samudra Mukherji
 
solar energy and how to help poor with sun energy ppt
solar energy  and how to help poor with sun energy pptsolar energy  and how to help poor with sun energy ppt
solar energy and how to help poor with sun energy ppt
abhi4kismat1
 

Similar to Korea_new_truncated (20)

Solar System Report
Solar System ReportSolar System Report
Solar System Report
 
Dm24727732
Dm24727732Dm24727732
Dm24727732
 
Solar Charged E-Vehicle
Solar Charged E-VehicleSolar Charged E-Vehicle
Solar Charged E-Vehicle
 
Solar energy – current status and future trends - Klaus Jäger
Solar energy – current status and future trends - Klaus JägerSolar energy – current status and future trends - Klaus Jäger
Solar energy – current status and future trends - Klaus Jäger
 
Technology Forecast for Solar PV Presentation 2014
Technology Forecast for Solar PV Presentation 2014Technology Forecast for Solar PV Presentation 2014
Technology Forecast for Solar PV Presentation 2014
 
adunhumphrey_scientific paper-1
adunhumphrey_scientific paper-1adunhumphrey_scientific paper-1
adunhumphrey_scientific paper-1
 
Solar Power vs Wind Power for Individuals - Henrik Frank
Solar Power vs Wind Power for Individuals - Henrik FrankSolar Power vs Wind Power for Individuals - Henrik Frank
Solar Power vs Wind Power for Individuals - Henrik Frank
 
Design and Implementation of a Solar Power System
Design and Implementation of a Solar Power SystemDesign and Implementation of a Solar Power System
Design and Implementation of a Solar Power System
 
Valone - Future Energy Tech - 2015 WEEC - final
Valone - Future Energy Tech - 2015 WEEC - finalValone - Future Energy Tech - 2015 WEEC - final
Valone - Future Energy Tech - 2015 WEEC - final
 
Report
ReportReport
Report
 
solar cell by jerox
solar cell by jeroxsolar cell by jerox
solar cell by jerox
 
ENERGY AND ENERGY SYSTEMS OF THE FUTURE : Keynote address at ICCES14 at M E A...
ENERGY AND ENERGY SYSTEMS OF THE FUTURE : Keynote address at ICCES14 at M E A...ENERGY AND ENERGY SYSTEMS OF THE FUTURE : Keynote address at ICCES14 at M E A...
ENERGY AND ENERGY SYSTEMS OF THE FUTURE : Keynote address at ICCES14 at M E A...
 
Thin-Film solar cell working principle and new emerging trend in its technology
Thin-Film solar cell working principle and new emerging trend in its technologyThin-Film solar cell working principle and new emerging trend in its technology
Thin-Film solar cell working principle and new emerging trend in its technology
 
Dinesh final 1
Dinesh final 1Dinesh final 1
Dinesh final 1
 
rural electrification
rural electrificationrural electrification
rural electrification
 
Floating Solar Photovoltaic system An Emerging Technology
Floating Solar Photovoltaic system An Emerging TechnologyFloating Solar Photovoltaic system An Emerging Technology
Floating Solar Photovoltaic system An Emerging Technology
 
solar PV
solar PVsolar PV
solar PV
 
Comparison of Solar Energy System with Conventional Power System : A Case Stu...
Comparison of Solar Energy System with Conventional Power System : A Case Stu...Comparison of Solar Energy System with Conventional Power System : A Case Stu...
Comparison of Solar Energy System with Conventional Power System : A Case Stu...
 
Solar Report WSL
Solar Report WSLSolar Report WSL
Solar Report WSL
 
solar energy and how to help poor with sun energy ppt
solar energy  and how to help poor with sun energy pptsolar energy  and how to help poor with sun energy ppt
solar energy and how to help poor with sun energy ppt
 

Korea_new_truncated

  • 1.
  • 2.     ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   2   v Part  1  Energy  and  the   need  for  Photovoltaics   v Part  2  HIT  solar  cells/ modules  
  • 3. v  Part  1  Energy  and  the  need  for  Photovoltaics   -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐   1.  Total  World  Energy  ConsumpAon   2.  Global  Warming   4.  Is  it  Possible  To  Reduce  Electricity  ConsumpAon?   5.  Electricity  used  for  more  and  more  tasks  !       7.  PV  Market  SituaAon   8.  Choice  of  PV  Technology  for  2025  ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   3  
  • 4. Total  World  Energy  ConsumpAon   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   4   Source:  EPFL  Press/PPUR  «  Guide  de  la  technique  »,  Vol.  2  «    L’énergie  »     Average  Yearly  Increase  of  Energy  ConsumpAon       4%   4.1%  2%   Coal   Petrol   Gas   Hydro  +  Nuclear   only  a  small  fracAon   Start  of  Petrol  Age   The  use  of     coal,  petrol  and  gas     for  energy  supply     is  one  of  the     main  causes     for  global  warming  
  • 5. Sources  of  Global  Warming   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   5   Burning  of  coal,     natural  gas,  and  oil     for  electricity  and  heat   §  fossil  fuels  burned  on-­‐site     at  faciliKes  for  energy   •  emissions  from  chemical,  metallurgical,     &  mineral  transf.  processes     not  associated  with  energy  consumpKon.   DeforestaKon,    land  clearing  for  agriculture,     and  fires  or  decay  of  peat  soils   Management     of  agricultural  soils   livestock,     rice  producKon,     and  biomass  burning.   fossil  fuels  burned     for  road,  rail,  air,     and  marine     transportaKon   burning  fuels  for  heat  in  buildings     or  cooking  in  homes   Source:  IPCC  (2007)  
  • 6. Sources  of  Global  Warming   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   6   CO2  from  Energy  Supply   Source:  IEA,  Key  World  Energy  StaAsAcs  (2012)  
  • 7. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   7   Hydro       Nuclear     Gas     Petroleum       Coal           à  Two  lines  of  acAon   1. Reduce  Electricity  ConsumpAon,   2. Promote:  Hydro,  Wind  and  Solar  
  • 8. Avoid  Global  Warming   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   8    
  • 9. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   9   Avoid     Nuclear  Catastrophes    
  • 10. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   10   à  Two  lines  of  acAon   1. Reduce  Electricity  ConsumpAon,   2. Promote:  Hydro,  Wind  and  Solar   Photovoltaic  
  • 11. Reduce  Electricity  ConsumpAon?     ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   11   TWh/year   20’000     16’000     12’000      8’000     World   Electricity   ConsumpAon     conAnues     to  increase     by  4  to  5  %     per  year.   Because:   1)  Emerging  Countries  (China,  India,..)  show  very  strong  increase   2)  Electricity  is  being  used  for  more  and  more  tasks   Approx.  5%  /year  
  • 12. Reduce  Electricity  ConsumpAon?     ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   12   It  will  not  be  possible  in  the  next  50  years  to  globally  reduce  electricity  consumpAon   Electricity    ConsumpAon  is  NOW  Growing  at  a  fast  rate   1)  Electricity  use  is  spreading  in  developing  and  emerging  countries   2)  Even  in  Industrialized  countries  Electricity  used  for  more  and  more  tasks   Example:   Switzerland   Hydropower   From  Rivers   Nuclear    power   GeneraKon   Hydropower     from       Storage  Lakes  
  • 13. Three  main  forms  of  renewable   electricity  for  the  next  decade   1)  Hydroelectricity     Provides  basic  generaAon  capacity   Hydroelectric  storage  lakes  ideal  for  storing  current   2)  Wind  Energy   Provides  current  during  windy  season   (Switzerland:  Autumn,  Winter)   (Korea:………)   3)  Solar  Photovoltaic   Provides  current  during  sunny  season   (Switzerland:  Summer)   (Korea:………)   These  three  forms  of  energy  have  to  be  developed   together,  in  order  to  master  the  storage  problems   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   13  
  • 14. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   14   Energy   Form   Storage   Regularity   LocaAon   Small   InstallaAons   CiAzen   ParAcipaAon   Hydro   Storage   Lake   yes   yes   Specific   Possible,   but  costly   indirect   Hydro   River   no   yes   Specific     Difficult   indirect   Wind   no   no   Widespread   Not  feasible   indirect   Solar   no   no   Everywhere   Yes,  easy   Yes,  direct   Three  main  forms  of  renewable   electricity  for  the  next  decade   Solar  Photovoltaic    is  the  only  one  of  these  three    energy  forms,  where  small,  individually-­‐ owned  installaAons    are  possible    and  can    be  set  up  almost  everywhere  –  it  will  therefore   have  to  contribute  the  majority  of  capacity  increase  during  the  next  decade.  
  • 15. World  Annual  ProducAon  of  Hydroelectric  Current   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   15   OCDE China Africa EX-URSS Asia (w/o China) Europe (non-OCDE) South America à  In  most  countries  hydroelectric  power     has  reached  a  stable  plateau   There  is  likle  scope  for  further  increase:   à We  need  Wind  and  Solar  Electricity   à In  Korea  there  is  sAll  scope  for  increase  
  • 16. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   16   Source:     TN  ConsulAng     Zürich   à  During  60  years,  development  was  very  slow,     only  in  1950  did  hydroelectric  power  «take  off»   A  similar  long  «incubaAon  period»   should  be  expected  for  Photovoltaics   Stable     plateau   Hydroelectric  Power  in  Switzerland  
  • 17. 0   100   200   300   400   500   1965   1970   1975   1980   1985   1990   1995   2000   2005   2010   2015   SérTotal   Electricity  ProducAon  in  Korea   (hydroelectric  power  is  negligible)   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   17   .   Source:  Korea  Electric  Power  CorporaAon  -­‐50   0   50   100   150   200   250   300   350   1965   1970   1975   1980   1985   1990   1995   2000   2005   2010   2015   Séries1   Séries2   Séries3   Thermal     Hydro     Nuclear   High  potenAal     for  increasing     hydroelectric     current  generaAon     in  Korea  ?  
  • 18. Wind  Energy   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   18  
  • 19. Wind  Energy   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   19  
  • 20. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   20   Solar  Photovoltaic  
  • 21. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   21   x   2014:   50  GWp   Source:     Bloomberg     Report   Sept  2014   Source:  European  Photovoltaic  Industries  AssociaAon  (EPIA),     “Global  Market  Outlook  for  Photovoltaics  2013-­‐2017”    (take  the  “policy-­‐driven  scenario”)   Solar  Photovoltaic  
  • 22. To  solve  the  storage  problem  all  3  forms  are  needed:     ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   22   Three  main  forms  of  renewable   electricity  for  the  next  decade   !"#$%"&'("%)*+%+),&-./0$123./4& & !"#$%&'()!)'(*+,-.'/012'(*31'45/6'782*' 9,1,:*'+9'12;<=>-?'@;-;A+<'B#7' /4' 5)&6+((&/.)&7"&2.00+7("&+/&)8"&/"9)&:;&,"<*0&).&=(.7<((,&*"#$%"&"("%)*+%+),&%./0$123./& '("%)*+%+),&&-./0$123./&+0&>?@&A*.6+/=&<)&<&B<0)&*<)"& CD  '("%)*+%+),&$0"&+0&02*"<#+/=&+/&#"E"(.2+/=&</#&"1"*=+/=&%.$/)*+"0& FD  'E"/&+/&5/#$0)*+<(+G"#&%.$/)*+"0&'("%)*+%+),&$0"#&B.*&1.*"&</#&1.*"&)<0H0& '9<12("I& J6+)G"*(</#& )CD:+3+E*:' F:+?'";G*:@' %,A-*H:' '3+E*:' I*<*:HJ+<' )CD:+3+E*:'' 9:+?''' (1+:HK*'LHM*@' ① HYDROELECTRIC  POWER,   where  storage  lakes  will   provide  basic  storage   ② WIND  POWER  to  provide   current  during  the  night  +   windy  Winter  months   ③ SOLAR  PHOTOVOLTAICS   for  summer  and  sunny  days   CombinaAon  of  Solar  and  Wind  avoids  the  need  for  seasonal  storage  
  • 23. IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL The Photovoltaic Market Situation ARVIND SHAH Seoul, 18th Sept 2014 "The future of thin-film silicon PV" Module Production Volume Trends 23 Nuclear Reactors, supply now 10% of the World's Electricity , i.e. 2500 TWh/year. By 2025, PV Modules will be able to supply the same amount of Electricity. Annual PV module production will then be 600 GWp Arvind Shah, A.N. Tiwari, SOLMAT 119 (2013) iii-iv – Editor's Preface to the Special Issue on Thin-film solar cells 2025
  • 24. The  Photovoltaic  Market  SituaAon   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   24   0.1   1   10   1980   1990   2000   2010   2020   2030   2040   Module  Price    in  USA      $/Wp     Year   Séries1   Expon.  (Séries1)   Price  crash  due  to  overcapacity         Module  Price     in  (USA)  $/Wp     (not  corrected      for  infla4on)     Source:  1985-­‐2010  Data  from  Navigant  (Paula  Mints)   Expected   Price   For  2020  
  • 25. IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL ARVIND SHAH Seoul, 18th Sept 2014 "The future of thin-film silicon PV" Source:  EPIA:  “Global  Market  Outlook  for  Photovoltaics”  (published  June  2013)   End of overcapacity: Hopefully in 2017 Global PV Production Capacity versus annual PV market   YEAR 2012 Factor ~2 overcapacity 16 The Photovoltaic Market Situation
  • 26. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   IN 2012 ALL TYPES of Thin-film solar cells “went crashing down”   Thin  Film  2012–2016:  Technologies,  Markets  and   Strategies  for  Survival  –  MJ  Shiao,  Senior  Analyst,   Solar  Markets  |  GTM  Research   26   The Photovoltaic Market Crash
  • 27. Harry  Truman   Energy Payback Times (EPBT) (this is an aspect which will play an increasing role in the future) 2010 AssumpAons:     •  1700  kWh/  m2  solar   radiaAon  (Southern   Europe)   •  OpAmal  module   inclinaAon   Source:  Mariska  deWild  Scholten,  European  PV  Conference  2011   : u  Modules produced with Chinese polysilicon à  slightly higher EPBT values, à  much higher carbon footprints u  Future thin-film silicon modules with improved laminates should have strongly reduced values of EPBT
  • 28. IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL ARVIND SHAH Seoul, 18th Sept 2014 "The future of thin-film silicon PV" In 2025, we should be producing 600 GWp PV Modules At that moment we may expect: a)  Chineses module produecers wiil pay a higher Electricity price than they pay today ((3 to 4 Eurocents/kWh) b)  Cost of polysilicon ingots would have increased again c)  Raw material prices and availability will increasingls influence Photovoltaic Module Prices d)  The following raw materials will be in short supply: Ag, In, Ga, Te……. àThe following cells will be of particular interest: ü Crystalline silicon wafer-based cells with low wafer thickness and high eficiencies ü Thin-film solar cells   28 Choice of PV Technology for 2025
  • 29. IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL ARVIND SHAH Seoul, 18th Sept 2014 "The future of thin-film silicon PV" In 2025, we should be producing 600 GWp PV Modules And it will have to be from one of the 4 known materials:   29 Choice of PV Technology for 2025 No . Material Module Efficiency (stabilized) Advantage Drawback present Prediction 2025 1a c-Si high eff. 18% 22% High efficiency η Abundant materials High Production energy (PE) 1b c-Si «usual» 15% 18% Quite High η Abundant materials Very High Production energy (PE) 2 tf-Si 9% 14% Abundant materials Ideal for BIPV, low PE Low efficiency η 3 CIGS 10% 15% Moderate η Ideal for BIPV, low PE Ga rare 4 CdTe 10% 15% Moderate η Ideal for BIPV, low PE Cd toxic, Te rare
  • 30. ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   30   v Part  2  HIT  cells  and  modules   1.  c-­‐Si/a-­‐Si  HeterojuncAon  cells  (HIT   cells):  Sanyo  Results   2.  c-­‐Si/a-­‐Si  HeterojuncAon  cells  (HIT   cells):  Neuchâtel  Results  
  • 31. HIT  solar  cells/modules   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   31   HIT  cell  efficiency  record  is  24.7%    (M.  Taguchi  et  al.,  IEEE  J.    OF  PV,  Vol.  4,    JAN  2014,  pp.  96-­‐99)  
  • 32. 98 I Fig. 3. Approaches for achieving higher conversion efficiency in HIT solar cells. conductivity and the optical transmittance of TCO layers at the same time by designing the deposition process and optimizing Fig. 4. I–V µm thicknes Technology) ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   32   HIT  solar  cells/modules   Sanyo/Panasonic  Results   M.  Taguchi  et  al.,  IEEE  J.    OF  PV,  Vol.  4,    JAN  2014,  p.  98)  
  • 33. IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 1, JANUARY 2014 nversion efficiency in HIT solar ance of TCO layers at the n process and optimizing lity in our TCO films step ng the carrier density and near infrared region [11]. sults and obtained a spec- Fig. 4. I–V characteristics of the 24.7% efficiency an HIT solar cell with 98- µm thickness at the R&D stage (certified by Advanced Industrial Science and Technology). The cell is with a silver back reflector to avoid any fluctuation of the reflection with the measurement stage. TABLE II I–V CHARACTERISTICS OF THE HIT SOLAR CELLS FABRICATED WITH 98-µM-THICK AND 151-µM-THICK WAFERS (R&D STAGE) ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   33   HIT  solar  cells/modules   Sanyo/Panasonic  Results   24.7%  efficiency  obtained  for  a100cm2  lab  cell  with  a  98μm  thick  wafer  
  • 34. Roth  &  Rau  Research  SA:  Equipment  to  produce  HIT  Modules  at<  0.6  €/Wp.     Ag  uAlizaAon  lower:   •  For  monofacial  cells:  <40mg  vs  >200  mg/6’’  wafer   •  For  bifacial:  <100  mg  vs  >400  mg/6’’  wafer   •  Done  by  regular  screen  prinKng     No  Busbars   “Smart  Wire”  Method  used   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   34   HIT  solar  cells/modules   Neuchâtel  Results   From: Strahm Benjamin <Benjamin.Strahm@roth-rau.ch> Subject: HJT status Date: August 26, 2014 12:18:53 PM GMT+02:00 To: SHAH Arvind <Arvind.Shah@unine.ch> Cc: DESPEISSE Matthieu <Matthieu.DESPEISSE@csem.ch> 2 Attachments, 1.9 MB !"#$%&'"#"(%#)* +%,-.+"/&01$1234/2512 !"#$%&'($)"*+,- #"./,-(#%&/*%!0/)-) -1/+$#-&0(2/$$,+-) !-,, )-!").(!-,,(-**+!+-&!' 345678 395:(;395<=8>? !-,,(%)-% :77(!#3 39@(!#3 #%0-)+%, AA BC(;DC=(!EF+ !"##-&0 #%,("$0+#+G-.(*")($)"./!0+"& "$0+#+G-.(*")($)"./!0+"& #"./,- #"./,-($"H-) 34<(I$(;J3(K(:3<##= 97J(I$(;L7(K(:<L##= #"./,-(0-!M&","N' !-,,(+&0-)!"&&-!0+"&(H+0M()+OO"&2 !-,,(+&0-)!"&-!0+"&(H+0M(F#%)0I+)- !"##$%&'()*+, -#"./"%0)*+%"*1#$/"+%0"2%/#)+"/%.3$45%56"%72)//%8**$9!:;%<'$="15%.*+%$4'%14''"*5%/5.54/%$*%7)9!:;%1"##/%. ;6"%>.)*%+)00"'"*1"%2)56%7.*@$A-.*./$*)1%.'"%56"%0$##$2)*BC % % ( ( ( ( ( ( ( ( ( ( ( P(M"$-('"/(H+,,(*+&.(%,,(0M-(&-!-22%)'(+&*")#%0+"&(*")('"/)($)-2-&0%0+"&25 Q%&'(0M%&R2(+&(%.S%&!-(0"($%)0+!+$%0-(+&(0M-($)"#"0+"&("*("/)(0-!M&","N'(%&.($)"./!02(%&.('"/(%)-(H-,!"#-(0"(S+2+0(/2(HM-&-S-)('" ( F+&!-)-,'T
  • 35. HIT  solar  cells/modules   Neuchâtel  Results   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   35   “Smart  Wire”  Technology   An  invenAon  of  Meyer-­‐Burger   Used  in  Neuchâtel  modules   Foil-­‐wire  electrode   The  foils  and  the  wires  are  connected  alternately     (the  wires  pass  over  the  top  on  the    first  piece  and  underneath  the  foil  on  the  next)     to  form  the  coil  with  the  foil-­‐wire  electrode.   Cell  connecAon   The  solar  cells  are  linked  by  means  of  the  wire-­‐  foil  electrode  to  form  a  string.    The  electrical  interconnecKon  of  the  string  only  takes  place  during  the  laminaKng  process.   EncapsulaAon   In  order  to  protect  the  cells  from  environmental  influences,  the  individual  layers     are  bonded  together  under  vacuum,  using  pressure  and  heat,  to  form  the  final  solar  module.   The  electrical  connecKon  takes  place  during  the  laminaKng  process  without  the  addiKon  of  flux     Electrical  connecKon  at  low  temperature  reducess  brilleness  of  the  cells.  
  • 36. •  Roth  &  Rau  Research  SA  demonstrated  23.1%GT(*)  efficiency  on  156mm  CZ  wafers   with  a  BussBar  less  design.   •   23.5%GT  efficiency  has  been  demonstrated  on  Float  Zone  (FZ)  156mm  wafers.   •  process  has  been  transferred  successfully  to  HELiAPECVD  and  HELiAPVD  mass   producKon  plaporms  with  a  measured  efficiency  of  22.7%GT  for  156mm  cells.   ARVIND  SHAH  Seoul,  18th  Sept  2014  "The   future  of  thin-­‐film  silicon  PV"   36   HIT  solar  cells/modules   Neuchâtel  Results  
  • 37. IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL ARVIND SHAH Seoul, 18th Sept 2014 "The future of thin-film silicon PV" 37