SlideShare a Scribd company logo
S.	
  Cao
IPNS,	
  KEK
Results	
  and	
  Prospects	
  from	
  T2K	
  
2/17/17 KEK-­‐PH2017
Ø Neutrino	
  Oscillation	
  landscape
Ø T2K	
  &	
  recent	
  results
Ø Future	
  prospects	
  
Brief	
  neutrino	
  history
2/17/17 KEK-­‐PH2017 2
Credit	
  to	
  APS
² 1930:	
  On-­‐paper	
  appearance	
  as	
  “desperate”	
  remedy	
  by	
  W.	
  Pauli
² 1956:	
  	
  	
  	
  	
  	
  first	
  experimentally	
  discovered	
  by	
  Reines	
  and	
  Cowan
² 1962:	
  	
  	
  	
  	
  	
  existence	
  confirmed	
  by	
  Lederman	
  et	
  al.	
  
² 1998:	
  Atmospheric	
  neutrino	
   oscillations	
  discovered	
  by	
  Super-­‐K
² 2000:	
  	
  	
  	
  	
  	
  first	
  evidence	
  reported	
  by	
  DONUT	
  experiment
² 2001:	
  Solar	
  neutrino	
   oscillations	
  detected	
  by	
  SNO	
  (KamLAND	
  2002)
² 2011:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  transitions	
  observed	
  by	
  OPERA
² 2011-­‐13:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   by	
  T2K,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   by	
  Daya Bay(2012)	
  
² 2015:	
  Nobel	
  prizes	
  for	
  𝜈 oscillations,	
  Breakthrough	
  prize	
  (2016)
¯⌫e
⌫µ
⌫⌧
⌫µ ! ⌫⌧
⌫µ ! ⌫e ¯⌫e ! ¯⌫e
2015
T2K	
  observe	
   𝜈 𝜇 à𝜈e
appearance
Nobel & Breakthrough
for	
  𝜈 oscillations
2/17/17 KEK-­‐PH2017 3
"for	
  the	
  discovery	
  of	
  neutrino	
  oscillations,	
  
which	
  shows	
  that	
  neutrinos	
  have	
  mass"
Standard	
  Model	
  &	
  neutrino	
  oscillations
32/17/17 KEK-­‐PH2017
Source:	
  AAAS
0
@
⌫e
⌫µ
⌫⌧
1
A =
0
@
1 0 0
0 c23 s23
0 s23 c23
1
A
0
@
c12 s12 0
s12 c12 0
0 0 1
1
A
0
@
c13 0 s13e i CP
0 1 0
s13ei CP
0 c13
1
A
0
@
⌫1
⌫2
⌫3
1
APontecorvo
(1957)
Maki,
Nakagawa
Sakata
(1962)
Majorana
(1937)
Standard	
  Model:
² Neutrinos	
  interact	
  through	
  the	
  weak	
  
interaction
² Lepton	
  flavor	
  is	
  strictly	
  conserved
² Neutrinos	
  have	
  zero	
  mass
Neutrino	
  oscillations:
² Indicate	
  massive	
  neutrinos
² Mix	
  flavor	
  and	
  mass	
  eigenstates
² Beyond	
  Standard	
  Model
Flavor	
  eigenstates Mass	
  eigenstates
The	
  only	
  lab-­‐based	
  evidence
Standard	
  Model	
  &	
  neutrino	
  oscillations
Standard	
  Model:
² Neutrinos	
  interact	
  through	
  the	
  weak	
  
interaction
² Lepton	
  flavor	
  is	
  strictly	
  conserved
² Neutrinos	
  have	
  zero	
  mass
Neutrino	
  oscillations:
² Indicate	
  massive	
  neutrinos
² Mix	
  flavor	
  and	
  mass	
  eigenstates
² Beyond	
  Standard	
  Model
42/17/17 KEK-­‐PH2017
Reactors	
  /	
  acceleratorSolar /	
  reactors
0
@
⌫e
⌫µ
⌫⌧
1
A =
0
@
1 0 0
0 c23 s23
0 s23 c23
1
A
0
@
c12 s12 0
s12 c12 0
0 0 1
1
A
0
@
c13 0 s13e i CP
0 1 0
s13ei CP
0 c13
1
A
0
@
⌫1
⌫2
⌫3
1
A
Source:	
  AAAS
cij = cos ✓ij, sij = sin ✓ij
Atmospherics	
  /	
  Accelerators
Neutrino	
  oscillation	
  landscape	
  
2/17/17 KEK-­‐PH2017 6
Gonzalez-­‐Garcia et	
  al.,	
  arXiv:1512.06856	
  
⌫e ⌫µ ⌫⌧
Normal	
  hierarchy Inverted	
  hierarchy
m2
lightest m2
lightest
0
@
⌫e
⌫µ
⌫⌧
1
A =
0
@
1 0 0
0 c23 s23
0 s23 c23
1
A
0
@
c12 s12 0
s12 c12 0
0 0 1
1
A
0
@
c13 0 s13e i CP
0 1 0
s13ei CP
0 c13
1
A
0
@
⌫1
⌫2
⌫3
1
A
sign( m2
32) = ?
✓23 is maximal ?
CP = ?
mlightest = ?
m2
32
m2
31
m2
21
m2
21
⌫1
⌫2
⌫3
⌫1
⌫2
⌫3
m2
21 = 7.50+0.19
0.17 ⇥ 10 5
eV2
m2
31 = 2.457+0.047
0.047 ⇥ 10 3
eV2
✓13 = 8.50+0.20
0.21( )
✓12 = 33.48+0.78
0.75( )
✓23 = 42.3+3.0
1.6( )
m2
ij = m2
⌫i
m2
⌫j
Global	
  fit	
  – Normal	
  hierarchy
Opening	
  questions	
  (1)
2/17/17 KEK-­‐PH2017 7
Credit	
  to	
  H.	
  Murayama
q How	
  do	
  neutrinos	
  get	
  mass?	
  
q Why	
  are	
  their	
  masses	
  so	
  small?
Opening	
  questions	
  (2)
2/17/17 KEK-­‐PH2017 8
arXiv:1212.6374
q Why	
  does	
  PMNS	
  matrix	
  differ	
  from	
  CKM	
  matrix?
*Area	
  of	
  the	
  squares	
  represents	
  square	
  of	
  matrix	
  elements
Opening	
  questions	
  (3)
2/17/17 KEK-­‐PH2017 9
q What	
  is	
  neutrino’s	
  role	
  in	
  Universe	
  evolution?
q Where	
  is	
  anti-­‐matter?
Credit: NASA/WMAP Science Team
Source: scienceabc.com
Opening	
  questions	
  (3-­‐cont’d)
2/17/17 KEK-­‐PH2017 10
q Can	
  it	
  be	
  due	
  to	
  CP-­‐violating	
  decays	
  of	
  heavy	
  neutrinos?
1,000,000,001
Baryons
1,000,000,001
Anti-­‐Baryons
1,000,000,002
Baryons
1,000,000,000
Anti-­‐Baryons
Begin	
  of	
  Universe Shortly	
  after
?
CP-­‐violating	
  decays
(B	
  =	
  0;	
  L	
  ≠	
  0)
Sphaleron
Process
(B	
  ≠ 0;	
  L	
  ≠	
  0)(Fukugita,	
  Yanagida)
Opening	
  questions	
  (3-­‐cont’d)
2/17/17 KEK-­‐PH2017 11
Credit	
  to	
  B.	
  Kayser
q CP-­‐violating	
  phase	
  in	
  heavy	
  neutrino	
  decays	
  leads	
  to	
  CP-­‐
violating	
  phase	
  in	
  the	
  light	
  neutrino	
  mixing
Measure	
  CP	
  violation	
  phase	
  in	
  neutrino	
  
mixing	
  via	
  neutrino	
  oscillations	
  wanted!!!
𝜈 oscillation	
  measurement
2/17/17 KEK-­‐PH2017 12
It’s	
  about	
  probability	
  measurement,	
  basic	
  needs:
ü Source	
  of	
  well-­‐understood	
  neutrino	
  flavor	
  composition
ü Detector	
  at	
  optimal	
  baseline,	
  enable	
  to	
  distinguish	
  flavors
ü Neutrino	
  energy	
  is	
  necessary	
  to	
  known
Defined	
  baseline
𝜈 source
𝜈 detector
Theoretical,	
  
simple
𝜈 oscillation	
  measurement	
  (cont’d)
2/17/17 KEK-­‐PH2017 13
It’s	
  about	
  probability	
  measurement,	
  basic	
  needs:
ü Source	
  of	
  well-­‐understood	
  neutrino	
  flavor	
  composition
q Neutrino	
  weak	
  interactionà powerful	
  source
q Flux	
  uncertainty	
  
ü Detector	
  at	
  optimal	
  baseline,	
  enable	
  to	
  distinguish	
  flavors
q Uncertainty	
  in	
  neutrino-­‐nuclei	
  interactionà interaction	
  uncertainty
q Response	
  is	
  not	
  perfect,	
  misidentify	
  flavor	
  à detector	
  uncertainty
ü Neutrino	
  energy	
  is	
  necessary	
  to	
  known
q Typically	
  not	
  mono-­‐energy	
  neutrino	
  source
q Can	
  bias	
  in	
  reconstructing	
  neutrino	
  energy	
  
Defined	
  baseline
𝜈 source
𝜈 detector
Experimental,	
  
NOT	
  simple
T2K	
  experiment
2/17/17 KEK-­‐PH2017
T2K	
  experiment
2/17/17 15KEK-­‐PH2017
² Long-­‐baseline	
  neutrino	
  experiment,	
  located	
  in	
  Japan
² Large	
  collaboration:	
  ~470	
  physicists	
  from	
  63	
  institutes/	
  11	
  nations
² Rich	
  programs:	
  standard	
  neutrino	
  oscillations,	
  non-­‐standard	
  physics	
  
search,	
  neutrino	
  interactions
J-­‐PARC	
  neutrino	
  beam	
  line
2/17/17
² High	
  intensity,	
  almost	
  pure	
  muon (anti)	
  neutrino	
  beam	
  from	
  J-­‐PARC
16KEK-­‐PH2017
² 30	
  GeV p	
  extracted	
  from	
  J-­‐PARC	
  main	
  ring,	
  impinge	
  on	
  90-­‐cm,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  graphite	
  target	
  	
  
² Induced	
   𝜋+ (𝜋-­‐)	
  focused	
  by	
  three	
  horns,	
  pass	
  through	
  a	
  96-­‐m	
  decay	
  pipe
² Beam	
  dump	
  to	
  stop	
  all	
  particles	
  except	
  neutrinos	
  and	
  high-­‐energy	
  muons
² Muon monitor,	
  downstream	
  of	
  beam	
  dump,	
  to	
  monitor	
  beam	
  intensity	
  and	
  direction	
  by	
  
measuring	
  induced	
  muon profile.
1.9 ⇥ int
Beam	
  power	
  and	
  data	
  accumulation
2/17/17 KEK-­‐PH2017 17
Maximumbeampowerachievedsofar459.6kW
23 January 2010 - 19 January 2017
POT total: 18.29×"#$#
% mode POT: 10.68×"#$# (58%)
%& mode POT: 7.62×"#$# (42%)
² Beam	
  power	
  steadily	
  increased	
  to	
  470	
  kW	
  recently!
² 1.8x1021 Protons-­‐on-­‐target	
  (POT)	
  delivered	
  until	
  Jan	
  19th.	
  
Data	
  sample	
  for	
  results	
  presented	
  today:
² Neutrino-­‐mode:	
  7.48x1020 POT
² Antineutrino-­‐mode:	
   7.47x1020	
  POT	
  
Today	
  result
Neutrino	
  flux	
  inference
2/17/17
² High	
  intensity,	
  almost	
  pure	
  muon (anti)	
  neutrino	
  beam	
  from	
  J-­‐PARC
18KEK-­‐PH2017
² To	
  infer	
  neutrino	
  flux,	
  knowledge	
  
of	
  hadron	
  production	
  at	
  target	
  
needed
² Constrained	
  by	
  external	
  data	
  from	
  
NA61/SHINE
Flux	
  uncertainty	
  ~	
  10%
(absolute	
  error)
𝜈̅ mode
< 1%(⌫e/⌫e) < 1%(⌫e/⌫e)
T2K	
  Far	
  Detector	
   T2K	
  Far	
  Detector	
  
T2K	
  Far	
  Detector	
   T2K	
  Far	
  Detector	
  
(Beam	
  modes	
  changed	
  by	
  switching	
  horn	
  polarity)
~3.7%	
  effect	
  to	
  analysis	
  w/
Near	
  Detector	
  constraint
𝝂-­‐mode
𝝂-­‐mode 𝜈̅ mode
Far	
  Detector,	
  Super-­‐Kamiokande
2/17/17 KEK-­‐PH2017 19
(GeV)νE
0 1 2 3
(A.U.)295km
µνΦ
0
0.5
1 °OA 0.0
°OA 2.0
°OA 2.5
0 1 2 3
)eν→µνP(
0.05
0.1
= 0CP
δNH, = 0CP
δIH,
/2π=CP
δNH, /2π=CP
δIH,
0 1 2 3
)µν→µνP(
0.5
1
= 1.023θ22
sin
= 0.113θ22
sin
2
eV-3
10×= 2.432
2
m∆
Partice ID parameter
-10 -8 -6 -4 -2 0 2 4 6 8 10
0
50
100
150
200
250
300
350
Super Kamiokande IV 2166.5 days : Monitoring
e-like muon-like
Numberofevents
² Muon and	
  electron	
  are	
  well-­‐separated
à identify	
  𝜈 𝜇/𝜈& with	
  high	
  purity
² Super-­‐K	
  is	
  2.50 off	
  the	
  beam’s	
  axis	
  to	
  achieve	
  narrow	
  band	
  beam	
  peaked	
  
at	
  oscillation	
  maximum	
  (0.6	
  GeV)
(atmospheric	
   𝜈 data)
Super-­‐Kamiokande
(41.4	
  m	
  tall	
  x	
  39.3m	
  diameter)
22.5	
  ktons fiducial volume	
  
1000m	
  underground
⌫µ + n ! µ + p
⌫e + n ! e + p
2.5
Far	
  Detector,	
  Super-­‐Kamiokande
2/17/17 KEK-­‐PH2017 20
² Super-­‐K	
  is	
  2.50 off	
  the	
  beam’s	
  axis	
  to	
  achieve	
  narrow	
  band	
  beam	
  peaked	
  
at	
  oscillation	
  maximum	
  (0.6	
  GeV)
⌫µ + n ! µ + p
⌫e + n ! e + p
2.5
Short	
  version Disappearance	
  channel
Appearance	
  channel
T2K	
  primary	
  physics	
  goals
2/17/17 KEK-­‐PH2017 21
⌫µ + n ! µ + p
⌫e + n ! e + p
Disappearance	
  channel
(GeV)νE
0.5 1 1.5 2 2.5 3
Osc.Prob
0
0.5
1
flux
µ
νOff-axis°2.5
=0.523θ2
, sin2
eV
-3
=2.5x1032
2
m∆
µν→µν=µν→µν
q Sensitive	
  to	
   𝜃23 and	
   𝛥m2
31	
  (atmospheric	
  sector)	
  	
  	
  
à Precision	
  measurement	
  ( 𝜃23 is	
  maximal?)
q CPT	
  symmetry	
  test	
  by	
  comparing	
  disappearance	
  
in	
  muon neutrinos	
  and	
  muon anti-­‐neutrinos	
  
T2K	
  primary	
  physics	
  goals
2/17/17 KEK-­‐PH2017 22
⌫µ + n ! µ + p
⌫e + n ! e + p
Appearance	
  channel
(GeV)νE
0.5 1 1.5 2 2.5 3
Osc.Prob
0
0.02
0.04
0.06
0.08
0.1
flux
µ
νOff-axis°2.5
ν, NH,°=0cpδ
ν, NH,°=270cpδ
ν, NH,°=0cpδ
ν, NH,°=270cpδ
eν→µν,eν→µν
q Sensitive	
  to	
   𝜃13 and	
   𝛿CP
o Degeneracy	
   𝜃13 -­‐ 𝛿CP is	
  difficult	
  to	
  disentangle	
  with	
  
long	
  baseline	
  experiment	
  à Need	
  constraint	
  from	
  
reactor	
  measurement	
  on	
   𝜃13	
  (or	
  high	
  statistics)
q 20-­‐30%	
  effect	
  of	
   𝛿CP and	
  10%	
  effect	
  of	
  mass	
  hierarchy	
  
(not	
  too	
  long	
  baseline	
  295km)
Large	
  CP	
  effect
Small	
  matter	
  effect	
  
(in	
  vacuum)
(in	
  matter)
Far	
  Detector:	
  Event	
  selections
2/17/17 KEK-­‐PH2017 23
⌫e + n ! e + p
Energy	
  info.	
  needed	
  à Enrich	
  charged	
  current	
  quasi	
  elastic	
  events
FCFV 1-ring -likeµ µ
p Decay-e
Numberofevents
0
200
400
RUN1-7 data
)POT
20
10×(7.482
CC QEµν
CC QEµν
CC non-QEµν+µν
CCeν+eν
NC
FCFV
1-ring
e-like
Evis
Decay-e
rec
ν
E fiTQun
Numberofevents
0
200
400
RUN1-7 data
)POT
20
10×(7.482
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
Charged particle should be µ±
Pµ > 200 Mev/c: remove ⇡ and e
Decay e < 2: reject invisible ⇡
• FCFV:	
  Fully	
  contained	
  in	
  fiducial volume
• 1-­‐ring:	
  One	
  charged-­‐particle	
  for	
  CCQE
Charged particle should be e±
No decay e : # invisible µ/⇡
Evis > 100 MeV: # low E bkg.
Erec
⌫ < 1.25 GeV: # intrinsic beam ⌫e.
“fiTQun”: # NC ⇡0
CCQE-­‐enhanced	
   CCQE-­‐enhanced	
  
◎
◎
◎
◎
◎
◎
◎
◎
Far	
  Detector:	
  Event	
  selections
2/17/17 KEK-­‐PH2017 24
⌫e + n ! e + p
Energy	
  info.	
  needed	
  à Enrich	
  charged	
  current	
  quasi	
  elastic	
  events
FCFV 1-ring -likeµ µ
p Decay-e
Numberofevents
0
200
400
RUN1-7 data
)POT
20
10×(7.482
CC QEµν
CC QEµν
CC non-QEµν+µν
CCeν+eν
NC
FCFV
1-ring
e-like
Evis
Decay-e
rec
ν
E fiTQun
Numberofevents
0
200
400
RUN1-7 data
)POT
20
10×(7.482
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
CCQE-­‐enhanced	
   CCQE-­‐enhanced	
  
Theoretically,	
  neutrino	
  beam	
  from	
  J-­‐PARC	
  
and	
  Super-­‐Kamiokande are	
  enough.	
  
However,	
  experimentally,	
  we	
  need	
  more..
2/17/17 KEK-­‐PH2017
Near	
  Detectors
2/17/17 KEK-­‐PH2017 26
² Near	
  Detector	
  complex	
  is	
  280m	
  downstream	
  of	
  target
It’s	
  about	
  probability	
  measurement,	
  basic	
  needs:
ü Source	
  of	
  well-­‐understood	
  neutrino	
  flavor	
  composition
q Neutrino	
  weak	
  interactionà powerful	
  source
q Flux	
  uncertainty	
  
ü Detector	
  at	
  optimal	
  baseline,	
  enable	
  to	
  distinguish	
  flavors
q Uncertainty	
  in	
  neutrino-­‐nuclei	
  interactionà interaction	
  uncertainty
q Response	
  is	
  not	
  perfect,	
  misidentify	
  flavor	
  à detector	
  uncertainty
ü Neutrino	
  energy	
  is	
  necessary	
  to	
  known
q Typically	
  not	
  mono-­‐energy	
  neutrino	
  source
q Can	
  bias	
  in	
  reconstructing	
  neutrino	
  energy	
  
Built	
  for	
  these
particular	
  purposes
Near	
  Detectors	
  (cont’d)
2/17/17 KEK-­‐PH2017 27
² Near	
  Detector	
  complex	
  is	
  280m	
  downstream	
  of	
  target
On-­‐axis	
  (called	
  INGRID)
Measure	
  𝜈 beam	
  intensity	
  &	
  profile:	
  
16	
  scintillator-­‐steel	
  interleaved	
  
modules	
  (7.1	
  tons/each)
Off-­‐axis	
  (called	
  ND280)
Understand	
  unoscillated 𝜈 beam:	
  
further	
  constrain	
  flux	
  and	
  cross-­‐
section	
  parameters	
  
Near	
  Detectors	
  measurements
28
Day
[events/1e14POT]
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Event rate
Horn250kA
Horn205kA
Horn-250kA
[mrad]
1−
0.5−
0
0.5
Horizontal beam direction INGRID
MUMON
Day
[mrad]
1−
0.5−
0
0.5
1
Vertical beam direction INGRID
MUMON
T2K Run1
Jan.2010-Jun.2010
T2K Run2
Nov.2010-Mar.2011
T2K Run3
Mar.2012-Jun.2012
T2K Run4
Oct.2012-May.2013
T2K Run5
May.2014
-Jun.2014
T2K Run6
Oct.2014-June.2015
T2K Run7
Feb.2016-May.2016
2/17/17 KEK-­‐PH2017
Measured	
  data
Off-­‐axis	
  neutrino	
   energy	
  strongly	
  
depend	
  on	
  beam	
  direction	
  
(1mrad ~ 2% shift of peak energy)
T2K controlled off-axis better than
1mrad
Position from Designed beam center[cm]
400− 200− 0 200 400
Numberofevents
0
10
20
30
40
50
60
70
80
3
10×
/ ndf2χ 10.8 / 4
Constant 161.1±7.168e+04
Mean 1.099±2.428−
Sigma 1.795±437.6
/ ndf2χ 10.8 / 4
Constant 161.1±7.168e+04
Mean 1.099±2.428−
Sigma 1.795±437.6
Position from Designed beam center[cm]
400− 200− 0 200 400Numberofevents 0
10
20
30
40
50
60
70
80
3
10×
/ ndf2χ 39.29 / 4
Constant 163.3±7.392e+04
Mean 1.158±4.593
Sigma 1.979±456
/ ndf2χ 39.29 / 4
Constant 163.3±7.392e+04
Mean 1.158±4.593
Sigma 1.979±456
Data for each module
Fitted Gaussian
Horizontal Vertical
Near	
  Detectors	
  measurements	
  (cont’d)
2/17/17 KEK-­‐PH2017 29
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
500
1000
1500
2000
2500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
300
350
400
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
10
20
30
40
50
60
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CCNtrk
Near	
  Detectors	
  measurements	
  (cont’d)
302/17/17 KEK-­‐PH2017
Cross-­‐section	
  parameters
Constrain
𝜈-­‐int.	
  model
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,µνND280
flux
Flux parameters
?
Need	
  to	
  know	
  how	
  
neutrinos	
  see	
  nuclei
(parameterization)
Observable
Nuclear	
  target
Near	
  Detectors	
  measurements	
  (cont’d)
312/17/17 KEK-­‐PH2017
Reconstructed Neutrino Energy (GeV)
0 0.2 0.4 0.6 0.8 1 1.2
Eventsperbin
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
error (w/o ND280)σ1±
errorσ1±
Reconstructed Neutrino Energy (GeV)
0 0.2 0.4 0.6 0.8 1 1.2
Eventsperbin
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
error (w/o ND280)σ1±
errorσ1±
Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 2 2.5
Eventsperbin
0
2
4
6
8
10 error (w/o ND280)σ1±
errorσ1±
Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 2 2.5
Eventsperbin
0
0.5
1
1.5
2
2.5
3
3.5
4 error (w/o ND280)σ1±
errorσ1±
Total	
   𝛥NSK /NSK
Beam	
  
mode
Sample w/o	
  
ND280
w/
ND280
𝝂 12.0% 5.0%
𝝂 11.9% 5.4%
𝜈̅ 12.5% 5.2%
𝜈̅ 13.7% 6.2%
Quest	
  for	
  THEORISTS	
  (1)
322/17/17 KEK-­‐PH2017
To	
  THEORISTS	
  (1):	
  We	
  need	
  you	
  here!
For	
  better	
  understand	
  neutrino-­‐nuclei	
  
interactions.
?
Need	
  to	
  know	
  how	
  
neutrinos	
  see	
  nuclei
(parameterization)
Observable
Nuclear	
  target
T2K	
  Results
2/17/17 KEK-­‐PH2017
Disappearance	
  channel
2/17/17 KEK-­‐PH2017
² Oscillation	
  dip	
  is	
  clearly	
  observed
² Four	
  physics	
  parameters	
  are	
  fitted:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  
Results:	
   𝜈* disappearance
0 1 2 3 4 5 6 7 8
Events/100MeV
0
10
20
30
40
50
60
70
80
90
Prediction
Unoscillated
Best-Fit
Data
Reconstructed Energy [GeV]
0 1 2 3 4 5 6 7 8
Ratio
0
0.5
1
1.5
2
2.5
T2K Run1−7c preliminary
0 1 2 3 4 5 6 7 8
Events/100MeV
0
5
10
15
20
25 Prediction
Unoscillated
Best-Fit
Data
Reconstructed Energy [GeV]
0 1 2 3 4 5 6 7 8
Ratio
0
0.5
1
1.5
2
2.5
T2K Run1−7c preliminary
Neutrino Anti-­‐neutrino
Beam	
  mode Unoscillated pred. Data
Neutrino 521.8 135
Anti-­‐neutrino 184.8 66
sin2
✓23, | m2
32| sin2
✓23, | m2
32|
sin2
2✓23
/ | m2
32|
sin2
✓23
/ | m2
32|
2/17/17 KEK-­‐PH2017
Neutrino	
  vs.	
  Anti-­‐neutrino
(T2K	
  only)
Compare	
  to	
  other	
  
experiments	
  in	
  the	
  world
² No	
  difference	
  between	
  muon neutrino	
  disappearance	
  
and	
  muon anti-­‐neutrino	
  disappearance
² Good	
  agreement	
  w/	
  antineutrino	
  data	
  from	
  other	
  
experiments
Results:	
   𝜈* disappearance
T2K	
  Results
2/17/17 KEK-­‐PH2017
Appearance	
  channel
2/17/17 KEK-­‐PH2017
Results:	
   𝜈&+ appearance
energy (MeV)νReconstructed
0 500 1000
Numberofevents
0
5
10
15
RUN1-7 data
)POT
20
10×(7.482
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
Sample Prediction at	
  true	
  δCP Data
-­‐𝝅/2 0 +𝝅/2
28.7 24.1 19.6 32
6.0 6.9 7.7 4
energy (MeV)νReconstructed
0 500 1000
Numberofevents
0
1
2
3
4 RUN5-7 data
)POT
20
10×(7.471
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
2/17/17 KEK-­‐PH2017
Results:	
   𝜈&+ appearance
energy (MeV)νReconstructed
0 500 1000
Numberofevents
0
1
2
3
4 RUN5-7 data
)POT
20
10×(7.471
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
² Test	
  for	
   𝜈* → 𝜈&+ hypothesis	
  w/single	
  para.	
   𝞫
² 𝞫 =	
  0:	
  No	
   𝜈* → 𝜈&+
² 𝞫 =	
  1:	
   𝜈* → 𝜈&+ appearance	
  consistent	
  w/	
  
PMNS
² Use	
  all	
  four	
  T2K	
  samples	
  to	
  fully	
  constrain	
  
oscillation	
  prob.
Rate	
  only
No	
  evidence	
  for	
   𝜈* → 𝜈&+
More	
  data	
  is	
  needed.
T2K	
  Results
2/17/17 KEK-­‐PH2017
Appearance	
  channel
Disappearance	
  channel
Joint	
  Analysis
Oscillation	
  parameters	
  extracted	
  from	
  T2K	
  data
2/17/17 KEK-­‐PH2017 40
0 1 2 3 4 5 6 7 8
Events
0
10
20
30
40
50
60
70
80
90
Prediction
Unoscillated
Best-Fit
Data
Reconstructed Energy [GeV]
0 1 2 3 4 5 6 7 8
Ratio
0
1
2
3
4
T2K Run1−7c preliminary
0 200 400 600 800 1000 1200 1400
Events
0
0.5
1
1.5
2
2.5
3
3.5
Prediction
Unoscillated
Best-Fit
Data
Reconstructed Momentum [MeV/c]
0 200 400 600 800 1000 1200 1400
Ratio 0
2
4
6
8
T2K Run1−7c preliminary
0 1 2 3 4 5 6 7 8
Events
0
5
10
15
20
25 Prediction
Unoscillated
Best-Fit
Data
Reconstructed Energy [GeV]
0 1 2 3 4 5 6 7 8
Ratio
0
1
2
3
4
T2K Run1−7c preliminary
0 200 400 600 800 1000 1200 1400
Events
0
2
4
6
8
10
12
14
Prediction
Unoscillated
Best-Fit
Data
Reconstructed Momentum [MeV/c]
0 200 400 600 800 1000 1200 1400
Ratio
0
5
10
15
T2K Run1−7c preliminary
Appearance	
  channel
Disappearance	
  channel
sensitive	
  to	
  𝜃23 &	
  ∆ 𝑚12
2
sensitive	
  to	
  𝜃13 &	
   𝛿CP
CPT	
  is	
  assumed	
  to	
  be	
  true
Observed	
  data	
  vs.	
  prediction
2/17/17 KEK-­‐PH2017 41
Other oscillation parameter sin2
✓13 = 0.0217,
sin2
✓23 = 0.528, m2
32( m2
13) = 2.509 ⇥ 10 3
eV 2
/c4
,
sin2
✓12 = 0.846, m2
21 = 7.53 ⇥ 10 5
eV 2
/c4
Results:	
   𝜃23 &	
  ∆ 𝑚12
2
2/17/17 KEK-­‐PH2017
² 𝜈 𝜇 disappearance	
  behaves	
  consistently	
  w/	
  
𝜈* disappearance
² Result	
  consistent	
  with	
  maximal	
  mixing
² The	
  world’s	
  highest	
  precision	
   𝜃23	
  
measurement
42
Normal MH Inverted MH
sin2 𝜃23 0.53289.9:;
<9.9=: 0.53489.9::
<9.9=1
∆𝑚12
2
/1081
(eV2) 2.54589.9;=
<9.9;A
2.51089.9;1
<9.9;A
𝜈:	
  7.48x1020 POT	
  +	
   𝜈̅:	
  7.47x1020	
  POT
T2K	
  Run1-­‐7b	
  preliminary	
  	
  
T2K	
  Run1-­‐7b	
  preliminary	
  	
  
Results:	
   𝜃13 &	
   𝛿CP	
  – T2K	
  data	
  only
2/17/17 KEK-­‐PH2017 43
² Measured	
   𝜃13 w/	
  T2K	
  data	
  only	
  agrees	
  
w/	
  reactor	
  measurement
² Disfavor	
  region	
  of	
  	
  δCP at	
  ≅ 𝝅/2
² Favor	
  δCP at	
  ≅ -­‐𝝅/2	
  for	
  both	
  hierarchies
13θ2
sin
0 0.02 0.04 0.06 0.08 0.1
CPδ
-3
-2
-1
0
1
2
3 NH Asimov Sensitivity
IH Asimov Sensitivity
T2K Run1−7c preliminary
13θ2
sin
0 0.02 0.04 0.06 0.08 0.1
CPδ
-3
-2
-1
0
1
2
3
NH - Run1-7
IH - Run1-7
T2K Run1−7c preliminary
Mass	
  hierarchy	
  is	
  fixed,	
  either	
  normal	
  or	
  inverted	
  and	
  compute	
  independently
T2K-­‐only	
  Sensitivity T2K-­‐only	
  data	
  fit
Reactor
(PDG	
  2015)
Sample Prediction at	
  true	
  δCP Data
-­‐𝝅/2 0 +𝝅/2
28.7 24.1 19.6 32
6.0 6.9 7.7 4
Results:	
   𝜃13 &	
   𝛿CP	
  – T2K	
  data	
  +	
  Reactors
2/17/17 KEK-­‐PH2017 44
13θ2
sin
0.0160.018 0.02 0.0220.0240.0260.028 0.03 0.0320.0340.036
CPδ
-3
-2
-1
0
1
2
3 NH Asimov Sensitivity
IH Asimov Sensitivity
T2K Run1−7c preliminary
13θ2
sin
0.0160.018 0.02 0.0220.0240.0260.028 0.03 0.0320.0340.036
CPδ
-3
-2
-1
0
1
2
3
NH - Run1-7
IH - Run1-7
T2K Run1−7c preliminary
T2K	
  +	
  reactor	
  Sensitivity T2K	
  +	
  reactor	
  data	
  fit
Reactor
(PDG	
  2015)
Reactor
(PDG	
  2015)
Mass	
  hierarchy	
  is	
  fixed,	
  either	
  normal	
  or	
  inverted	
  and	
  compute	
  independently
Sample Prediction at	
  true	
  δCP Data
-­‐𝝅/2 0 +𝝅/2
28.7 24.1 19.6 32
6.0 6.9 7.7 4
² Disfavor	
  region	
  of	
  	
  δCP at	
  ≅ 𝝅/2
² Favor	
  δCP at	
  ≅ -­‐𝝅/2	
  for	
  both	
  hierarchies
Results:	
   𝛿CP	
  
2/17/17 KEK-­‐PH2017 45
cpδ
3− 2− 1− 0 1 2 3
LikelihoodDensity
0
0.5
1
1.5
2
2.5
3
3.5
3−
10×
68.3%
90%
95%
T2K Run1−7c preliminary
Frequentist approach Bayesian	
  approach
² δCP =0	
  is	
  excluded	
  at	
  2 𝜎 CL.
² Mild	
  preference	
  of	
  normal	
  MH
² (Frequentist)	
  allowed	
  90%	
  Cl.	
  region
Normal	
  Hierarchy:	
  [-­‐3.13,0.39]
Inverted	
  Hierarchy:	
  [-­‐2.09,-­‐0.74]
NH IH Sum
sin2θ23≤0.5 29% 10% 39%
sin2θ23>0.5 46% 14% 61%
Sum 75% 25% 100%
Bayesian	
  posterior	
  prob.
Confidence	
  intervals	
  is	
  computed	
  w/	
  Feldman-­‐Cousins	
  method,	
  Credible	
  interval	
  use	
  flat	
  prior	
  for	
  δCP
Perception	
  from	
  data
2/17/17 KEK-­‐PH2017 46
NSK/NSK
Prospect	
  for	
  the	
  future
2/17/17 KEK-­‐PH2017
Medium	
  term:	
  T2K-­‐II	
  proposal	
  	
  
2/17/17 KEK-­‐PH2017
² Approved	
  T2K	
  statistics,	
  7.8	
  x1021 POT,	
  
can	
  be	
  accumulated	
  by	
  JFY2020
² Hyper-­‐K	
  and	
  DUNE	
  are	
  expected	
  to	
  start	
  
around	
  2026
² T2K-­‐II,	
  if	
  extended	
  to	
  JFY2026,	
  collects	
  ~	
  
20x1021 POTà Stage	
  I	
  approval
² Neutrino	
  beamline upgrade	
  &	
  analysis	
  
improvements	
  (SK	
  fiducial volume,	
  add	
  
new	
  event	
  sample)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
à Effectively	
  add 50%	
  statistics
² Reduction	
  of	
  systematic	
  uncertainties	
  to	
  
enhance	
  CPV	
  sensitivity
48
Number	
  of	
  events	
  expected	
  at	
  T2K	
  far	
  detector	
  
with	
  full	
  proposed	
   T2K	
  Phase	
  2	
  exposure
J-­‐PARC	
  Main	
  Ring	
  expected	
  beam	
  power
&	
  T2K	
  Phase	
  2	
  accumulation	
  scenario	
  
Medium	
  term:	
  T2K-­‐II	
  proposal	
  
2/17/17
)21
Protons-on-Target (x10
0 5 10 15 20
=0CPδtoexcludesin2
χ∆
0
5
10
15 =0.4323
θ2
True sin
=0.5023
θ2
True sin
=0.6023
θ2
True sin
90% C.L.
99% C.L.
C.L.σ3
w/ eff. stat. improvements (no sys. errors)
w/ eff. stat. & sys. improvements
Work in Progress
)°(CP
δTrue
200− 100− 0 100 200
=0CPδtoexcludesin2
χ∆
0
5
10
15
20
=0.4323θ2
True sin
=0.5023θ2
True sin
=0.6023θ2
True sin
90% C.L.
99% C.L.
C.L.σ3
POT w/ eff. stat. & sys. improvements21
20x10
POT w/ 2016 sys. errs.21
7.8x10
Work in Progress
CP =
⇡
2
² >	
  3 𝜎 significance	
  sensitivity	
  to	
  CP	
  
violation	
  if	
   𝛿CP=	
  -­‐ 𝜋/2
² 99%	
  C.L.	
  significance	
  for	
  more	
  than	
  45%	
  
of	
  the	
  possible	
  true	
  values	
  of	
   𝛿CP
² 1%	
  precision	
  of	
   𝛥m2
23,	
  0.5o	
  -­‐ 1.7o	
  
precision	
  of	
   𝜃23	
  depending	
  on	
  its	
  true	
  
value,	
  ~3𝜎 significance	
  for	
  resolving	
   𝜃23	
  	
  
octant	
  if	
  sin2 𝜃23	
  >0.6	
  or	
  sin2 𝜃23	
  <0.43
23
θ2
sin
0.4 0.5 0.6
32
2
m∆
2.2
2.4
2.6
2.8
3
3−
10×
Current POT , 90% C.L
POT, 90% C.L21
7.8x10
POT w/improvement, 90% C.L21
20x10
Stat. only
Systematics
Work in Progress
True sin2
✓23 = 0.6
KEK-­‐PH2017 49
Medium	
  term:	
  ND280	
  update
2/17/17 KEK-­‐PH2017 50
Goal:	
  Understand	
  better	
  𝝂 interaction
Minimum	
   requirements:
+	
  Water	
  target
+	
  Large	
  angular	
  acceptance
+	
  Better	
  efficiency	
  for	
  detecting	
  	
  	
  	
  	
  	
  
low	
  momentum	
  of	
  p	
  and	
  𝜋
Detector	
  design	
  in	
  progress
Target	
  option
Medium	
  term:	
  Intermediate	
  WC	
  detector	
  
2/17/17 KEK-­‐PH2017 51
52.5	
  m	
  tall	
  WC	
  detector,	
  spanning	
  1o-­‐4o off	
  
the	
  beam	
  center,	
  1km	
  from	
  target
² Water	
  target	
  
² 4𝜋 angular	
  acceptance	
  
² Signal	
  and	
  background
² Flux	
  prediction	
  largely	
  independent	
  to	
  
neutrino	
  interaction	
  model
Physics	
  goals:
² Oscillation	
  analysis	
  w/	
  modest	
  need	
  of	
  
neutrino	
  interaction	
  model
² Sterile	
  neutrino	
  search
Same	
  as	
  Super-­‐K
Separate	
  collaboration	
  from	
  T2K
Receive	
  stage-­‐1	
  status	
  as	
  E-­‐62	
  exp.
(from	
  July	
  2016)
Design	
  concept
Longer	
  term:	
  Hyper-­‐Kamiokande
2/17/17 KEK-­‐PH2017 52
Gigantic	
  WC	
  detector,	
  520	
  kton (ref.	
  50	
  kton
of	
  Super-­‐K	
  ),	
  aim	
  to	
  start	
  operation	
  in	
  2026
² Neutrino	
  CP	
  violation	
  up	
  to	
  >	
  5 𝜎
² Neutrino	
  mass	
  hierarchy
² Also	
  for	
  proton	
  decay,	
  supernova…
Selected	
  as	
  one	
  of	
  important	
  large	
  scale	
  projects	
  by	
  SCJ
T2KK:	
  Move	
  2nd Hyper-­‐K	
  tank	
  to	
  Korea?
+	
  CP	
  violation	
  at	
  2nd osc.	
  peak
+	
  Enhance	
  matter	
  effect
Longer	
  term:	
  Hyper-­‐Kamiokande
2/17/17 KEK-­‐PH2017 53
Brief	
  story	
  of	
  K
Prof.	
  M.	
  Koshiba Prof.	
  T.	
  Kajita
2002 2015
Quest	
  for	
  THEORISTS	
  (2)
2/17/17 KEK-­‐PH2017 54
NSK/NSK
To	
  THEORISTS	
  (2):	
  How	
  can	
  we	
  sure	
  what	
  
we	
  measure	
  is	
  CP	
  violation	
  phase?
The	
  CP	
  violation	
  sensitivity	
  is	
  based	
  on	
  standard	
  
framework.	
  Experimentalists	
  measure	
  merely	
  
probabilities	
  and	
  can	
  be	
  fooled	
  by	
  
² Sterile	
  neutrinos
² Non-­‐standard	
  interactions
² ….
Quest	
  for	
  THEORISTS	
  (3)
2/17/17 KEK-­‐PH2017 55
NSK/NSK
arXiv:1410.8056
Assume	
  CP	
  is	
  observed,	
  the	
  
next	
  targets	
  are	
  probably	
  
precision	
  of	
  CP	
  phase	
  and	
  
PMNS	
  unitary	
  testing
To	
  THEORISTS	
  (3):	
  Can	
  we	
  have	
  more	
  
“predictable”	
  model?	
  say,	
  on	
  CP	
  phase,	
  
unitary	
  of	
  matrix	
  for	
  example	
  
Summary
2/17/17 KEK-­‐PH2017
² Results	
  with	
  T2K	
  data	
  shown
o No	
  CPT	
  indication	
  from	
  
o Consistent	
  with	
   𝜃23 maximal	
  mixing	
  
o Slightly	
  prefer	
  normal	
  mass	
  hierarchy
o Slightly	
  favor	
   𝛿CP =	
  -­‐ 𝜋/2	
  
𝛿CP =	
  [-­‐3.13,	
  -­‐0.39]	
  (NH),	
  [-­‐2.09,	
  -­‐0.74]	
  (IH)	
  at	
  90%	
  C.L.
à More	
  statistics	
  are	
  needed	
  
² J-­‐PARC	
  beam	
  power	
  has	
  steadily	
  increased	
  up	
  to	
  420	
  kW	
  (operating	
  
at	
  470	
  kW	
  recently)à key	
  roles	
  for	
  neutrino	
  measurements
² Neutrino	
  physics	
  roadmap	
  in	
  Japan	
  is	
  clear	
  and	
  exciting
Stay	
  tuned	
  for	
  upcoming	
  results	
  from	
  T2K
56
*Number	
  of	
  anime	
  taken	
  http://higgstan.com
2/17/17 KEK-­‐PH2017 57
Thank	
  you!
Backup
2/17/17 KEK-­‐PH2017 58
NSK/NSK
Backup:	
  CP	
  &	
  MH	
  effect
2/17/17 KEK-­‐PH2017 59
NSK/NSK
)eν→µνP(
0 0.02 0.04 0.06 0.08
)eν→µνP(
0
0.02
0.04
0.06
0.08
-3
10×|=2.4232
2
m∆|
-5
10×|=7.5421
2
m∆|
=0.9523θ22
sin
=0.8812
θ22
sin
=0.0913θ22
sin
L=295 km
=0.6 GeVνE
>032
2
m∆
<032
2
m∆
=0CP
δ
/2π=CPδ
π=CP
δ
/2π=3CPδ
High	
  octant
Low	
  octant
² Negative	
  CP	
  enhances	
  electron	
  neutrino	
  appearance	
  and	
  suppresses	
  
electron	
  antineutrino	
  appearance
² MH	
  enhances	
  electron	
  neutrino	
  appearance	
  and	
  suppresses	
  electron	
  
antineutrino	
  appearance
Backup:	
  Accelerator	
  update	
  schedule
2/17/17 KEK-­‐PH2017 60
NSK/NSK
PAC	
  Jan	
  2017
Backup:	
  Systematic	
  error	
  table
2/17/17 KEK-­‐PH2017 61
NSK/NSK
Backup:	
  Data	
  fit	
  vs	
  sensitivity
2/17/17 KEK-­‐PH2017 62
10k	
  toys 10k	
  toys
² Toy	
  experiments	
  at	
  true	
  values	
  of	
   𝛿CP	
  &	
  MH	
  
generated	
  to	
  	
  understand	
  data	
  fit	
  outcomes
² Probability	
  to	
  exclude	
   𝛿CP	
  =	
  (0,	
   𝜋)	
  is	
  evaluated
² Data	
  agree	
  w/	
   𝛿CP =	
  -­‐1.76	
  (~-­‐𝜋/2),	
  normal	
  MH	
  
at	
  2 𝜎 level	
  and	
  probability	
  to	
  exclude	
   𝛿CP	
  =0	
  is	
  
non-­‐negligible	
  (>8%)
True:	
   𝛿CP =	
  -­‐1.76,	
  normal	
  MHTrue:	
   𝛿CP =	
  0,	
  normal	
  MH
Prop.	
  (%)
to	
  exclude	
  
True	
  para.
𝛿CP =	
  -­‐1.76,	
  NH
True	
  para.
𝛿CP =	
  0,	
  NH
90%	
  CL 2𝝈 90%	
  CL 2𝝈
𝛿CP =0,	
  NH 19.1 8.5 10.8 4.8
𝛿CP =𝜋,	
  NH 15.7 6.5 14.9 6.7
Backup:	
  Flux/	
  target
632/17/17 KEK-­‐PH2017
BANFF:	
  flux	
  RHC
2/17/17 KEK-­‐PH2017
² 15%	
  increase
64
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,eνND280
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,eνND280
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,µνND280
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,µνND280
T2K	
  off-­‐axis	
  detector:	
  ND280
2/17/17 KEK-­‐PH2017
Aim	
  to	
  understand	
  unoscillated 𝜈 beam:	
  constrains	
  flux	
  
and	
  cross-­‐section	
  parameters	
  
² Tracker,	
  composed	
  of	
  Fine-­‐Grained	
  Detector	
  (FGD)	
  
and	
  Time	
  Projection	
  Chamber	
  (TPC),	
  is	
  central	
  part
o Two	
  FGDs:	
  	
  active	
  target	
  w/	
  scintillator	
  only	
  
(FGD1)	
  or	
  	
  scintillator-­‐water	
  interleaved	
  (FGD2)
o Three	
  TPCs:	
  mainly	
  Argon	
  (95%)	
  filled,	
  for	
  
momentum	
   measurement	
  and	
  particle	
  ID	
  
² 𝜋0	
  detector	
  (POD)	
  for	
  water-­‐scintillator	
  target	
  and	
  𝜋0
tagging	
  
² Electromagnetic	
  calorimeters	
  (ECal)	
  to	
  detect	
  gamma	
  
rays	
  and	
  reconstruct	
  𝜋0
² Side	
  muon range	
  detectors	
  (SMRD)	
  to	
  tag	
  entering	
  
cosmic	
  muons or	
  side-­‐exiting	
  muons
Key	
  features	
  for	
  cross-­‐section:	
  
o Narrow	
  flux	
  spectrum	
  ,	
  mean	
  ~	
  0.85	
  GeV
o Multiple	
  targets:	
  scintillator,	
  water,	
  argon,	
  lead
o High	
  final	
  state	
  ID	
  resolution,	
   charge	
  separation	
  
65
~B
0.2	
  T
Neutrino	
  cross-­‐section
662/17/17 KEK-­‐PH2017
?
About	
  energy	
  reconstruction
672/17/17 KEK-­‐PH2017
?
Issue	
  raised	
  recently
No	
  observation	
  yet!
Pre-­‐fit:	
  muon momentum
2/17/17 KEK-­‐PH2017 68
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
500
1000
1500
2000
2500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
300
350
400
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
10
20
30
40
50
60
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CCNtrk
Post-­‐fit:	
  muon momentum
2/17/17 KEK-­‐PH2017 69
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
500
1000
1500
2000
2500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
300
350
400
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
10
20
30
40
50
60
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CCNtrk
Pre-­‐fit:	
  muon angle
2/17/17 KEK-­‐PH2017
² 2x3	
  sample	
  for	
  
neutrinos	
  (FGD1,2)
² 2x4	
  sample	
  for	
  anti-­‐
neutrinos	
  (FGD1,2)
70
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
200
400
600
800
1000
1200
1400
1600 Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
100
200
300
400
500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
100
200
300
400
500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
20
40
60
80
100
120
140
160
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
20
40
60
80
100
120
140
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
FGD1,
nu,	
  CCNtrk
Post-­‐fit:	
  muon angle
2/17/17 KEK-­‐PH2017 71
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
200
400
600
800
1000
1200
1400
1600 Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
100
200
300
400
500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
100
200
300
400
500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
20
40
60
80
100
120
140
160
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
20
40
60
80
100
120
140
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
FGD1,
nu,	
  CCNtrk
² 2x3	
  sample	
  for	
  
neutrinos	
  (FGD1,2)
² 2x4	
  sample	
  for	
  anti-­‐
neutrinos	
  (FGD1,2)

More Related Content

What's hot

Magnetic Gold; Structure Dependent Ferromagnetism in Au4V
Magnetic Gold; Structure Dependent Ferromagnetism in Au4VMagnetic Gold; Structure Dependent Ferromagnetism in Au4V
Magnetic Gold; Structure Dependent Ferromagnetism in Au4V
Damon Jackson
 
Graphene as tunable electron-phonon material
Graphene as tunable electron-phonon materialGraphene as tunable electron-phonon material
Graphene as tunable electron-phonon material
Claudio Attaccalite
 
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Philippe Bouyer
 
Impact of electronic correlation on the electron-phonon coupling
Impact of electronic correlation on the electron-phonon couplingImpact of electronic correlation on the electron-phonon coupling
Impact of electronic correlation on the electron-phonon coupling
Claudio Attaccalite
 
Searches for spin-dependent short-range forces
Searches for spin-dependent short-range forcesSearches for spin-dependent short-range forces
Searches for spin-dependent short-range forces
Los Alamos National Laboratory
 
The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)
Sebastien Bianchin
 
5. radioactive decay nuclear medicine
5. radioactive decay nuclear medicine5. radioactive decay nuclear medicine
5. radioactive decay nuclear medicine
CHERUDUGASE
 
Spectroscopy lecture 1
Spectroscopy lecture 1Spectroscopy lecture 1
Spectroscopy lecture 1
shahzebkhan181
 
Neutron EDM and Dressed Spin
Neutron EDM and Dressed SpinNeutron EDM and Dressed Spin
Neutron EDM and Dressed Spin
Los Alamos National Laboratory
 
Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
Syed Ali Afzal
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...SOCIEDAD JULIO GARAVITO
 
The Art of Calorimetry
The Art of CalorimetryThe Art of Calorimetry
The Art of Calorimetry
Michele Livan
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante Fernandez
Escalante Supertramp
 
Gamma-ray bursts
Gamma-ray burstsGamma-ray bursts
Gamma-ray bursts
volodymyrs
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentation
Shinichiro Yano
 
Lectures on Calorimetry - Otranto 2016
Lectures on Calorimetry - Otranto 2016Lectures on Calorimetry - Otranto 2016
Lectures on Calorimetry - Otranto 2016Michele Livan
 

What's hot (20)

Magnetic Gold; Structure Dependent Ferromagnetism in Au4V
Magnetic Gold; Structure Dependent Ferromagnetism in Au4VMagnetic Gold; Structure Dependent Ferromagnetism in Au4V
Magnetic Gold; Structure Dependent Ferromagnetism in Au4V
 
Graphene as tunable electron-phonon material
Graphene as tunable electron-phonon materialGraphene as tunable electron-phonon material
Graphene as tunable electron-phonon material
 
cl21-UCNt-Slaughter
cl21-UCNt-Slaughtercl21-UCNt-Slaughter
cl21-UCNt-Slaughter
 
Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...Airborne and underground matter-wave interferometers: geodesy, navigation and...
Airborne and underground matter-wave interferometers: geodesy, navigation and...
 
Impact of electronic correlation on the electron-phonon coupling
Impact of electronic correlation on the electron-phonon couplingImpact of electronic correlation on the electron-phonon coupling
Impact of electronic correlation on the electron-phonon coupling
 
Searches for spin-dependent short-range forces
Searches for spin-dependent short-range forcesSearches for spin-dependent short-range forces
Searches for spin-dependent short-range forces
 
The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)The TREK Experiment at J-PARC (Kaon 2016 Talk)
The TREK Experiment at J-PARC (Kaon 2016 Talk)
 
1379 bickford[2]
1379 bickford[2]1379 bickford[2]
1379 bickford[2]
 
5. radioactive decay nuclear medicine
5. radioactive decay nuclear medicine5. radioactive decay nuclear medicine
5. radioactive decay nuclear medicine
 
DC_NDM2009
DC_NDM2009DC_NDM2009
DC_NDM2009
 
Spectroscopy lecture 1
Spectroscopy lecture 1Spectroscopy lecture 1
Spectroscopy lecture 1
 
Neutron EDM and Dressed Spin
Neutron EDM and Dressed SpinNeutron EDM and Dressed Spin
Neutron EDM and Dressed Spin
 
Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
Characterization of Single crystal KNN Ceramics (K0.5Na0.5NbO3)
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Neutrino ma...
 
The Art of Calorimetry
The Art of CalorimetryThe Art of Calorimetry
The Art of Calorimetry
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante Fernandez
 
Gamma-ray bursts
Gamma-ray burstsGamma-ray bursts
Gamma-ray bursts
 
Nx calrics2019 yano-presentation
Nx calrics2019 yano-presentationNx calrics2019 yano-presentation
Nx calrics2019 yano-presentation
 
740 howe
740 howe740 howe
740 howe
 
Lectures on Calorimetry - Otranto 2016
Lectures on Calorimetry - Otranto 2016Lectures on Calorimetry - Otranto 2016
Lectures on Calorimetry - Otranto 2016
 

Viewers also liked

Neutrinos
NeutrinosNeutrinos
Neutrinos
Bradley Wogsland
 
Neutrino
NeutrinoNeutrino
Easy Street Restaurants
Easy Street RestaurantsEasy Street Restaurants
Roman coin evaluation
Roman coin evaluationRoman coin evaluation
Roman coin evaluation
Kathleen Hartman
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite element
Stefan Duprey
 
Google Shopping Campaigns: The New Face of Product Listing Ads
Google Shopping Campaigns: The New Face of Product Listing AdsGoogle Shopping Campaigns: The New Face of Product Listing Ads
Google Shopping Campaigns: The New Face of Product Listing AdsTinuiti
 
Matematika 4 uzb-2013
Matematika 4 uzb-2013Matematika 4 uzb-2013
Matematika 4 uzb-2013Diyorbek
 
Sap Basis training Overview
Sap Basis training OverviewSap Basis training Overview
Sap Basis training Overview
raviadm100
 
Engage - Συζήτηση σε μικρές ομάδες: Συμπεράσματα
Engage - Συζήτηση σε μικρές ομάδες: ΣυμπεράσματαEngage - Συζήτηση σε μικρές ομάδες: Συμπεράσματα
Engage - Συζήτηση σε μικρές ομάδες: Συμπεράσματα
George Androulakis
 
Algorithmic trading
Algorithmic tradingAlgorithmic trading
Algorithmic trading
Stefan Duprey
 
4 Tips For Law Firms To Start the New Year Right
4 Tips For Law Firms To Start the New Year Right4 Tips For Law Firms To Start the New Year Right
4 Tips For Law Firms To Start the New Year Right
Abogado Aly
 
Ученый совет 22 мая 2014 - Конкурсный отбор на должности профессоров кафедр
 Ученый совет 22 мая 2014 - Конкурсный отбор на должности профессоров кафедр Ученый совет 22 мая 2014 - Конкурсный отбор на должности профессоров кафедр
Ученый совет 22 мая 2014 - Конкурсный отбор на должности профессоров кафедр
uch_sovet_RGPU
 
Animal farm personification English 2014 Revised
Animal farm personification English 2014 RevisedAnimal farm personification English 2014 Revised
Animal farm personification English 2014 Revisedlieutenantamerican
 
Business and Law Trends of 2015
Business and Law Trends of 2015Business and Law Trends of 2015
Business and Law Trends of 2015
Abogado Aly
 
Jammin' Coast to Coast Team Training
Jammin' Coast to Coast Team TrainingJammin' Coast to Coast Team Training
Jammin' Coast to Coast Team TrainingKaren Cinelli
 
профессора 24 июня 2014
профессора  24 июня 2014 профессора  24 июня 2014
профессора 24 июня 2014
uch_sovet_RGPU
 
Karim mahmudov choynoma_ziyouz_com
Karim mahmudov choynoma_ziyouz_comKarim mahmudov choynoma_ziyouz_com
Karim mahmudov choynoma_ziyouz_comDiyorbek
 
Padron Provincial Concepcion Junín Emprendedores
Padron Provincial Concepcion Junín EmprendedoresPadron Provincial Concepcion Junín Emprendedores
Padron Provincial Concepcion Junín Emprendedores
Junín Emprendedores
 

Viewers also liked (20)

Neutrinos
NeutrinosNeutrinos
Neutrinos
 
Neutrino
NeutrinoNeutrino
Neutrino
 
Easy Street Restaurants
Easy Street RestaurantsEasy Street Restaurants
Easy Street Restaurants
 
Roman coin evaluation
Roman coin evaluationRoman coin evaluation
Roman coin evaluation
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite element
 
Google Shopping Campaigns: The New Face of Product Listing Ads
Google Shopping Campaigns: The New Face of Product Listing AdsGoogle Shopping Campaigns: The New Face of Product Listing Ads
Google Shopping Campaigns: The New Face of Product Listing Ads
 
Week13
Week13Week13
Week13
 
Matematika 4 uzb-2013
Matematika 4 uzb-2013Matematika 4 uzb-2013
Matematika 4 uzb-2013
 
Week11
Week11Week11
Week11
 
Sap Basis training Overview
Sap Basis training OverviewSap Basis training Overview
Sap Basis training Overview
 
Engage - Συζήτηση σε μικρές ομάδες: Συμπεράσματα
Engage - Συζήτηση σε μικρές ομάδες: ΣυμπεράσματαEngage - Συζήτηση σε μικρές ομάδες: Συμπεράσματα
Engage - Συζήτηση σε μικρές ομάδες: Συμπεράσματα
 
Algorithmic trading
Algorithmic tradingAlgorithmic trading
Algorithmic trading
 
4 Tips For Law Firms To Start the New Year Right
4 Tips For Law Firms To Start the New Year Right4 Tips For Law Firms To Start the New Year Right
4 Tips For Law Firms To Start the New Year Right
 
Ученый совет 22 мая 2014 - Конкурсный отбор на должности профессоров кафедр
 Ученый совет 22 мая 2014 - Конкурсный отбор на должности профессоров кафедр Ученый совет 22 мая 2014 - Конкурсный отбор на должности профессоров кафедр
Ученый совет 22 мая 2014 - Конкурсный отбор на должности профессоров кафедр
 
Animal farm personification English 2014 Revised
Animal farm personification English 2014 RevisedAnimal farm personification English 2014 Revised
Animal farm personification English 2014 Revised
 
Business and Law Trends of 2015
Business and Law Trends of 2015Business and Law Trends of 2015
Business and Law Trends of 2015
 
Jammin' Coast to Coast Team Training
Jammin' Coast to Coast Team TrainingJammin' Coast to Coast Team Training
Jammin' Coast to Coast Team Training
 
профессора 24 июня 2014
профессора  24 июня 2014 профессора  24 июня 2014
профессора 24 июня 2014
 
Karim mahmudov choynoma_ziyouz_com
Karim mahmudov choynoma_ziyouz_comKarim mahmudov choynoma_ziyouz_com
Karim mahmudov choynoma_ziyouz_com
 
Padron Provincial Concepcion Junín Emprendedores
Padron Provincial Concepcion Junín EmprendedoresPadron Provincial Concepcion Junín Emprendedores
Padron Provincial Concepcion Junín Emprendedores
 

Similar to KEK PH 2017

The Sun and the Particle Physics
The Sun and the Particle PhysicsThe Sun and the Particle Physics
The Sun and the Particle Physics
SSA KPI
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
Daniel Maierhafer
 
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07  Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Alan Poon
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
upvita pandey
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
Cristian Randieri PhD
 
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
Yoshitaro Takaesu
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Christos Kallidonis
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
Rajan K. Singh
 
Surface carrier recombination of a si tip under high electric field
Surface carrier recombination of a si tip under high electric fieldSurface carrier recombination of a si tip under high electric field
Surface carrier recombination of a si tip under high electric fieldbmazumder
 
2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag 2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag
NanoFrontMag-cm
 
Acs ejpcc-e5b01406
Acs ejpcc-e5b01406Acs ejpcc-e5b01406
Acs ejpcc-e5b01406
ioneec
 
Presentation
PresentationPresentation
How to "see" a neutrino?
How to "see" a neutrino?How to "see" a neutrino?
How to "see" a neutrino?
Alan Poon
 
Progress_report_May_3rd_2016_PDF
Progress_report_May_3rd_2016_PDFProgress_report_May_3rd_2016_PDF
Progress_report_May_3rd_2016_PDFJui-Jen Wang
 
Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016
Miguel D Bustamante
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
Rene Kotze
 
Study of semiconductor with positron
Study of semiconductor with positronStudy of semiconductor with positron
Study of semiconductor with positron
Manoranjan Ghosh
 

Similar to KEK PH 2017 (20)

The Sun and the Particle Physics
The Sun and the Particle PhysicsThe Sun and the Particle Physics
The Sun and the Particle Physics
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
 
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07  Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
 
Neutron scattering from nanoparticles
Neutron  scattering from  nanoparticlesNeutron  scattering from  nanoparticles
Neutron scattering from nanoparticles
 
EXO_DBD07
EXO_DBD07EXO_DBD07
EXO_DBD07
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
T2KK/T2KO 実験での質量階層性、CP位相測定の可能性
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
 
DarkSide_GDR_Perasso
DarkSide_GDR_PerassoDarkSide_GDR_Perasso
DarkSide_GDR_Perasso
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
 
Surface carrier recombination of a si tip under high electric field
Surface carrier recombination of a si tip under high electric fieldSurface carrier recombination of a si tip under high electric field
Surface carrier recombination of a si tip under high electric field
 
2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag 2016.06.21 lbt uam NanoFrontMag
2016.06.21 lbt uam NanoFrontMag
 
10 nanosensors
10 nanosensors10 nanosensors
10 nanosensors
 
Acs ejpcc-e5b01406
Acs ejpcc-e5b01406Acs ejpcc-e5b01406
Acs ejpcc-e5b01406
 
Presentation
PresentationPresentation
Presentation
 
How to "see" a neutrino?
How to "see" a neutrino?How to "see" a neutrino?
How to "see" a neutrino?
 
Progress_report_May_3rd_2016_PDF
Progress_report_May_3rd_2016_PDFProgress_report_May_3rd_2016_PDF
Progress_report_May_3rd_2016_PDF
 
Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016Talk at Tsinghua University, Beijing, 27 June 2016
Talk at Tsinghua University, Beijing, 27 June 2016
 
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
NITheP WITS node seminar: Dr. H. Cynthia Chiang (University of Kwa-Zulu Natal)
 
Study of semiconductor with positron
Study of semiconductor with positronStudy of semiconductor with positron
Study of semiconductor with positron
 

More from Son Cao

The Neutrino: Elusive Misfit and Evolutionary Discoveries
The Neutrino: Elusive Misfit and Evolutionary DiscoveriesThe Neutrino: Elusive Misfit and Evolutionary Discoveries
The Neutrino: Elusive Misfit and Evolutionary Discoveries
Son Cao
 
Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell
Son Cao
 
Latest results from T2K
Latest results from T2K Latest results from T2K
Latest results from T2K
Son Cao
 
T2K status in 2017
T2K status in 2017T2K status in 2017
T2K status in 2017
Son Cao
 
VSoN Lab Training: A Concept for Neutrino Detector
VSoN Lab Training: A Concept for Neutrino DetectorVSoN Lab Training: A Concept for Neutrino Detector
VSoN Lab Training: A Concept for Neutrino Detector
Son Cao
 
The Light from the Invisible World of Neutrinos
The Light from the Invisible World of NeutrinosThe Light from the Invisible World of Neutrinos
The Light from the Invisible World of Neutrinos
Son Cao
 
Neutrino communication for insider trading
Neutrino communication for insider tradingNeutrino communication for insider trading
Neutrino communication for insider trading
Son Cao
 
My little stories, Vietnam & Experimental High Energy Physics
My little stories, Vietnam & Experimental High Energy PhysicsMy little stories, Vietnam & Experimental High Energy Physics
My little stories, Vietnam & Experimental High Energy Physics
Son Cao
 
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Son Cao
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2K
Son Cao
 
Measuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorMeasuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary Detector
Son Cao
 
Vật chất tối.
Vật chất tối. Vật chất tối.
Vật chất tối.
Son Cao
 
Bóng đá và cuộc sống
Bóng đá và cuộc sốngBóng đá và cuộc sống
Bóng đá và cuộc sống
Son Cao
 
Những đối tượng cần giúp đỡ ở Quảng Bình
Những đối tượng cần giúp đỡ ở Quảng BìnhNhững đối tượng cần giúp đỡ ở Quảng Bình
Những đối tượng cần giúp đỡ ở Quảng Bình
Son Cao
 
Người Việt phẩm chất, thói hư, tật xấu
Người Việt phẩm chất, thói hư, tật xấuNgười Việt phẩm chất, thói hư, tật xấu
Người Việt phẩm chất, thói hư, tật xấu
Son Cao
 
Khuyến học - Yuichi Fukuzawa
Khuyến học - Yuichi FukuzawaKhuyến học - Yuichi Fukuzawa
Khuyến học - Yuichi Fukuzawa
Son Cao
 
Different cultures, same science
Different cultures, same scienceDifferent cultures, same science
Different cultures, same science
Son Cao
 
Connecting in japanese_culture: Words an Images
Connecting in japanese_culture: Words an ImagesConnecting in japanese_culture: Words an Images
Connecting in japanese_culture: Words an Images
Son Cao
 
Thuvien mot-so-hinh-anh
Thuvien mot-so-hinh-anhThuvien mot-so-hinh-anh
Thuvien mot-so-hinh-anhSon Cao
 
Vision Library introduction
Vision Library introductionVision Library introduction
Vision Library introduction
Son Cao
 

More from Son Cao (20)

The Neutrino: Elusive Misfit and Evolutionary Discoveries
The Neutrino: Elusive Misfit and Evolutionary DiscoveriesThe Neutrino: Elusive Misfit and Evolutionary Discoveries
The Neutrino: Elusive Misfit and Evolutionary Discoveries
 
Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell Experimental Neutrino Physics Concepts in Nutshell
Experimental Neutrino Physics Concepts in Nutshell
 
Latest results from T2K
Latest results from T2K Latest results from T2K
Latest results from T2K
 
T2K status in 2017
T2K status in 2017T2K status in 2017
T2K status in 2017
 
VSoN Lab Training: A Concept for Neutrino Detector
VSoN Lab Training: A Concept for Neutrino DetectorVSoN Lab Training: A Concept for Neutrino Detector
VSoN Lab Training: A Concept for Neutrino Detector
 
The Light from the Invisible World of Neutrinos
The Light from the Invisible World of NeutrinosThe Light from the Invisible World of Neutrinos
The Light from the Invisible World of Neutrinos
 
Neutrino communication for insider trading
Neutrino communication for insider tradingNeutrino communication for insider trading
Neutrino communication for insider trading
 
My little stories, Vietnam & Experimental High Energy Physics
My little stories, Vietnam & Experimental High Energy PhysicsMy little stories, Vietnam & Experimental High Energy Physics
My little stories, Vietnam & Experimental High Energy Physics
 
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
Neutrino Oscillation Physics Potential of T2K Phase 2 - a Possible Extension ...
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2K
 
Measuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary DetectorMeasuring electronic latencies in MINOS with Auxiliary Detector
Measuring electronic latencies in MINOS with Auxiliary Detector
 
Vật chất tối.
Vật chất tối. Vật chất tối.
Vật chất tối.
 
Bóng đá và cuộc sống
Bóng đá và cuộc sốngBóng đá và cuộc sống
Bóng đá và cuộc sống
 
Những đối tượng cần giúp đỡ ở Quảng Bình
Những đối tượng cần giúp đỡ ở Quảng BìnhNhững đối tượng cần giúp đỡ ở Quảng Bình
Những đối tượng cần giúp đỡ ở Quảng Bình
 
Người Việt phẩm chất, thói hư, tật xấu
Người Việt phẩm chất, thói hư, tật xấuNgười Việt phẩm chất, thói hư, tật xấu
Người Việt phẩm chất, thói hư, tật xấu
 
Khuyến học - Yuichi Fukuzawa
Khuyến học - Yuichi FukuzawaKhuyến học - Yuichi Fukuzawa
Khuyến học - Yuichi Fukuzawa
 
Different cultures, same science
Different cultures, same scienceDifferent cultures, same science
Different cultures, same science
 
Connecting in japanese_culture: Words an Images
Connecting in japanese_culture: Words an ImagesConnecting in japanese_culture: Words an Images
Connecting in japanese_culture: Words an Images
 
Thuvien mot-so-hinh-anh
Thuvien mot-so-hinh-anhThuvien mot-so-hinh-anh
Thuvien mot-so-hinh-anh
 
Vision Library introduction
Vision Library introductionVision Library introduction
Vision Library introduction
 

Recently uploaded

How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Po-Chuan Chen
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Atul Kumar Singh
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
SACHIN R KONDAGURI
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
vaibhavrinwa19
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 

Recently uploaded (20)

How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdfAdversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
Adversarial Attention Modeling for Multi-dimensional Emotion Regression.pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Guidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th SemesterGuidance_and_Counselling.pdf B.Ed. 4th Semester
Guidance_and_Counselling.pdf B.Ed. 4th Semester
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
"Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe..."Protectable subject matters, Protection in biotechnology, Protection of othe...
"Protectable subject matters, Protection in biotechnology, Protection of othe...
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
Acetabularia Information For Class 9 .docx
Acetabularia Information For Class 9  .docxAcetabularia Information For Class 9  .docx
Acetabularia Information For Class 9 .docx
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 

KEK PH 2017

  • 1. S.  Cao IPNS,  KEK Results  and  Prospects  from  T2K   2/17/17 KEK-­‐PH2017 Ø Neutrino  Oscillation  landscape Ø T2K  &  recent  results Ø Future  prospects  
  • 2. Brief  neutrino  history 2/17/17 KEK-­‐PH2017 2 Credit  to  APS ² 1930:  On-­‐paper  appearance  as  “desperate”  remedy  by  W.  Pauli ² 1956:            first  experimentally  discovered  by  Reines  and  Cowan ² 1962:            existence  confirmed  by  Lederman  et  al.   ² 1998:  Atmospheric  neutrino   oscillations  discovered  by  Super-­‐K ² 2000:            first  evidence  reported  by  DONUT  experiment ² 2001:  Solar  neutrino   oscillations  detected  by  SNO  (KamLAND  2002) ² 2011:                                      transitions  observed  by  OPERA ² 2011-­‐13:                                   by  T2K,                                   by  Daya Bay(2012)   ² 2015:  Nobel  prizes  for  𝜈 oscillations,  Breakthrough  prize  (2016) ¯⌫e ⌫µ ⌫⌧ ⌫µ ! ⌫⌧ ⌫µ ! ⌫e ¯⌫e ! ¯⌫e 2015 T2K  observe   𝜈 𝜇 à𝜈e appearance Nobel & Breakthrough for  𝜈 oscillations
  • 3. 2/17/17 KEK-­‐PH2017 3 "for  the  discovery  of  neutrino  oscillations,   which  shows  that  neutrinos  have  mass"
  • 4. Standard  Model  &  neutrino  oscillations 32/17/17 KEK-­‐PH2017 Source:  AAAS 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 APontecorvo (1957) Maki, Nakagawa Sakata (1962) Majorana (1937) Standard  Model: ² Neutrinos  interact  through  the  weak   interaction ² Lepton  flavor  is  strictly  conserved ² Neutrinos  have  zero  mass Neutrino  oscillations: ² Indicate  massive  neutrinos ² Mix  flavor  and  mass  eigenstates ² Beyond  Standard  Model Flavor  eigenstates Mass  eigenstates The  only  lab-­‐based  evidence
  • 5. Standard  Model  &  neutrino  oscillations Standard  Model: ² Neutrinos  interact  through  the  weak   interaction ² Lepton  flavor  is  strictly  conserved ² Neutrinos  have  zero  mass Neutrino  oscillations: ² Indicate  massive  neutrinos ² Mix  flavor  and  mass  eigenstates ² Beyond  Standard  Model 42/17/17 KEK-­‐PH2017 Reactors  /  acceleratorSolar /  reactors 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 A Source:  AAAS cij = cos ✓ij, sij = sin ✓ij Atmospherics  /  Accelerators
  • 6. Neutrino  oscillation  landscape   2/17/17 KEK-­‐PH2017 6 Gonzalez-­‐Garcia et  al.,  arXiv:1512.06856   ⌫e ⌫µ ⌫⌧ Normal  hierarchy Inverted  hierarchy m2 lightest m2 lightest 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 A sign( m2 32) = ? ✓23 is maximal ? CP = ? mlightest = ? m2 32 m2 31 m2 21 m2 21 ⌫1 ⌫2 ⌫3 ⌫1 ⌫2 ⌫3 m2 21 = 7.50+0.19 0.17 ⇥ 10 5 eV2 m2 31 = 2.457+0.047 0.047 ⇥ 10 3 eV2 ✓13 = 8.50+0.20 0.21( ) ✓12 = 33.48+0.78 0.75( ) ✓23 = 42.3+3.0 1.6( ) m2 ij = m2 ⌫i m2 ⌫j Global  fit  – Normal  hierarchy
  • 7. Opening  questions  (1) 2/17/17 KEK-­‐PH2017 7 Credit  to  H.  Murayama q How  do  neutrinos  get  mass?   q Why  are  their  masses  so  small?
  • 8. Opening  questions  (2) 2/17/17 KEK-­‐PH2017 8 arXiv:1212.6374 q Why  does  PMNS  matrix  differ  from  CKM  matrix? *Area  of  the  squares  represents  square  of  matrix  elements
  • 9. Opening  questions  (3) 2/17/17 KEK-­‐PH2017 9 q What  is  neutrino’s  role  in  Universe  evolution? q Where  is  anti-­‐matter? Credit: NASA/WMAP Science Team Source: scienceabc.com
  • 10. Opening  questions  (3-­‐cont’d) 2/17/17 KEK-­‐PH2017 10 q Can  it  be  due  to  CP-­‐violating  decays  of  heavy  neutrinos? 1,000,000,001 Baryons 1,000,000,001 Anti-­‐Baryons 1,000,000,002 Baryons 1,000,000,000 Anti-­‐Baryons Begin  of  Universe Shortly  after ? CP-­‐violating  decays (B  =  0;  L  ≠  0) Sphaleron Process (B  ≠ 0;  L  ≠  0)(Fukugita,  Yanagida)
  • 11. Opening  questions  (3-­‐cont’d) 2/17/17 KEK-­‐PH2017 11 Credit  to  B.  Kayser q CP-­‐violating  phase  in  heavy  neutrino  decays  leads  to  CP-­‐ violating  phase  in  the  light  neutrino  mixing Measure  CP  violation  phase  in  neutrino   mixing  via  neutrino  oscillations  wanted!!!
  • 12. 𝜈 oscillation  measurement 2/17/17 KEK-­‐PH2017 12 It’s  about  probability  measurement,  basic  needs: ü Source  of  well-­‐understood  neutrino  flavor  composition ü Detector  at  optimal  baseline,  enable  to  distinguish  flavors ü Neutrino  energy  is  necessary  to  known Defined  baseline 𝜈 source 𝜈 detector Theoretical,   simple
  • 13. 𝜈 oscillation  measurement  (cont’d) 2/17/17 KEK-­‐PH2017 13 It’s  about  probability  measurement,  basic  needs: ü Source  of  well-­‐understood  neutrino  flavor  composition q Neutrino  weak  interactionà powerful  source q Flux  uncertainty   ü Detector  at  optimal  baseline,  enable  to  distinguish  flavors q Uncertainty  in  neutrino-­‐nuclei  interactionà interaction  uncertainty q Response  is  not  perfect,  misidentify  flavor  à detector  uncertainty ü Neutrino  energy  is  necessary  to  known q Typically  not  mono-­‐energy  neutrino  source q Can  bias  in  reconstructing  neutrino  energy   Defined  baseline 𝜈 source 𝜈 detector Experimental,   NOT  simple
  • 15. T2K  experiment 2/17/17 15KEK-­‐PH2017 ² Long-­‐baseline  neutrino  experiment,  located  in  Japan ² Large  collaboration:  ~470  physicists  from  63  institutes/  11  nations ² Rich  programs:  standard  neutrino  oscillations,  non-­‐standard  physics   search,  neutrino  interactions
  • 16. J-­‐PARC  neutrino  beam  line 2/17/17 ² High  intensity,  almost  pure  muon (anti)  neutrino  beam  from  J-­‐PARC 16KEK-­‐PH2017 ² 30  GeV p  extracted  from  J-­‐PARC  main  ring,  impinge  on  90-­‐cm,                                      graphite  target     ² Induced   𝜋+ (𝜋-­‐)  focused  by  three  horns,  pass  through  a  96-­‐m  decay  pipe ² Beam  dump  to  stop  all  particles  except  neutrinos  and  high-­‐energy  muons ² Muon monitor,  downstream  of  beam  dump,  to  monitor  beam  intensity  and  direction  by   measuring  induced  muon profile. 1.9 ⇥ int
  • 17. Beam  power  and  data  accumulation 2/17/17 KEK-­‐PH2017 17 Maximumbeampowerachievedsofar459.6kW 23 January 2010 - 19 January 2017 POT total: 18.29×"#$# % mode POT: 10.68×"#$# (58%) %& mode POT: 7.62×"#$# (42%) ² Beam  power  steadily  increased  to  470  kW  recently! ² 1.8x1021 Protons-­‐on-­‐target  (POT)  delivered  until  Jan  19th.   Data  sample  for  results  presented  today: ² Neutrino-­‐mode:  7.48x1020 POT ² Antineutrino-­‐mode:   7.47x1020  POT   Today  result
  • 18. Neutrino  flux  inference 2/17/17 ² High  intensity,  almost  pure  muon (anti)  neutrino  beam  from  J-­‐PARC 18KEK-­‐PH2017 ² To  infer  neutrino  flux,  knowledge   of  hadron  production  at  target   needed ² Constrained  by  external  data  from   NA61/SHINE Flux  uncertainty  ~  10% (absolute  error) 𝜈̅ mode < 1%(⌫e/⌫e) < 1%(⌫e/⌫e) T2K  Far  Detector   T2K  Far  Detector   T2K  Far  Detector   T2K  Far  Detector   (Beam  modes  changed  by  switching  horn  polarity) ~3.7%  effect  to  analysis  w/ Near  Detector  constraint 𝝂-­‐mode 𝝂-­‐mode 𝜈̅ mode
  • 19. Far  Detector,  Super-­‐Kamiokande 2/17/17 KEK-­‐PH2017 19 (GeV)νE 0 1 2 3 (A.U.)295km µνΦ 0 0.5 1 °OA 0.0 °OA 2.0 °OA 2.5 0 1 2 3 )eν→µνP( 0.05 0.1 = 0CP δNH, = 0CP δIH, /2π=CP δNH, /2π=CP δIH, 0 1 2 3 )µν→µνP( 0.5 1 = 1.023θ22 sin = 0.113θ22 sin 2 eV-3 10×= 2.432 2 m∆ Partice ID parameter -10 -8 -6 -4 -2 0 2 4 6 8 10 0 50 100 150 200 250 300 350 Super Kamiokande IV 2166.5 days : Monitoring e-like muon-like Numberofevents ² Muon and  electron  are  well-­‐separated à identify  𝜈 𝜇/𝜈& with  high  purity ² Super-­‐K  is  2.50 off  the  beam’s  axis  to  achieve  narrow  band  beam  peaked   at  oscillation  maximum  (0.6  GeV) (atmospheric   𝜈 data) Super-­‐Kamiokande (41.4  m  tall  x  39.3m  diameter) 22.5  ktons fiducial volume   1000m  underground ⌫µ + n ! µ + p ⌫e + n ! e + p 2.5
  • 20. Far  Detector,  Super-­‐Kamiokande 2/17/17 KEK-­‐PH2017 20 ² Super-­‐K  is  2.50 off  the  beam’s  axis  to  achieve  narrow  band  beam  peaked   at  oscillation  maximum  (0.6  GeV) ⌫µ + n ! µ + p ⌫e + n ! e + p 2.5 Short  version Disappearance  channel Appearance  channel
  • 21. T2K  primary  physics  goals 2/17/17 KEK-­‐PH2017 21 ⌫µ + n ! µ + p ⌫e + n ! e + p Disappearance  channel (GeV)νE 0.5 1 1.5 2 2.5 3 Osc.Prob 0 0.5 1 flux µ νOff-axis°2.5 =0.523θ2 , sin2 eV -3 =2.5x1032 2 m∆ µν→µν=µν→µν q Sensitive  to   𝜃23 and   𝛥m2 31  (atmospheric  sector)       à Precision  measurement  ( 𝜃23 is  maximal?) q CPT  symmetry  test  by  comparing  disappearance   in  muon neutrinos  and  muon anti-­‐neutrinos  
  • 22. T2K  primary  physics  goals 2/17/17 KEK-­‐PH2017 22 ⌫µ + n ! µ + p ⌫e + n ! e + p Appearance  channel (GeV)νE 0.5 1 1.5 2 2.5 3 Osc.Prob 0 0.02 0.04 0.06 0.08 0.1 flux µ νOff-axis°2.5 ν, NH,°=0cpδ ν, NH,°=270cpδ ν, NH,°=0cpδ ν, NH,°=270cpδ eν→µν,eν→µν q Sensitive  to   𝜃13 and   𝛿CP o Degeneracy   𝜃13 -­‐ 𝛿CP is  difficult  to  disentangle  with   long  baseline  experiment  à Need  constraint  from   reactor  measurement  on   𝜃13  (or  high  statistics) q 20-­‐30%  effect  of   𝛿CP and  10%  effect  of  mass  hierarchy   (not  too  long  baseline  295km) Large  CP  effect Small  matter  effect   (in  vacuum) (in  matter)
  • 23. Far  Detector:  Event  selections 2/17/17 KEK-­‐PH2017 23 ⌫e + n ! e + p Energy  info.  needed  à Enrich  charged  current  quasi  elastic  events FCFV 1-ring -likeµ µ p Decay-e Numberofevents 0 200 400 RUN1-7 data )POT 20 10×(7.482 CC QEµν CC QEµν CC non-QEµν+µν CCeν+eν NC FCFV 1-ring e-like Evis Decay-e rec ν E fiTQun Numberofevents 0 200 400 RUN1-7 data )POT 20 10×(7.482 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC Charged particle should be µ± Pµ > 200 Mev/c: remove ⇡ and e Decay e < 2: reject invisible ⇡ • FCFV:  Fully  contained  in  fiducial volume • 1-­‐ring:  One  charged-­‐particle  for  CCQE Charged particle should be e± No decay e : # invisible µ/⇡ Evis > 100 MeV: # low E bkg. Erec ⌫ < 1.25 GeV: # intrinsic beam ⌫e. “fiTQun”: # NC ⇡0 CCQE-­‐enhanced   CCQE-­‐enhanced   ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎
  • 24. Far  Detector:  Event  selections 2/17/17 KEK-­‐PH2017 24 ⌫e + n ! e + p Energy  info.  needed  à Enrich  charged  current  quasi  elastic  events FCFV 1-ring -likeµ µ p Decay-e Numberofevents 0 200 400 RUN1-7 data )POT 20 10×(7.482 CC QEµν CC QEµν CC non-QEµν+µν CCeν+eν NC FCFV 1-ring e-like Evis Decay-e rec ν E fiTQun Numberofevents 0 200 400 RUN1-7 data )POT 20 10×(7.482 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC CCQE-­‐enhanced   CCQE-­‐enhanced  
  • 25. Theoretically,  neutrino  beam  from  J-­‐PARC   and  Super-­‐Kamiokande are  enough.   However,  experimentally,  we  need  more.. 2/17/17 KEK-­‐PH2017
  • 26. Near  Detectors 2/17/17 KEK-­‐PH2017 26 ² Near  Detector  complex  is  280m  downstream  of  target It’s  about  probability  measurement,  basic  needs: ü Source  of  well-­‐understood  neutrino  flavor  composition q Neutrino  weak  interactionà powerful  source q Flux  uncertainty   ü Detector  at  optimal  baseline,  enable  to  distinguish  flavors q Uncertainty  in  neutrino-­‐nuclei  interactionà interaction  uncertainty q Response  is  not  perfect,  misidentify  flavor  à detector  uncertainty ü Neutrino  energy  is  necessary  to  known q Typically  not  mono-­‐energy  neutrino  source q Can  bias  in  reconstructing  neutrino  energy   Built  for  these particular  purposes
  • 27. Near  Detectors  (cont’d) 2/17/17 KEK-­‐PH2017 27 ² Near  Detector  complex  is  280m  downstream  of  target On-­‐axis  (called  INGRID) Measure  𝜈 beam  intensity  &  profile:   16  scintillator-­‐steel  interleaved   modules  (7.1  tons/each) Off-­‐axis  (called  ND280) Understand  unoscillated 𝜈 beam:   further  constrain  flux  and  cross-­‐ section  parameters  
  • 28. Near  Detectors  measurements 28 Day [events/1e14POT] 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Event rate Horn250kA Horn205kA Horn-250kA [mrad] 1− 0.5− 0 0.5 Horizontal beam direction INGRID MUMON Day [mrad] 1− 0.5− 0 0.5 1 Vertical beam direction INGRID MUMON T2K Run1 Jan.2010-Jun.2010 T2K Run2 Nov.2010-Mar.2011 T2K Run3 Mar.2012-Jun.2012 T2K Run4 Oct.2012-May.2013 T2K Run5 May.2014 -Jun.2014 T2K Run6 Oct.2014-June.2015 T2K Run7 Feb.2016-May.2016 2/17/17 KEK-­‐PH2017 Measured  data Off-­‐axis  neutrino   energy  strongly   depend  on  beam  direction   (1mrad ~ 2% shift of peak energy) T2K controlled off-axis better than 1mrad Position from Designed beam center[cm] 400− 200− 0 200 400 Numberofevents 0 10 20 30 40 50 60 70 80 3 10× / ndf2χ 10.8 / 4 Constant 161.1±7.168e+04 Mean 1.099±2.428− Sigma 1.795±437.6 / ndf2χ 10.8 / 4 Constant 161.1±7.168e+04 Mean 1.099±2.428− Sigma 1.795±437.6 Position from Designed beam center[cm] 400− 200− 0 200 400Numberofevents 0 10 20 30 40 50 60 70 80 3 10× / ndf2χ 39.29 / 4 Constant 163.3±7.392e+04 Mean 1.158±4.593 Sigma 1.979±456 / ndf2χ 39.29 / 4 Constant 163.3±7.392e+04 Mean 1.158±4.593 Sigma 1.979±456 Data for each module Fitted Gaussian Horizontal Vertical
  • 29. Near  Detectors  measurements  (cont’d) 2/17/17 KEK-­‐PH2017 29 Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 500 1000 1500 2000 2500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 300 350 400 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 10 20 30 40 50 60 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CCNtrk
  • 30. Near  Detectors  measurements  (cont’d) 302/17/17 KEK-­‐PH2017 Cross-­‐section  parameters Constrain 𝜈-­‐int.  model (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,µνND280 flux Flux parameters ? Need  to  know  how   neutrinos  see  nuclei (parameterization) Observable Nuclear  target
  • 31. Near  Detectors  measurements  (cont’d) 312/17/17 KEK-­‐PH2017 Reconstructed Neutrino Energy (GeV) 0 0.2 0.4 0.6 0.8 1 1.2 Eventsperbin 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 error (w/o ND280)σ1± errorσ1± Reconstructed Neutrino Energy (GeV) 0 0.2 0.4 0.6 0.8 1 1.2 Eventsperbin 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 error (w/o ND280)σ1± errorσ1± Reconstructed Neutrino Energy (GeV) 0 0.5 1 1.5 2 2.5 Eventsperbin 0 2 4 6 8 10 error (w/o ND280)σ1± errorσ1± Reconstructed Neutrino Energy (GeV) 0 0.5 1 1.5 2 2.5 Eventsperbin 0 0.5 1 1.5 2 2.5 3 3.5 4 error (w/o ND280)σ1± errorσ1± Total   𝛥NSK /NSK Beam   mode Sample w/o   ND280 w/ ND280 𝝂 12.0% 5.0% 𝝂 11.9% 5.4% 𝜈̅ 12.5% 5.2% 𝜈̅ 13.7% 6.2%
  • 32. Quest  for  THEORISTS  (1) 322/17/17 KEK-­‐PH2017 To  THEORISTS  (1):  We  need  you  here! For  better  understand  neutrino-­‐nuclei   interactions. ? Need  to  know  how   neutrinos  see  nuclei (parameterization) Observable Nuclear  target
  • 34. 2/17/17 KEK-­‐PH2017 ² Oscillation  dip  is  clearly  observed ² Four  physics  parameters  are  fitted:                                                          and   Results:   𝜈* disappearance 0 1 2 3 4 5 6 7 8 Events/100MeV 0 10 20 30 40 50 60 70 80 90 Prediction Unoscillated Best-Fit Data Reconstructed Energy [GeV] 0 1 2 3 4 5 6 7 8 Ratio 0 0.5 1 1.5 2 2.5 T2K Run1−7c preliminary 0 1 2 3 4 5 6 7 8 Events/100MeV 0 5 10 15 20 25 Prediction Unoscillated Best-Fit Data Reconstructed Energy [GeV] 0 1 2 3 4 5 6 7 8 Ratio 0 0.5 1 1.5 2 2.5 T2K Run1−7c preliminary Neutrino Anti-­‐neutrino Beam  mode Unoscillated pred. Data Neutrino 521.8 135 Anti-­‐neutrino 184.8 66 sin2 ✓23, | m2 32| sin2 ✓23, | m2 32| sin2 2✓23 / | m2 32| sin2 ✓23 / | m2 32|
  • 35. 2/17/17 KEK-­‐PH2017 Neutrino  vs.  Anti-­‐neutrino (T2K  only) Compare  to  other   experiments  in  the  world ² No  difference  between  muon neutrino  disappearance   and  muon anti-­‐neutrino  disappearance ² Good  agreement  w/  antineutrino  data  from  other   experiments Results:   𝜈* disappearance
  • 37. 2/17/17 KEK-­‐PH2017 Results:   𝜈&+ appearance energy (MeV)νReconstructed 0 500 1000 Numberofevents 0 5 10 15 RUN1-7 data )POT 20 10×(7.482 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC Sample Prediction at  true  δCP Data -­‐𝝅/2 0 +𝝅/2 28.7 24.1 19.6 32 6.0 6.9 7.7 4 energy (MeV)νReconstructed 0 500 1000 Numberofevents 0 1 2 3 4 RUN5-7 data )POT 20 10×(7.471 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC
  • 38. 2/17/17 KEK-­‐PH2017 Results:   𝜈&+ appearance energy (MeV)νReconstructed 0 500 1000 Numberofevents 0 1 2 3 4 RUN5-7 data )POT 20 10×(7.471 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC ² Test  for   𝜈* → 𝜈&+ hypothesis  w/single  para.   𝞫 ² 𝞫 =  0:  No   𝜈* → 𝜈&+ ² 𝞫 =  1:   𝜈* → 𝜈&+ appearance  consistent  w/   PMNS ² Use  all  four  T2K  samples  to  fully  constrain   oscillation  prob. Rate  only No  evidence  for   𝜈* → 𝜈&+ More  data  is  needed.
  • 39. T2K  Results 2/17/17 KEK-­‐PH2017 Appearance  channel Disappearance  channel Joint  Analysis
  • 40. Oscillation  parameters  extracted  from  T2K  data 2/17/17 KEK-­‐PH2017 40 0 1 2 3 4 5 6 7 8 Events 0 10 20 30 40 50 60 70 80 90 Prediction Unoscillated Best-Fit Data Reconstructed Energy [GeV] 0 1 2 3 4 5 6 7 8 Ratio 0 1 2 3 4 T2K Run1−7c preliminary 0 200 400 600 800 1000 1200 1400 Events 0 0.5 1 1.5 2 2.5 3 3.5 Prediction Unoscillated Best-Fit Data Reconstructed Momentum [MeV/c] 0 200 400 600 800 1000 1200 1400 Ratio 0 2 4 6 8 T2K Run1−7c preliminary 0 1 2 3 4 5 6 7 8 Events 0 5 10 15 20 25 Prediction Unoscillated Best-Fit Data Reconstructed Energy [GeV] 0 1 2 3 4 5 6 7 8 Ratio 0 1 2 3 4 T2K Run1−7c preliminary 0 200 400 600 800 1000 1200 1400 Events 0 2 4 6 8 10 12 14 Prediction Unoscillated Best-Fit Data Reconstructed Momentum [MeV/c] 0 200 400 600 800 1000 1200 1400 Ratio 0 5 10 15 T2K Run1−7c preliminary Appearance  channel Disappearance  channel sensitive  to  𝜃23 &  ∆ 𝑚12 2 sensitive  to  𝜃13 &   𝛿CP CPT  is  assumed  to  be  true
  • 41. Observed  data  vs.  prediction 2/17/17 KEK-­‐PH2017 41 Other oscillation parameter sin2 ✓13 = 0.0217, sin2 ✓23 = 0.528, m2 32( m2 13) = 2.509 ⇥ 10 3 eV 2 /c4 , sin2 ✓12 = 0.846, m2 21 = 7.53 ⇥ 10 5 eV 2 /c4
  • 42. Results:   𝜃23 &  ∆ 𝑚12 2 2/17/17 KEK-­‐PH2017 ² 𝜈 𝜇 disappearance  behaves  consistently  w/   𝜈* disappearance ² Result  consistent  with  maximal  mixing ² The  world’s  highest  precision   𝜃23   measurement 42 Normal MH Inverted MH sin2 𝜃23 0.53289.9:; <9.9=: 0.53489.9:: <9.9=1 ∆𝑚12 2 /1081 (eV2) 2.54589.9;= <9.9;A 2.51089.9;1 <9.9;A 𝜈:  7.48x1020 POT  +   𝜈̅:  7.47x1020  POT T2K  Run1-­‐7b  preliminary     T2K  Run1-­‐7b  preliminary    
  • 43. Results:   𝜃13 &   𝛿CP  – T2K  data  only 2/17/17 KEK-­‐PH2017 43 ² Measured   𝜃13 w/  T2K  data  only  agrees   w/  reactor  measurement ² Disfavor  region  of    δCP at  ≅ 𝝅/2 ² Favor  δCP at  ≅ -­‐𝝅/2  for  both  hierarchies 13θ2 sin 0 0.02 0.04 0.06 0.08 0.1 CPδ -3 -2 -1 0 1 2 3 NH Asimov Sensitivity IH Asimov Sensitivity T2K Run1−7c preliminary 13θ2 sin 0 0.02 0.04 0.06 0.08 0.1 CPδ -3 -2 -1 0 1 2 3 NH - Run1-7 IH - Run1-7 T2K Run1−7c preliminary Mass  hierarchy  is  fixed,  either  normal  or  inverted  and  compute  independently T2K-­‐only  Sensitivity T2K-­‐only  data  fit Reactor (PDG  2015) Sample Prediction at  true  δCP Data -­‐𝝅/2 0 +𝝅/2 28.7 24.1 19.6 32 6.0 6.9 7.7 4
  • 44. Results:   𝜃13 &   𝛿CP  – T2K  data  +  Reactors 2/17/17 KEK-­‐PH2017 44 13θ2 sin 0.0160.018 0.02 0.0220.0240.0260.028 0.03 0.0320.0340.036 CPδ -3 -2 -1 0 1 2 3 NH Asimov Sensitivity IH Asimov Sensitivity T2K Run1−7c preliminary 13θ2 sin 0.0160.018 0.02 0.0220.0240.0260.028 0.03 0.0320.0340.036 CPδ -3 -2 -1 0 1 2 3 NH - Run1-7 IH - Run1-7 T2K Run1−7c preliminary T2K  +  reactor  Sensitivity T2K  +  reactor  data  fit Reactor (PDG  2015) Reactor (PDG  2015) Mass  hierarchy  is  fixed,  either  normal  or  inverted  and  compute  independently Sample Prediction at  true  δCP Data -­‐𝝅/2 0 +𝝅/2 28.7 24.1 19.6 32 6.0 6.9 7.7 4 ² Disfavor  region  of    δCP at  ≅ 𝝅/2 ² Favor  δCP at  ≅ -­‐𝝅/2  for  both  hierarchies
  • 45. Results:   𝛿CP   2/17/17 KEK-­‐PH2017 45 cpδ 3− 2− 1− 0 1 2 3 LikelihoodDensity 0 0.5 1 1.5 2 2.5 3 3.5 3− 10× 68.3% 90% 95% T2K Run1−7c preliminary Frequentist approach Bayesian  approach ² δCP =0  is  excluded  at  2 𝜎 CL. ² Mild  preference  of  normal  MH ² (Frequentist)  allowed  90%  Cl.  region Normal  Hierarchy:  [-­‐3.13,0.39] Inverted  Hierarchy:  [-­‐2.09,-­‐0.74] NH IH Sum sin2θ23≤0.5 29% 10% 39% sin2θ23>0.5 46% 14% 61% Sum 75% 25% 100% Bayesian  posterior  prob. Confidence  intervals  is  computed  w/  Feldman-­‐Cousins  method,  Credible  interval  use  flat  prior  for  δCP
  • 46. Perception  from  data 2/17/17 KEK-­‐PH2017 46 NSK/NSK
  • 47. Prospect  for  the  future 2/17/17 KEK-­‐PH2017
  • 48. Medium  term:  T2K-­‐II  proposal     2/17/17 KEK-­‐PH2017 ² Approved  T2K  statistics,  7.8  x1021 POT,   can  be  accumulated  by  JFY2020 ² Hyper-­‐K  and  DUNE  are  expected  to  start   around  2026 ² T2K-­‐II,  if  extended  to  JFY2026,  collects  ~   20x1021 POTà Stage  I  approval ² Neutrino  beamline upgrade  &  analysis   improvements  (SK  fiducial volume,  add   new  event  sample)                                             à Effectively  add 50%  statistics ² Reduction  of  systematic  uncertainties  to   enhance  CPV  sensitivity 48 Number  of  events  expected  at  T2K  far  detector   with  full  proposed   T2K  Phase  2  exposure J-­‐PARC  Main  Ring  expected  beam  power &  T2K  Phase  2  accumulation  scenario  
  • 49. Medium  term:  T2K-­‐II  proposal   2/17/17 )21 Protons-on-Target (x10 0 5 10 15 20 =0CPδtoexcludesin2 χ∆ 0 5 10 15 =0.4323 θ2 True sin =0.5023 θ2 True sin =0.6023 θ2 True sin 90% C.L. 99% C.L. C.L.σ3 w/ eff. stat. improvements (no sys. errors) w/ eff. stat. & sys. improvements Work in Progress )°(CP δTrue 200− 100− 0 100 200 =0CPδtoexcludesin2 χ∆ 0 5 10 15 20 =0.4323θ2 True sin =0.5023θ2 True sin =0.6023θ2 True sin 90% C.L. 99% C.L. C.L.σ3 POT w/ eff. stat. & sys. improvements21 20x10 POT w/ 2016 sys. errs.21 7.8x10 Work in Progress CP = ⇡ 2 ² >  3 𝜎 significance  sensitivity  to  CP   violation  if   𝛿CP=  -­‐ 𝜋/2 ² 99%  C.L.  significance  for  more  than  45%   of  the  possible  true  values  of   𝛿CP ² 1%  precision  of   𝛥m2 23,  0.5o  -­‐ 1.7o   precision  of   𝜃23  depending  on  its  true   value,  ~3𝜎 significance  for  resolving   𝜃23     octant  if  sin2 𝜃23  >0.6  or  sin2 𝜃23  <0.43 23 θ2 sin 0.4 0.5 0.6 32 2 m∆ 2.2 2.4 2.6 2.8 3 3− 10× Current POT , 90% C.L POT, 90% C.L21 7.8x10 POT w/improvement, 90% C.L21 20x10 Stat. only Systematics Work in Progress True sin2 ✓23 = 0.6 KEK-­‐PH2017 49
  • 50. Medium  term:  ND280  update 2/17/17 KEK-­‐PH2017 50 Goal:  Understand  better  𝝂 interaction Minimum   requirements: +  Water  target +  Large  angular  acceptance +  Better  efficiency  for  detecting             low  momentum  of  p  and  𝜋 Detector  design  in  progress Target  option
  • 51. Medium  term:  Intermediate  WC  detector   2/17/17 KEK-­‐PH2017 51 52.5  m  tall  WC  detector,  spanning  1o-­‐4o off   the  beam  center,  1km  from  target ² Water  target   ² 4𝜋 angular  acceptance   ² Signal  and  background ² Flux  prediction  largely  independent  to   neutrino  interaction  model Physics  goals: ² Oscillation  analysis  w/  modest  need  of   neutrino  interaction  model ² Sterile  neutrino  search Same  as  Super-­‐K Separate  collaboration  from  T2K Receive  stage-­‐1  status  as  E-­‐62  exp. (from  July  2016) Design  concept
  • 52. Longer  term:  Hyper-­‐Kamiokande 2/17/17 KEK-­‐PH2017 52 Gigantic  WC  detector,  520  kton (ref.  50  kton of  Super-­‐K  ),  aim  to  start  operation  in  2026 ² Neutrino  CP  violation  up  to  >  5 𝜎 ² Neutrino  mass  hierarchy ² Also  for  proton  decay,  supernova… Selected  as  one  of  important  large  scale  projects  by  SCJ T2KK:  Move  2nd Hyper-­‐K  tank  to  Korea? +  CP  violation  at  2nd osc.  peak +  Enhance  matter  effect
  • 53. Longer  term:  Hyper-­‐Kamiokande 2/17/17 KEK-­‐PH2017 53 Brief  story  of  K Prof.  M.  Koshiba Prof.  T.  Kajita 2002 2015
  • 54. Quest  for  THEORISTS  (2) 2/17/17 KEK-­‐PH2017 54 NSK/NSK To  THEORISTS  (2):  How  can  we  sure  what   we  measure  is  CP  violation  phase? The  CP  violation  sensitivity  is  based  on  standard   framework.  Experimentalists  measure  merely   probabilities  and  can  be  fooled  by   ² Sterile  neutrinos ² Non-­‐standard  interactions ² ….
  • 55. Quest  for  THEORISTS  (3) 2/17/17 KEK-­‐PH2017 55 NSK/NSK arXiv:1410.8056 Assume  CP  is  observed,  the   next  targets  are  probably   precision  of  CP  phase  and   PMNS  unitary  testing To  THEORISTS  (3):  Can  we  have  more   “predictable”  model?  say,  on  CP  phase,   unitary  of  matrix  for  example  
  • 56. Summary 2/17/17 KEK-­‐PH2017 ² Results  with  T2K  data  shown o No  CPT  indication  from   o Consistent  with   𝜃23 maximal  mixing   o Slightly  prefer  normal  mass  hierarchy o Slightly  favor   𝛿CP =  -­‐ 𝜋/2   𝛿CP =  [-­‐3.13,  -­‐0.39]  (NH),  [-­‐2.09,  -­‐0.74]  (IH)  at  90%  C.L. à More  statistics  are  needed   ² J-­‐PARC  beam  power  has  steadily  increased  up  to  420  kW  (operating   at  470  kW  recently)à key  roles  for  neutrino  measurements ² Neutrino  physics  roadmap  in  Japan  is  clear  and  exciting Stay  tuned  for  upcoming  results  from  T2K 56 *Number  of  anime  taken  http://higgstan.com
  • 59. Backup:  CP  &  MH  effect 2/17/17 KEK-­‐PH2017 59 NSK/NSK )eν→µνP( 0 0.02 0.04 0.06 0.08 )eν→µνP( 0 0.02 0.04 0.06 0.08 -3 10×|=2.4232 2 m∆| -5 10×|=7.5421 2 m∆| =0.9523θ22 sin =0.8812 θ22 sin =0.0913θ22 sin L=295 km =0.6 GeVνE >032 2 m∆ <032 2 m∆ =0CP δ /2π=CPδ π=CP δ /2π=3CPδ High  octant Low  octant ² Negative  CP  enhances  electron  neutrino  appearance  and  suppresses   electron  antineutrino  appearance ² MH  enhances  electron  neutrino  appearance  and  suppresses  electron   antineutrino  appearance
  • 60. Backup:  Accelerator  update  schedule 2/17/17 KEK-­‐PH2017 60 NSK/NSK PAC  Jan  2017
  • 61. Backup:  Systematic  error  table 2/17/17 KEK-­‐PH2017 61 NSK/NSK
  • 62. Backup:  Data  fit  vs  sensitivity 2/17/17 KEK-­‐PH2017 62 10k  toys 10k  toys ² Toy  experiments  at  true  values  of   𝛿CP  &  MH   generated  to    understand  data  fit  outcomes ² Probability  to  exclude   𝛿CP  =  (0,   𝜋)  is  evaluated ² Data  agree  w/   𝛿CP =  -­‐1.76  (~-­‐𝜋/2),  normal  MH   at  2 𝜎 level  and  probability  to  exclude   𝛿CP  =0  is   non-­‐negligible  (>8%) True:   𝛿CP =  -­‐1.76,  normal  MHTrue:   𝛿CP =  0,  normal  MH Prop.  (%) to  exclude   True  para. 𝛿CP =  -­‐1.76,  NH True  para. 𝛿CP =  0,  NH 90%  CL 2𝝈 90%  CL 2𝝈 𝛿CP =0,  NH 19.1 8.5 10.8 4.8 𝛿CP =𝜋,  NH 15.7 6.5 14.9 6.7
  • 64. BANFF:  flux  RHC 2/17/17 KEK-­‐PH2017 ² 15%  increase 64 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,eνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,eνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,µνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,µνND280
  • 65. T2K  off-­‐axis  detector:  ND280 2/17/17 KEK-­‐PH2017 Aim  to  understand  unoscillated 𝜈 beam:  constrains  flux   and  cross-­‐section  parameters   ² Tracker,  composed  of  Fine-­‐Grained  Detector  (FGD)   and  Time  Projection  Chamber  (TPC),  is  central  part o Two  FGDs:    active  target  w/  scintillator  only   (FGD1)  or    scintillator-­‐water  interleaved  (FGD2) o Three  TPCs:  mainly  Argon  (95%)  filled,  for   momentum   measurement  and  particle  ID   ² 𝜋0  detector  (POD)  for  water-­‐scintillator  target  and  𝜋0 tagging   ² Electromagnetic  calorimeters  (ECal)  to  detect  gamma   rays  and  reconstruct  𝜋0 ² Side  muon range  detectors  (SMRD)  to  tag  entering   cosmic  muons or  side-­‐exiting  muons Key  features  for  cross-­‐section:   o Narrow  flux  spectrum  ,  mean  ~  0.85  GeV o Multiple  targets:  scintillator,  water,  argon,  lead o High  final  state  ID  resolution,   charge  separation   65 ~B 0.2  T
  • 67. About  energy  reconstruction 672/17/17 KEK-­‐PH2017 ? Issue  raised  recently No  observation  yet!
  • 68. Pre-­‐fit:  muon momentum 2/17/17 KEK-­‐PH2017 68 Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 500 1000 1500 2000 2500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 300 350 400 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 10 20 30 40 50 60 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CCNtrk
  • 69. Post-­‐fit:  muon momentum 2/17/17 KEK-­‐PH2017 69 Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 500 1000 1500 2000 2500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 300 350 400 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 10 20 30 40 50 60 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CCNtrk
  • 70. Pre-­‐fit:  muon angle 2/17/17 KEK-­‐PH2017 ² 2x3  sample  for   neutrinos  (FGD1,2) ² 2x4  sample  for  anti-­‐ neutrinos  (FGD1,2) 70 θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 200 400 600 800 1000 1200 1400 1600 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 160 Data CCQEν non-CCQEν CCQEν non-CCQEν θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk FGD1, nu,  CCNtrk
  • 71. Post-­‐fit:  muon angle 2/17/17 KEK-­‐PH2017 71 θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 200 400 600 800 1000 1200 1400 1600 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 160 Data CCQEν non-CCQEν CCQEν non-CCQEν θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk FGD1, nu,  CCNtrk ² 2x3  sample  for   neutrinos  (FGD1,2) ² 2x4  sample  for  anti-­‐ neutrinos  (FGD1,2)