S.	
  Cao
IPNS,	
  KEK
Results	
  and	
  Prospects	
  from	
  T2K	
  
2/17/17 KEK-­‐PH2017
Ø Neutrino	
  Oscillation	
  landscape
Ø T2K	
  &	
  recent	
  results
Ø Future	
  prospects	
  
Brief	
  neutrino	
  history
2/17/17 KEK-­‐PH2017 2
Credit	
  to	
  APS
² 1930:	
  On-­‐paper	
  appearance	
  as	
  “desperate”	
  remedy	
  by	
  W.	
  Pauli
² 1956:	
  	
  	
  	
  	
  	
  first	
  experimentally	
  discovered	
  by	
  Reines	
  and	
  Cowan
² 1962:	
  	
  	
  	
  	
  	
  existence	
  confirmed	
  by	
  Lederman	
  et	
  al.	
  
² 1998:	
  Atmospheric	
  neutrino	
   oscillations	
  discovered	
  by	
  Super-­‐K
² 2000:	
  	
  	
  	
  	
  	
  first	
  evidence	
  reported	
  by	
  DONUT	
  experiment
² 2001:	
  Solar	
  neutrino	
   oscillations	
  detected	
  by	
  SNO	
  (KamLAND	
  2002)
² 2011:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  transitions	
  observed	
  by	
  OPERA
² 2011-­‐13:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   by	
  T2K,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   by	
  Daya Bay(2012)	
  
² 2015:	
  Nobel	
  prizes	
  for	
  𝜈 oscillations,	
  Breakthrough	
  prize	
  (2016)
¯⌫e
⌫µ
⌫⌧
⌫µ ! ⌫⌧
⌫µ ! ⌫e ¯⌫e ! ¯⌫e
2015
T2K	
  observe	
   𝜈 𝜇 à𝜈e
appearance
Nobel & Breakthrough
for	
  𝜈 oscillations
2/17/17 KEK-­‐PH2017 3
"for	
  the	
  discovery	
  of	
  neutrino	
  oscillations,	
  
which	
  shows	
  that	
  neutrinos	
  have	
  mass"
Standard	
  Model	
  &	
  neutrino	
  oscillations
32/17/17 KEK-­‐PH2017
Source:	
  AAAS
0
@
⌫e
⌫µ
⌫⌧
1
A =
0
@
1 0 0
0 c23 s23
0 s23 c23
1
A
0
@
c12 s12 0
s12 c12 0
0 0 1
1
A
0
@
c13 0 s13e i CP
0 1 0
s13ei CP
0 c13
1
A
0
@
⌫1
⌫2
⌫3
1
APontecorvo
(1957)
Maki,
Nakagawa
Sakata
(1962)
Majorana
(1937)
Standard	
  Model:
² Neutrinos	
  interact	
  through	
  the	
  weak	
  
interaction
² Lepton	
  flavor	
  is	
  strictly	
  conserved
² Neutrinos	
  have	
  zero	
  mass
Neutrino	
  oscillations:
² Indicate	
  massive	
  neutrinos
² Mix	
  flavor	
  and	
  mass	
  eigenstates
² Beyond	
  Standard	
  Model
Flavor	
  eigenstates Mass	
  eigenstates
The	
  only	
  lab-­‐based	
  evidence
Standard	
  Model	
  &	
  neutrino	
  oscillations
Standard	
  Model:
² Neutrinos	
  interact	
  through	
  the	
  weak	
  
interaction
² Lepton	
  flavor	
  is	
  strictly	
  conserved
² Neutrinos	
  have	
  zero	
  mass
Neutrino	
  oscillations:
² Indicate	
  massive	
  neutrinos
² Mix	
  flavor	
  and	
  mass	
  eigenstates
² Beyond	
  Standard	
  Model
42/17/17 KEK-­‐PH2017
Reactors	
  /	
  acceleratorSolar /	
  reactors
0
@
⌫e
⌫µ
⌫⌧
1
A =
0
@
1 0 0
0 c23 s23
0 s23 c23
1
A
0
@
c12 s12 0
s12 c12 0
0 0 1
1
A
0
@
c13 0 s13e i CP
0 1 0
s13ei CP
0 c13
1
A
0
@
⌫1
⌫2
⌫3
1
A
Source:	
  AAAS
cij = cos ✓ij, sij = sin ✓ij
Atmospherics	
  /	
  Accelerators
Neutrino	
  oscillation	
  landscape	
  
2/17/17 KEK-­‐PH2017 6
Gonzalez-­‐Garcia et	
  al.,	
  arXiv:1512.06856	
  
⌫e ⌫µ ⌫⌧
Normal	
  hierarchy Inverted	
  hierarchy
m2
lightest m2
lightest
0
@
⌫e
⌫µ
⌫⌧
1
A =
0
@
1 0 0
0 c23 s23
0 s23 c23
1
A
0
@
c12 s12 0
s12 c12 0
0 0 1
1
A
0
@
c13 0 s13e i CP
0 1 0
s13ei CP
0 c13
1
A
0
@
⌫1
⌫2
⌫3
1
A
sign( m2
32) = ?
✓23 is maximal ?
CP = ?
mlightest = ?
m2
32
m2
31
m2
21
m2
21
⌫1
⌫2
⌫3
⌫1
⌫2
⌫3
m2
21 = 7.50+0.19
0.17 ⇥ 10 5
eV2
m2
31 = 2.457+0.047
0.047 ⇥ 10 3
eV2
✓13 = 8.50+0.20
0.21( )
✓12 = 33.48+0.78
0.75( )
✓23 = 42.3+3.0
1.6( )
m2
ij = m2
⌫i
m2
⌫j
Global	
  fit	
  – Normal	
  hierarchy
Opening	
  questions	
  (1)
2/17/17 KEK-­‐PH2017 7
Credit	
  to	
  H.	
  Murayama
q How	
  do	
  neutrinos	
  get	
  mass?	
  
q Why	
  are	
  their	
  masses	
  so	
  small?
Opening	
  questions	
  (2)
2/17/17 KEK-­‐PH2017 8
arXiv:1212.6374
q Why	
  does	
  PMNS	
  matrix	
  differ	
  from	
  CKM	
  matrix?
*Area	
  of	
  the	
  squares	
  represents	
  square	
  of	
  matrix	
  elements
Opening	
  questions	
  (3)
2/17/17 KEK-­‐PH2017 9
q What	
  is	
  neutrino’s	
  role	
  in	
  Universe	
  evolution?
q Where	
  is	
  anti-­‐matter?
Credit: NASA/WMAP Science Team
Source: scienceabc.com
Opening	
  questions	
  (3-­‐cont’d)
2/17/17 KEK-­‐PH2017 10
q Can	
  it	
  be	
  due	
  to	
  CP-­‐violating	
  decays	
  of	
  heavy	
  neutrinos?
1,000,000,001
Baryons
1,000,000,001
Anti-­‐Baryons
1,000,000,002
Baryons
1,000,000,000
Anti-­‐Baryons
Begin	
  of	
  Universe Shortly	
  after
?
CP-­‐violating	
  decays
(B	
  =	
  0;	
  L	
  ≠	
  0)
Sphaleron
Process
(B	
  ≠ 0;	
  L	
  ≠	
  0)(Fukugita,	
  Yanagida)
Opening	
  questions	
  (3-­‐cont’d)
2/17/17 KEK-­‐PH2017 11
Credit	
  to	
  B.	
  Kayser
q CP-­‐violating	
  phase	
  in	
  heavy	
  neutrino	
  decays	
  leads	
  to	
  CP-­‐
violating	
  phase	
  in	
  the	
  light	
  neutrino	
  mixing
Measure	
  CP	
  violation	
  phase	
  in	
  neutrino	
  
mixing	
  via	
  neutrino	
  oscillations	
  wanted!!!
𝜈 oscillation	
  measurement
2/17/17 KEK-­‐PH2017 12
It’s	
  about	
  probability	
  measurement,	
  basic	
  needs:
ü Source	
  of	
  well-­‐understood	
  neutrino	
  flavor	
  composition
ü Detector	
  at	
  optimal	
  baseline,	
  enable	
  to	
  distinguish	
  flavors
ü Neutrino	
  energy	
  is	
  necessary	
  to	
  known
Defined	
  baseline
𝜈 source
𝜈 detector
Theoretical,	
  
simple
𝜈 oscillation	
  measurement	
  (cont’d)
2/17/17 KEK-­‐PH2017 13
It’s	
  about	
  probability	
  measurement,	
  basic	
  needs:
ü Source	
  of	
  well-­‐understood	
  neutrino	
  flavor	
  composition
q Neutrino	
  weak	
  interactionà powerful	
  source
q Flux	
  uncertainty	
  
ü Detector	
  at	
  optimal	
  baseline,	
  enable	
  to	
  distinguish	
  flavors
q Uncertainty	
  in	
  neutrino-­‐nuclei	
  interactionà interaction	
  uncertainty
q Response	
  is	
  not	
  perfect,	
  misidentify	
  flavor	
  à detector	
  uncertainty
ü Neutrino	
  energy	
  is	
  necessary	
  to	
  known
q Typically	
  not	
  mono-­‐energy	
  neutrino	
  source
q Can	
  bias	
  in	
  reconstructing	
  neutrino	
  energy	
  
Defined	
  baseline
𝜈 source
𝜈 detector
Experimental,	
  
NOT	
  simple
T2K	
  experiment
2/17/17 KEK-­‐PH2017
T2K	
  experiment
2/17/17 15KEK-­‐PH2017
² Long-­‐baseline	
  neutrino	
  experiment,	
  located	
  in	
  Japan
² Large	
  collaboration:	
  ~470	
  physicists	
  from	
  63	
  institutes/	
  11	
  nations
² Rich	
  programs:	
  standard	
  neutrino	
  oscillations,	
  non-­‐standard	
  physics	
  
search,	
  neutrino	
  interactions
J-­‐PARC	
  neutrino	
  beam	
  line
2/17/17
² High	
  intensity,	
  almost	
  pure	
  muon (anti)	
  neutrino	
  beam	
  from	
  J-­‐PARC
16KEK-­‐PH2017
² 30	
  GeV p	
  extracted	
  from	
  J-­‐PARC	
  main	
  ring,	
  impinge	
  on	
  90-­‐cm,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  graphite	
  target	
  	
  
² Induced	
   𝜋+ (𝜋-­‐)	
  focused	
  by	
  three	
  horns,	
  pass	
  through	
  a	
  96-­‐m	
  decay	
  pipe
² Beam	
  dump	
  to	
  stop	
  all	
  particles	
  except	
  neutrinos	
  and	
  high-­‐energy	
  muons
² Muon monitor,	
  downstream	
  of	
  beam	
  dump,	
  to	
  monitor	
  beam	
  intensity	
  and	
  direction	
  by	
  
measuring	
  induced	
  muon profile.
1.9 ⇥ int
Beam	
  power	
  and	
  data	
  accumulation
2/17/17 KEK-­‐PH2017 17
Maximumbeampowerachievedsofar459.6kW
23 January 2010 - 19 January 2017
POT total: 18.29×"#$#
% mode POT: 10.68×"#$# (58%)
%& mode POT: 7.62×"#$# (42%)
² Beam	
  power	
  steadily	
  increased	
  to	
  470	
  kW	
  recently!
² 1.8x1021 Protons-­‐on-­‐target	
  (POT)	
  delivered	
  until	
  Jan	
  19th.	
  
Data	
  sample	
  for	
  results	
  presented	
  today:
² Neutrino-­‐mode:	
  7.48x1020 POT
² Antineutrino-­‐mode:	
   7.47x1020	
  POT	
  
Today	
  result
Neutrino	
  flux	
  inference
2/17/17
² High	
  intensity,	
  almost	
  pure	
  muon (anti)	
  neutrino	
  beam	
  from	
  J-­‐PARC
18KEK-­‐PH2017
² To	
  infer	
  neutrino	
  flux,	
  knowledge	
  
of	
  hadron	
  production	
  at	
  target	
  
needed
² Constrained	
  by	
  external	
  data	
  from	
  
NA61/SHINE
Flux	
  uncertainty	
  ~	
  10%
(absolute	
  error)
𝜈̅ mode
< 1%(⌫e/⌫e) < 1%(⌫e/⌫e)
T2K	
  Far	
  Detector	
   T2K	
  Far	
  Detector	
  
T2K	
  Far	
  Detector	
   T2K	
  Far	
  Detector	
  
(Beam	
  modes	
  changed	
  by	
  switching	
  horn	
  polarity)
~3.7%	
  effect	
  to	
  analysis	
  w/
Near	
  Detector	
  constraint
𝝂-­‐mode
𝝂-­‐mode 𝜈̅ mode
Far	
  Detector,	
  Super-­‐Kamiokande
2/17/17 KEK-­‐PH2017 19
(GeV)νE
0 1 2 3
(A.U.)295km
µνΦ
0
0.5
1 °OA 0.0
°OA 2.0
°OA 2.5
0 1 2 3
)eν→µνP(
0.05
0.1
= 0CP
δNH, = 0CP
δIH,
/2π=CP
δNH, /2π=CP
δIH,
0 1 2 3
)µν→µνP(
0.5
1
= 1.023θ22
sin
= 0.113θ22
sin
2
eV-3
10×= 2.432
2
m∆
Partice ID parameter
-10 -8 -6 -4 -2 0 2 4 6 8 10
0
50
100
150
200
250
300
350
Super Kamiokande IV 2166.5 days : Monitoring
e-like muon-like
Numberofevents
² Muon and	
  electron	
  are	
  well-­‐separated
à identify	
  𝜈 𝜇/𝜈& with	
  high	
  purity
² Super-­‐K	
  is	
  2.50 off	
  the	
  beam’s	
  axis	
  to	
  achieve	
  narrow	
  band	
  beam	
  peaked	
  
at	
  oscillation	
  maximum	
  (0.6	
  GeV)
(atmospheric	
   𝜈 data)
Super-­‐Kamiokande
(41.4	
  m	
  tall	
  x	
  39.3m	
  diameter)
22.5	
  ktons fiducial volume	
  
1000m	
  underground
⌫µ + n ! µ + p
⌫e + n ! e + p
2.5
Far	
  Detector,	
  Super-­‐Kamiokande
2/17/17 KEK-­‐PH2017 20
² Super-­‐K	
  is	
  2.50 off	
  the	
  beam’s	
  axis	
  to	
  achieve	
  narrow	
  band	
  beam	
  peaked	
  
at	
  oscillation	
  maximum	
  (0.6	
  GeV)
⌫µ + n ! µ + p
⌫e + n ! e + p
2.5
Short	
  version Disappearance	
  channel
Appearance	
  channel
T2K	
  primary	
  physics	
  goals
2/17/17 KEK-­‐PH2017 21
⌫µ + n ! µ + p
⌫e + n ! e + p
Disappearance	
  channel
(GeV)νE
0.5 1 1.5 2 2.5 3
Osc.Prob
0
0.5
1
flux
µ
νOff-axis°2.5
=0.523θ2
, sin2
eV
-3
=2.5x1032
2
m∆
µν→µν=µν→µν
q Sensitive	
  to	
   𝜃23 and	
   𝛥m2
31	
  (atmospheric	
  sector)	
  	
  	
  
à Precision	
  measurement	
  ( 𝜃23 is	
  maximal?)
q CPT	
  symmetry	
  test	
  by	
  comparing	
  disappearance	
  
in	
  muon neutrinos	
  and	
  muon anti-­‐neutrinos	
  
T2K	
  primary	
  physics	
  goals
2/17/17 KEK-­‐PH2017 22
⌫µ + n ! µ + p
⌫e + n ! e + p
Appearance	
  channel
(GeV)νE
0.5 1 1.5 2 2.5 3
Osc.Prob
0
0.02
0.04
0.06
0.08
0.1
flux
µ
νOff-axis°2.5
ν, NH,°=0cpδ
ν, NH,°=270cpδ
ν, NH,°=0cpδ
ν, NH,°=270cpδ
eν→µν,eν→µν
q Sensitive	
  to	
   𝜃13 and	
   𝛿CP
o Degeneracy	
   𝜃13 -­‐ 𝛿CP is	
  difficult	
  to	
  disentangle	
  with	
  
long	
  baseline	
  experiment	
  à Need	
  constraint	
  from	
  
reactor	
  measurement	
  on	
   𝜃13	
  (or	
  high	
  statistics)
q 20-­‐30%	
  effect	
  of	
   𝛿CP and	
  10%	
  effect	
  of	
  mass	
  hierarchy	
  
(not	
  too	
  long	
  baseline	
  295km)
Large	
  CP	
  effect
Small	
  matter	
  effect	
  
(in	
  vacuum)
(in	
  matter)
Far	
  Detector:	
  Event	
  selections
2/17/17 KEK-­‐PH2017 23
⌫e + n ! e + p
Energy	
  info.	
  needed	
  à Enrich	
  charged	
  current	
  quasi	
  elastic	
  events
FCFV 1-ring -likeµ µ
p Decay-e
Numberofevents
0
200
400
RUN1-7 data
)POT
20
10×(7.482
CC QEµν
CC QEµν
CC non-QEµν+µν
CCeν+eν
NC
FCFV
1-ring
e-like
Evis
Decay-e
rec
ν
E fiTQun
Numberofevents
0
200
400
RUN1-7 data
)POT
20
10×(7.482
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
Charged particle should be µ±
Pµ > 200 Mev/c: remove ⇡ and e
Decay e < 2: reject invisible ⇡
• FCFV:	
  Fully	
  contained	
  in	
  fiducial volume
• 1-­‐ring:	
  One	
  charged-­‐particle	
  for	
  CCQE
Charged particle should be e±
No decay e : # invisible µ/⇡
Evis > 100 MeV: # low E bkg.
Erec
⌫ < 1.25 GeV: # intrinsic beam ⌫e.
“fiTQun”: # NC ⇡0
CCQE-­‐enhanced	
   CCQE-­‐enhanced	
  
◎
◎
◎
◎
◎
◎
◎
◎
Far	
  Detector:	
  Event	
  selections
2/17/17 KEK-­‐PH2017 24
⌫e + n ! e + p
Energy	
  info.	
  needed	
  à Enrich	
  charged	
  current	
  quasi	
  elastic	
  events
FCFV 1-ring -likeµ µ
p Decay-e
Numberofevents
0
200
400
RUN1-7 data
)POT
20
10×(7.482
CC QEµν
CC QEµν
CC non-QEµν+µν
CCeν+eν
NC
FCFV
1-ring
e-like
Evis
Decay-e
rec
ν
E fiTQun
Numberofevents
0
200
400
RUN1-7 data
)POT
20
10×(7.482
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
CCQE-­‐enhanced	
   CCQE-­‐enhanced	
  
Theoretically,	
  neutrino	
  beam	
  from	
  J-­‐PARC	
  
and	
  Super-­‐Kamiokande are	
  enough.	
  
However,	
  experimentally,	
  we	
  need	
  more..
2/17/17 KEK-­‐PH2017
Near	
  Detectors
2/17/17 KEK-­‐PH2017 26
² Near	
  Detector	
  complex	
  is	
  280m	
  downstream	
  of	
  target
It’s	
  about	
  probability	
  measurement,	
  basic	
  needs:
ü Source	
  of	
  well-­‐understood	
  neutrino	
  flavor	
  composition
q Neutrino	
  weak	
  interactionà powerful	
  source
q Flux	
  uncertainty	
  
ü Detector	
  at	
  optimal	
  baseline,	
  enable	
  to	
  distinguish	
  flavors
q Uncertainty	
  in	
  neutrino-­‐nuclei	
  interactionà interaction	
  uncertainty
q Response	
  is	
  not	
  perfect,	
  misidentify	
  flavor	
  à detector	
  uncertainty
ü Neutrino	
  energy	
  is	
  necessary	
  to	
  known
q Typically	
  not	
  mono-­‐energy	
  neutrino	
  source
q Can	
  bias	
  in	
  reconstructing	
  neutrino	
  energy	
  
Built	
  for	
  these
particular	
  purposes
Near	
  Detectors	
  (cont’d)
2/17/17 KEK-­‐PH2017 27
² Near	
  Detector	
  complex	
  is	
  280m	
  downstream	
  of	
  target
On-­‐axis	
  (called	
  INGRID)
Measure	
  𝜈 beam	
  intensity	
  &	
  profile:	
  
16	
  scintillator-­‐steel	
  interleaved	
  
modules	
  (7.1	
  tons/each)
Off-­‐axis	
  (called	
  ND280)
Understand	
  unoscillated 𝜈 beam:	
  
further	
  constrain	
  flux	
  and	
  cross-­‐
section	
  parameters	
  
Near	
  Detectors	
  measurements
28
Day
[events/1e14POT]
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Event rate
Horn250kA
Horn205kA
Horn-250kA
[mrad]
1−
0.5−
0
0.5
Horizontal beam direction INGRID
MUMON
Day
[mrad]
1−
0.5−
0
0.5
1
Vertical beam direction INGRID
MUMON
T2K Run1
Jan.2010-Jun.2010
T2K Run2
Nov.2010-Mar.2011
T2K Run3
Mar.2012-Jun.2012
T2K Run4
Oct.2012-May.2013
T2K Run5
May.2014
-Jun.2014
T2K Run6
Oct.2014-June.2015
T2K Run7
Feb.2016-May.2016
2/17/17 KEK-­‐PH2017
Measured	
  data
Off-­‐axis	
  neutrino	
   energy	
  strongly	
  
depend	
  on	
  beam	
  direction	
  
(1mrad ~ 2% shift of peak energy)
T2K controlled off-axis better than
1mrad
Position from Designed beam center[cm]
400− 200− 0 200 400
Numberofevents
0
10
20
30
40
50
60
70
80
3
10×
/ ndf2χ 10.8 / 4
Constant 161.1±7.168e+04
Mean 1.099±2.428−
Sigma 1.795±437.6
/ ndf2χ 10.8 / 4
Constant 161.1±7.168e+04
Mean 1.099±2.428−
Sigma 1.795±437.6
Position from Designed beam center[cm]
400− 200− 0 200 400Numberofevents 0
10
20
30
40
50
60
70
80
3
10×
/ ndf2χ 39.29 / 4
Constant 163.3±7.392e+04
Mean 1.158±4.593
Sigma 1.979±456
/ ndf2χ 39.29 / 4
Constant 163.3±7.392e+04
Mean 1.158±4.593
Sigma 1.979±456
Data for each module
Fitted Gaussian
Horizontal Vertical
Near	
  Detectors	
  measurements	
  (cont’d)
2/17/17 KEK-­‐PH2017 29
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
500
1000
1500
2000
2500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
300
350
400
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
10
20
30
40
50
60
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CCNtrk
Near	
  Detectors	
  measurements	
  (cont’d)
302/17/17 KEK-­‐PH2017
Cross-­‐section	
  parameters
Constrain
𝜈-­‐int.	
  model
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,µνND280
flux
Flux parameters
?
Need	
  to	
  know	
  how	
  
neutrinos	
  see	
  nuclei
(parameterization)
Observable
Nuclear	
  target
Near	
  Detectors	
  measurements	
  (cont’d)
312/17/17 KEK-­‐PH2017
Reconstructed Neutrino Energy (GeV)
0 0.2 0.4 0.6 0.8 1 1.2
Eventsperbin
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
error (w/o ND280)σ1±
errorσ1±
Reconstructed Neutrino Energy (GeV)
0 0.2 0.4 0.6 0.8 1 1.2
Eventsperbin
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
error (w/o ND280)σ1±
errorσ1±
Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 2 2.5
Eventsperbin
0
2
4
6
8
10 error (w/o ND280)σ1±
errorσ1±
Reconstructed Neutrino Energy (GeV)
0 0.5 1 1.5 2 2.5
Eventsperbin
0
0.5
1
1.5
2
2.5
3
3.5
4 error (w/o ND280)σ1±
errorσ1±
Total	
   𝛥NSK /NSK
Beam	
  
mode
Sample w/o	
  
ND280
w/
ND280
𝝂 12.0% 5.0%
𝝂 11.9% 5.4%
𝜈̅ 12.5% 5.2%
𝜈̅ 13.7% 6.2%
Quest	
  for	
  THEORISTS	
  (1)
322/17/17 KEK-­‐PH2017
To	
  THEORISTS	
  (1):	
  We	
  need	
  you	
  here!
For	
  better	
  understand	
  neutrino-­‐nuclei	
  
interactions.
?
Need	
  to	
  know	
  how	
  
neutrinos	
  see	
  nuclei
(parameterization)
Observable
Nuclear	
  target
T2K	
  Results
2/17/17 KEK-­‐PH2017
Disappearance	
  channel
2/17/17 KEK-­‐PH2017
² Oscillation	
  dip	
  is	
  clearly	
  observed
² Four	
  physics	
  parameters	
  are	
  fitted:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  
Results:	
   𝜈* disappearance
0 1 2 3 4 5 6 7 8
Events/100MeV
0
10
20
30
40
50
60
70
80
90
Prediction
Unoscillated
Best-Fit
Data
Reconstructed Energy [GeV]
0 1 2 3 4 5 6 7 8
Ratio
0
0.5
1
1.5
2
2.5
T2K Run1−7c preliminary
0 1 2 3 4 5 6 7 8
Events/100MeV
0
5
10
15
20
25 Prediction
Unoscillated
Best-Fit
Data
Reconstructed Energy [GeV]
0 1 2 3 4 5 6 7 8
Ratio
0
0.5
1
1.5
2
2.5
T2K Run1−7c preliminary
Neutrino Anti-­‐neutrino
Beam	
  mode Unoscillated pred. Data
Neutrino 521.8 135
Anti-­‐neutrino 184.8 66
sin2
✓23, | m2
32| sin2
✓23, | m2
32|
sin2
2✓23
/ | m2
32|
sin2
✓23
/ | m2
32|
2/17/17 KEK-­‐PH2017
Neutrino	
  vs.	
  Anti-­‐neutrino
(T2K	
  only)
Compare	
  to	
  other	
  
experiments	
  in	
  the	
  world
² No	
  difference	
  between	
  muon neutrino	
  disappearance	
  
and	
  muon anti-­‐neutrino	
  disappearance
² Good	
  agreement	
  w/	
  antineutrino	
  data	
  from	
  other	
  
experiments
Results:	
   𝜈* disappearance
T2K	
  Results
2/17/17 KEK-­‐PH2017
Appearance	
  channel
2/17/17 KEK-­‐PH2017
Results:	
   𝜈&+ appearance
energy (MeV)νReconstructed
0 500 1000
Numberofevents
0
5
10
15
RUN1-7 data
)POT
20
10×(7.482
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
Sample Prediction at	
  true	
  δCP Data
-­‐𝝅/2 0 +𝝅/2
28.7 24.1 19.6 32
6.0 6.9 7.7 4
energy (MeV)νReconstructed
0 500 1000
Numberofevents
0
1
2
3
4 RUN5-7 data
)POT
20
10×(7.471
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
2/17/17 KEK-­‐PH2017
Results:	
   𝜈&+ appearance
energy (MeV)νReconstructed
0 500 1000
Numberofevents
0
1
2
3
4 RUN5-7 data
)POT
20
10×(7.471
CCeνOsc.
CCeνOsc.
CCµν/µν
CCeν/eνBeam
NC
² Test	
  for	
   𝜈* → 𝜈&+ hypothesis	
  w/single	
  para.	
   𝞫
² 𝞫 =	
  0:	
  No	
   𝜈* → 𝜈&+
² 𝞫 =	
  1:	
   𝜈* → 𝜈&+ appearance	
  consistent	
  w/	
  
PMNS
² Use	
  all	
  four	
  T2K	
  samples	
  to	
  fully	
  constrain	
  
oscillation	
  prob.
Rate	
  only
No	
  evidence	
  for	
   𝜈* → 𝜈&+
More	
  data	
  is	
  needed.
T2K	
  Results
2/17/17 KEK-­‐PH2017
Appearance	
  channel
Disappearance	
  channel
Joint	
  Analysis
Oscillation	
  parameters	
  extracted	
  from	
  T2K	
  data
2/17/17 KEK-­‐PH2017 40
0 1 2 3 4 5 6 7 8
Events
0
10
20
30
40
50
60
70
80
90
Prediction
Unoscillated
Best-Fit
Data
Reconstructed Energy [GeV]
0 1 2 3 4 5 6 7 8
Ratio
0
1
2
3
4
T2K Run1−7c preliminary
0 200 400 600 800 1000 1200 1400
Events
0
0.5
1
1.5
2
2.5
3
3.5
Prediction
Unoscillated
Best-Fit
Data
Reconstructed Momentum [MeV/c]
0 200 400 600 800 1000 1200 1400
Ratio 0
2
4
6
8
T2K Run1−7c preliminary
0 1 2 3 4 5 6 7 8
Events
0
5
10
15
20
25 Prediction
Unoscillated
Best-Fit
Data
Reconstructed Energy [GeV]
0 1 2 3 4 5 6 7 8
Ratio
0
1
2
3
4
T2K Run1−7c preliminary
0 200 400 600 800 1000 1200 1400
Events
0
2
4
6
8
10
12
14
Prediction
Unoscillated
Best-Fit
Data
Reconstructed Momentum [MeV/c]
0 200 400 600 800 1000 1200 1400
Ratio
0
5
10
15
T2K Run1−7c preliminary
Appearance	
  channel
Disappearance	
  channel
sensitive	
  to	
  𝜃23 &	
  ∆ 𝑚12
2
sensitive	
  to	
  𝜃13 &	
   𝛿CP
CPT	
  is	
  assumed	
  to	
  be	
  true
Observed	
  data	
  vs.	
  prediction
2/17/17 KEK-­‐PH2017 41
Other oscillation parameter sin2
✓13 = 0.0217,
sin2
✓23 = 0.528, m2
32( m2
13) = 2.509 ⇥ 10 3
eV 2
/c4
,
sin2
✓12 = 0.846, m2
21 = 7.53 ⇥ 10 5
eV 2
/c4
Results:	
   𝜃23 &	
  ∆ 𝑚12
2
2/17/17 KEK-­‐PH2017
² 𝜈 𝜇 disappearance	
  behaves	
  consistently	
  w/	
  
𝜈* disappearance
² Result	
  consistent	
  with	
  maximal	
  mixing
² The	
  world’s	
  highest	
  precision	
   𝜃23	
  
measurement
42
Normal MH Inverted MH
sin2 𝜃23 0.53289.9:;
<9.9=: 0.53489.9::
<9.9=1
∆𝑚12
2
/1081
(eV2) 2.54589.9;=
<9.9;A
2.51089.9;1
<9.9;A
𝜈:	
  7.48x1020 POT	
  +	
   𝜈̅:	
  7.47x1020	
  POT
T2K	
  Run1-­‐7b	
  preliminary	
  	
  
T2K	
  Run1-­‐7b	
  preliminary	
  	
  
Results:	
   𝜃13 &	
   𝛿CP	
  – T2K	
  data	
  only
2/17/17 KEK-­‐PH2017 43
² Measured	
   𝜃13 w/	
  T2K	
  data	
  only	
  agrees	
  
w/	
  reactor	
  measurement
² Disfavor	
  region	
  of	
  	
  δCP at	
  ≅ 𝝅/2
² Favor	
  δCP at	
  ≅ -­‐𝝅/2	
  for	
  both	
  hierarchies
13θ2
sin
0 0.02 0.04 0.06 0.08 0.1
CPδ
-3
-2
-1
0
1
2
3 NH Asimov Sensitivity
IH Asimov Sensitivity
T2K Run1−7c preliminary
13θ2
sin
0 0.02 0.04 0.06 0.08 0.1
CPδ
-3
-2
-1
0
1
2
3
NH - Run1-7
IH - Run1-7
T2K Run1−7c preliminary
Mass	
  hierarchy	
  is	
  fixed,	
  either	
  normal	
  or	
  inverted	
  and	
  compute	
  independently
T2K-­‐only	
  Sensitivity T2K-­‐only	
  data	
  fit
Reactor
(PDG	
  2015)
Sample Prediction at	
  true	
  δCP Data
-­‐𝝅/2 0 +𝝅/2
28.7 24.1 19.6 32
6.0 6.9 7.7 4
Results:	
   𝜃13 &	
   𝛿CP	
  – T2K	
  data	
  +	
  Reactors
2/17/17 KEK-­‐PH2017 44
13θ2
sin
0.0160.018 0.02 0.0220.0240.0260.028 0.03 0.0320.0340.036
CPδ
-3
-2
-1
0
1
2
3 NH Asimov Sensitivity
IH Asimov Sensitivity
T2K Run1−7c preliminary
13θ2
sin
0.0160.018 0.02 0.0220.0240.0260.028 0.03 0.0320.0340.036
CPδ
-3
-2
-1
0
1
2
3
NH - Run1-7
IH - Run1-7
T2K Run1−7c preliminary
T2K	
  +	
  reactor	
  Sensitivity T2K	
  +	
  reactor	
  data	
  fit
Reactor
(PDG	
  2015)
Reactor
(PDG	
  2015)
Mass	
  hierarchy	
  is	
  fixed,	
  either	
  normal	
  or	
  inverted	
  and	
  compute	
  independently
Sample Prediction at	
  true	
  δCP Data
-­‐𝝅/2 0 +𝝅/2
28.7 24.1 19.6 32
6.0 6.9 7.7 4
² Disfavor	
  region	
  of	
  	
  δCP at	
  ≅ 𝝅/2
² Favor	
  δCP at	
  ≅ -­‐𝝅/2	
  for	
  both	
  hierarchies
Results:	
   𝛿CP	
  
2/17/17 KEK-­‐PH2017 45
cpδ
3− 2− 1− 0 1 2 3
LikelihoodDensity
0
0.5
1
1.5
2
2.5
3
3.5
3−
10×
68.3%
90%
95%
T2K Run1−7c preliminary
Frequentist approach Bayesian	
  approach
² δCP =0	
  is	
  excluded	
  at	
  2 𝜎 CL.
² Mild	
  preference	
  of	
  normal	
  MH
² (Frequentist)	
  allowed	
  90%	
  Cl.	
  region
Normal	
  Hierarchy:	
  [-­‐3.13,0.39]
Inverted	
  Hierarchy:	
  [-­‐2.09,-­‐0.74]
NH IH Sum
sin2θ23≤0.5 29% 10% 39%
sin2θ23>0.5 46% 14% 61%
Sum 75% 25% 100%
Bayesian	
  posterior	
  prob.
Confidence	
  intervals	
  is	
  computed	
  w/	
  Feldman-­‐Cousins	
  method,	
  Credible	
  interval	
  use	
  flat	
  prior	
  for	
  δCP
Perception	
  from	
  data
2/17/17 KEK-­‐PH2017 46
NSK/NSK
Prospect	
  for	
  the	
  future
2/17/17 KEK-­‐PH2017
Medium	
  term:	
  T2K-­‐II	
  proposal	
  	
  
2/17/17 KEK-­‐PH2017
² Approved	
  T2K	
  statistics,	
  7.8	
  x1021 POT,	
  
can	
  be	
  accumulated	
  by	
  JFY2020
² Hyper-­‐K	
  and	
  DUNE	
  are	
  expected	
  to	
  start	
  
around	
  2026
² T2K-­‐II,	
  if	
  extended	
  to	
  JFY2026,	
  collects	
  ~	
  
20x1021 POTà Stage	
  I	
  approval
² Neutrino	
  beamline upgrade	
  &	
  analysis	
  
improvements	
  (SK	
  fiducial volume,	
  add	
  
new	
  event	
  sample)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
à Effectively	
  add 50%	
  statistics
² Reduction	
  of	
  systematic	
  uncertainties	
  to	
  
enhance	
  CPV	
  sensitivity
48
Number	
  of	
  events	
  expected	
  at	
  T2K	
  far	
  detector	
  
with	
  full	
  proposed	
   T2K	
  Phase	
  2	
  exposure
J-­‐PARC	
  Main	
  Ring	
  expected	
  beam	
  power
&	
  T2K	
  Phase	
  2	
  accumulation	
  scenario	
  
Medium	
  term:	
  T2K-­‐II	
  proposal	
  
2/17/17
)21
Protons-on-Target (x10
0 5 10 15 20
=0CPδtoexcludesin2
χ∆
0
5
10
15 =0.4323
θ2
True sin
=0.5023
θ2
True sin
=0.6023
θ2
True sin
90% C.L.
99% C.L.
C.L.σ3
w/ eff. stat. improvements (no sys. errors)
w/ eff. stat. & sys. improvements
Work in Progress
)°(CP
δTrue
200− 100− 0 100 200
=0CPδtoexcludesin2
χ∆
0
5
10
15
20
=0.4323θ2
True sin
=0.5023θ2
True sin
=0.6023θ2
True sin
90% C.L.
99% C.L.
C.L.σ3
POT w/ eff. stat. & sys. improvements21
20x10
POT w/ 2016 sys. errs.21
7.8x10
Work in Progress
CP =
⇡
2
² >	
  3 𝜎 significance	
  sensitivity	
  to	
  CP	
  
violation	
  if	
   𝛿CP=	
  -­‐ 𝜋/2
² 99%	
  C.L.	
  significance	
  for	
  more	
  than	
  45%	
  
of	
  the	
  possible	
  true	
  values	
  of	
   𝛿CP
² 1%	
  precision	
  of	
   𝛥m2
23,	
  0.5o	
  -­‐ 1.7o	
  
precision	
  of	
   𝜃23	
  depending	
  on	
  its	
  true	
  
value,	
  ~3𝜎 significance	
  for	
  resolving	
   𝜃23	
  	
  
octant	
  if	
  sin2 𝜃23	
  >0.6	
  or	
  sin2 𝜃23	
  <0.43
23
θ2
sin
0.4 0.5 0.6
32
2
m∆
2.2
2.4
2.6
2.8
3
3−
10×
Current POT , 90% C.L
POT, 90% C.L21
7.8x10
POT w/improvement, 90% C.L21
20x10
Stat. only
Systematics
Work in Progress
True sin2
✓23 = 0.6
KEK-­‐PH2017 49
Medium	
  term:	
  ND280	
  update
2/17/17 KEK-­‐PH2017 50
Goal:	
  Understand	
  better	
  𝝂 interaction
Minimum	
   requirements:
+	
  Water	
  target
+	
  Large	
  angular	
  acceptance
+	
  Better	
  efficiency	
  for	
  detecting	
  	
  	
  	
  	
  	
  
low	
  momentum	
  of	
  p	
  and	
  𝜋
Detector	
  design	
  in	
  progress
Target	
  option
Medium	
  term:	
  Intermediate	
  WC	
  detector	
  
2/17/17 KEK-­‐PH2017 51
52.5	
  m	
  tall	
  WC	
  detector,	
  spanning	
  1o-­‐4o off	
  
the	
  beam	
  center,	
  1km	
  from	
  target
² Water	
  target	
  
² 4𝜋 angular	
  acceptance	
  
² Signal	
  and	
  background
² Flux	
  prediction	
  largely	
  independent	
  to	
  
neutrino	
  interaction	
  model
Physics	
  goals:
² Oscillation	
  analysis	
  w/	
  modest	
  need	
  of	
  
neutrino	
  interaction	
  model
² Sterile	
  neutrino	
  search
Same	
  as	
  Super-­‐K
Separate	
  collaboration	
  from	
  T2K
Receive	
  stage-­‐1	
  status	
  as	
  E-­‐62	
  exp.
(from	
  July	
  2016)
Design	
  concept
Longer	
  term:	
  Hyper-­‐Kamiokande
2/17/17 KEK-­‐PH2017 52
Gigantic	
  WC	
  detector,	
  520	
  kton (ref.	
  50	
  kton
of	
  Super-­‐K	
  ),	
  aim	
  to	
  start	
  operation	
  in	
  2026
² Neutrino	
  CP	
  violation	
  up	
  to	
  >	
  5 𝜎
² Neutrino	
  mass	
  hierarchy
² Also	
  for	
  proton	
  decay,	
  supernova…
Selected	
  as	
  one	
  of	
  important	
  large	
  scale	
  projects	
  by	
  SCJ
T2KK:	
  Move	
  2nd Hyper-­‐K	
  tank	
  to	
  Korea?
+	
  CP	
  violation	
  at	
  2nd osc.	
  peak
+	
  Enhance	
  matter	
  effect
Longer	
  term:	
  Hyper-­‐Kamiokande
2/17/17 KEK-­‐PH2017 53
Brief	
  story	
  of	
  K
Prof.	
  M.	
  Koshiba Prof.	
  T.	
  Kajita
2002 2015
Quest	
  for	
  THEORISTS	
  (2)
2/17/17 KEK-­‐PH2017 54
NSK/NSK
To	
  THEORISTS	
  (2):	
  How	
  can	
  we	
  sure	
  what	
  
we	
  measure	
  is	
  CP	
  violation	
  phase?
The	
  CP	
  violation	
  sensitivity	
  is	
  based	
  on	
  standard	
  
framework.	
  Experimentalists	
  measure	
  merely	
  
probabilities	
  and	
  can	
  be	
  fooled	
  by	
  
² Sterile	
  neutrinos
² Non-­‐standard	
  interactions
² ….
Quest	
  for	
  THEORISTS	
  (3)
2/17/17 KEK-­‐PH2017 55
NSK/NSK
arXiv:1410.8056
Assume	
  CP	
  is	
  observed,	
  the	
  
next	
  targets	
  are	
  probably	
  
precision	
  of	
  CP	
  phase	
  and	
  
PMNS	
  unitary	
  testing
To	
  THEORISTS	
  (3):	
  Can	
  we	
  have	
  more	
  
“predictable”	
  model?	
  say,	
  on	
  CP	
  phase,	
  
unitary	
  of	
  matrix	
  for	
  example	
  
Summary
2/17/17 KEK-­‐PH2017
² Results	
  with	
  T2K	
  data	
  shown
o No	
  CPT	
  indication	
  from	
  
o Consistent	
  with	
   𝜃23 maximal	
  mixing	
  
o Slightly	
  prefer	
  normal	
  mass	
  hierarchy
o Slightly	
  favor	
   𝛿CP =	
  -­‐ 𝜋/2	
  
𝛿CP =	
  [-­‐3.13,	
  -­‐0.39]	
  (NH),	
  [-­‐2.09,	
  -­‐0.74]	
  (IH)	
  at	
  90%	
  C.L.
à More	
  statistics	
  are	
  needed	
  
² J-­‐PARC	
  beam	
  power	
  has	
  steadily	
  increased	
  up	
  to	
  420	
  kW	
  (operating	
  
at	
  470	
  kW	
  recently)à key	
  roles	
  for	
  neutrino	
  measurements
² Neutrino	
  physics	
  roadmap	
  in	
  Japan	
  is	
  clear	
  and	
  exciting
Stay	
  tuned	
  for	
  upcoming	
  results	
  from	
  T2K
56
*Number	
  of	
  anime	
  taken	
  http://higgstan.com
2/17/17 KEK-­‐PH2017 57
Thank	
  you!
Backup
2/17/17 KEK-­‐PH2017 58
NSK/NSK
Backup:	
  CP	
  &	
  MH	
  effect
2/17/17 KEK-­‐PH2017 59
NSK/NSK
)eν→µνP(
0 0.02 0.04 0.06 0.08
)eν→µνP(
0
0.02
0.04
0.06
0.08
-3
10×|=2.4232
2
m∆|
-5
10×|=7.5421
2
m∆|
=0.9523θ22
sin
=0.8812
θ22
sin
=0.0913θ22
sin
L=295 km
=0.6 GeVνE
>032
2
m∆
<032
2
m∆
=0CP
δ
/2π=CPδ
π=CP
δ
/2π=3CPδ
High	
  octant
Low	
  octant
² Negative	
  CP	
  enhances	
  electron	
  neutrino	
  appearance	
  and	
  suppresses	
  
electron	
  antineutrino	
  appearance
² MH	
  enhances	
  electron	
  neutrino	
  appearance	
  and	
  suppresses	
  electron	
  
antineutrino	
  appearance
Backup:	
  Accelerator	
  update	
  schedule
2/17/17 KEK-­‐PH2017 60
NSK/NSK
PAC	
  Jan	
  2017
Backup:	
  Systematic	
  error	
  table
2/17/17 KEK-­‐PH2017 61
NSK/NSK
Backup:	
  Data	
  fit	
  vs	
  sensitivity
2/17/17 KEK-­‐PH2017 62
10k	
  toys 10k	
  toys
² Toy	
  experiments	
  at	
  true	
  values	
  of	
   𝛿CP	
  &	
  MH	
  
generated	
  to	
  	
  understand	
  data	
  fit	
  outcomes
² Probability	
  to	
  exclude	
   𝛿CP	
  =	
  (0,	
   𝜋)	
  is	
  evaluated
² Data	
  agree	
  w/	
   𝛿CP =	
  -­‐1.76	
  (~-­‐𝜋/2),	
  normal	
  MH	
  
at	
  2 𝜎 level	
  and	
  probability	
  to	
  exclude	
   𝛿CP	
  =0	
  is	
  
non-­‐negligible	
  (>8%)
True:	
   𝛿CP =	
  -­‐1.76,	
  normal	
  MHTrue:	
   𝛿CP =	
  0,	
  normal	
  MH
Prop.	
  (%)
to	
  exclude	
  
True	
  para.
𝛿CP =	
  -­‐1.76,	
  NH
True	
  para.
𝛿CP =	
  0,	
  NH
90%	
  CL 2𝝈 90%	
  CL 2𝝈
𝛿CP =0,	
  NH 19.1 8.5 10.8 4.8
𝛿CP =𝜋,	
  NH 15.7 6.5 14.9 6.7
Backup:	
  Flux/	
  target
632/17/17 KEK-­‐PH2017
BANFF:	
  flux	
  RHC
2/17/17 KEK-­‐PH2017
² 15%	
  increase
64
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,eνND280
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,eνND280
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,µνND280
(GeV)νE
-1
10 1 10
FluxParameterValue
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
Prior to ND280 Constraint
After ND280 Constraint
beam modeν,µνND280
T2K	
  off-­‐axis	
  detector:	
  ND280
2/17/17 KEK-­‐PH2017
Aim	
  to	
  understand	
  unoscillated 𝜈 beam:	
  constrains	
  flux	
  
and	
  cross-­‐section	
  parameters	
  
² Tracker,	
  composed	
  of	
  Fine-­‐Grained	
  Detector	
  (FGD)	
  
and	
  Time	
  Projection	
  Chamber	
  (TPC),	
  is	
  central	
  part
o Two	
  FGDs:	
  	
  active	
  target	
  w/	
  scintillator	
  only	
  
(FGD1)	
  or	
  	
  scintillator-­‐water	
  interleaved	
  (FGD2)
o Three	
  TPCs:	
  mainly	
  Argon	
  (95%)	
  filled,	
  for	
  
momentum	
   measurement	
  and	
  particle	
  ID	
  
² 𝜋0	
  detector	
  (POD)	
  for	
  water-­‐scintillator	
  target	
  and	
  𝜋0
tagging	
  
² Electromagnetic	
  calorimeters	
  (ECal)	
  to	
  detect	
  gamma	
  
rays	
  and	
  reconstruct	
  𝜋0
² Side	
  muon range	
  detectors	
  (SMRD)	
  to	
  tag	
  entering	
  
cosmic	
  muons or	
  side-­‐exiting	
  muons
Key	
  features	
  for	
  cross-­‐section:	
  
o Narrow	
  flux	
  spectrum	
  ,	
  mean	
  ~	
  0.85	
  GeV
o Multiple	
  targets:	
  scintillator,	
  water,	
  argon,	
  lead
o High	
  final	
  state	
  ID	
  resolution,	
   charge	
  separation	
  
65
~B
0.2	
  T
Neutrino	
  cross-­‐section
662/17/17 KEK-­‐PH2017
?
About	
  energy	
  reconstruction
672/17/17 KEK-­‐PH2017
?
Issue	
  raised	
  recently
No	
  observation	
  yet!
Pre-­‐fit:	
  muon momentum
2/17/17 KEK-­‐PH2017 68
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
500
1000
1500
2000
2500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
300
350
400
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
10
20
30
40
50
60
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CCNtrk
Post-­‐fit:	
  muon momentum
2/17/17 KEK-­‐PH2017 69
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
500
1000
1500
2000
2500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
300
350
400
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
Muon momentum (MeV/c)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
10
20
30
40
50
60
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
Muon momentum (MeV/c)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Events/(100MeV/c)
0
5
10
15
20
25
30
35
40
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CCNtrk
Pre-­‐fit:	
  muon angle
2/17/17 KEK-­‐PH2017
² 2x3	
  sample	
  for	
  
neutrinos	
  (FGD1,2)
² 2x4	
  sample	
  for	
  anti-­‐
neutrinos	
  (FGD1,2)
70
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
200
400
600
800
1000
1200
1400
1600 Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
100
200
300
400
500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
100
200
300
400
500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
20
40
60
80
100
120
140
160
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
20
40
60
80
100
120
140
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
FGD1,
nu,	
  CCNtrk
Post-­‐fit:	
  muon angle
2/17/17 KEK-­‐PH2017 71
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CC1trk
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
50
100
150
200
250
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
Antinu,	
  CCNtrk
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
200
400
600
800
1000
1200
1400
1600 Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC0pi
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
100
200
300
400
500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CC1pi
θMuon cos
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Events/(0.01)
0
100
200
300
400
500
Data
CCQEν
CC 2p-2hν
πCC Res 1ν
πCC Coh 1ν
CC Otherν
NC modesν
modesν
FGD1,
nu,	
  CCres
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
20
40
60
80
100
120
140
160
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
θMuon cos
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Events/(0.01)
0
20
40
60
80
100
120
140
Data
CCQEν
non-CCQEν
CCQEν
non-CCQEν
FGD1,
nu,	
  CC1trk
FGD1,
nu,	
  CCNtrk
² 2x3	
  sample	
  for	
  
neutrinos	
  (FGD1,2)
² 2x4	
  sample	
  for	
  anti-­‐
neutrinos	
  (FGD1,2)

KEK PH 2017

  • 1.
    S.  Cao IPNS,  KEK Results  and  Prospects  from  T2K   2/17/17 KEK-­‐PH2017 Ø Neutrino  Oscillation  landscape Ø T2K  &  recent  results Ø Future  prospects  
  • 2.
    Brief  neutrino  history 2/17/17KEK-­‐PH2017 2 Credit  to  APS ² 1930:  On-­‐paper  appearance  as  “desperate”  remedy  by  W.  Pauli ² 1956:            first  experimentally  discovered  by  Reines  and  Cowan ² 1962:            existence  confirmed  by  Lederman  et  al.   ² 1998:  Atmospheric  neutrino   oscillations  discovered  by  Super-­‐K ² 2000:            first  evidence  reported  by  DONUT  experiment ² 2001:  Solar  neutrino   oscillations  detected  by  SNO  (KamLAND  2002) ² 2011:                                      transitions  observed  by  OPERA ² 2011-­‐13:                                   by  T2K,                                   by  Daya Bay(2012)   ² 2015:  Nobel  prizes  for  𝜈 oscillations,  Breakthrough  prize  (2016) ¯⌫e ⌫µ ⌫⌧ ⌫µ ! ⌫⌧ ⌫µ ! ⌫e ¯⌫e ! ¯⌫e 2015 T2K  observe   𝜈 𝜇 à𝜈e appearance Nobel & Breakthrough for  𝜈 oscillations
  • 3.
    2/17/17 KEK-­‐PH2017 3 "for  the  discovery  of  neutrino  oscillations,   which  shows  that  neutrinos  have  mass"
  • 4.
    Standard  Model  &  neutrino  oscillations 32/17/17 KEK-­‐PH2017 Source:  AAAS 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 APontecorvo (1957) Maki, Nakagawa Sakata (1962) Majorana (1937) Standard  Model: ² Neutrinos  interact  through  the  weak   interaction ² Lepton  flavor  is  strictly  conserved ² Neutrinos  have  zero  mass Neutrino  oscillations: ² Indicate  massive  neutrinos ² Mix  flavor  and  mass  eigenstates ² Beyond  Standard  Model Flavor  eigenstates Mass  eigenstates The  only  lab-­‐based  evidence
  • 5.
    Standard  Model  &  neutrino  oscillations Standard  Model: ² Neutrinos  interact  through  the  weak   interaction ² Lepton  flavor  is  strictly  conserved ² Neutrinos  have  zero  mass Neutrino  oscillations: ² Indicate  massive  neutrinos ² Mix  flavor  and  mass  eigenstates ² Beyond  Standard  Model 42/17/17 KEK-­‐PH2017 Reactors  /  acceleratorSolar /  reactors 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 A Source:  AAAS cij = cos ✓ij, sij = sin ✓ij Atmospherics  /  Accelerators
  • 6.
    Neutrino  oscillation  landscape   2/17/17 KEK-­‐PH2017 6 Gonzalez-­‐Garcia et  al.,  arXiv:1512.06856   ⌫e ⌫µ ⌫⌧ Normal  hierarchy Inverted  hierarchy m2 lightest m2 lightest 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 A sign( m2 32) = ? ✓23 is maximal ? CP = ? mlightest = ? m2 32 m2 31 m2 21 m2 21 ⌫1 ⌫2 ⌫3 ⌫1 ⌫2 ⌫3 m2 21 = 7.50+0.19 0.17 ⇥ 10 5 eV2 m2 31 = 2.457+0.047 0.047 ⇥ 10 3 eV2 ✓13 = 8.50+0.20 0.21( ) ✓12 = 33.48+0.78 0.75( ) ✓23 = 42.3+3.0 1.6( ) m2 ij = m2 ⌫i m2 ⌫j Global  fit  – Normal  hierarchy
  • 7.
    Opening  questions  (1) 2/17/17KEK-­‐PH2017 7 Credit  to  H.  Murayama q How  do  neutrinos  get  mass?   q Why  are  their  masses  so  small?
  • 8.
    Opening  questions  (2) 2/17/17KEK-­‐PH2017 8 arXiv:1212.6374 q Why  does  PMNS  matrix  differ  from  CKM  matrix? *Area  of  the  squares  represents  square  of  matrix  elements
  • 9.
    Opening  questions  (3) 2/17/17KEK-­‐PH2017 9 q What  is  neutrino’s  role  in  Universe  evolution? q Where  is  anti-­‐matter? Credit: NASA/WMAP Science Team Source: scienceabc.com
  • 10.
    Opening  questions  (3-­‐cont’d) 2/17/17KEK-­‐PH2017 10 q Can  it  be  due  to  CP-­‐violating  decays  of  heavy  neutrinos? 1,000,000,001 Baryons 1,000,000,001 Anti-­‐Baryons 1,000,000,002 Baryons 1,000,000,000 Anti-­‐Baryons Begin  of  Universe Shortly  after ? CP-­‐violating  decays (B  =  0;  L  ≠  0) Sphaleron Process (B  ≠ 0;  L  ≠  0)(Fukugita,  Yanagida)
  • 11.
    Opening  questions  (3-­‐cont’d) 2/17/17KEK-­‐PH2017 11 Credit  to  B.  Kayser q CP-­‐violating  phase  in  heavy  neutrino  decays  leads  to  CP-­‐ violating  phase  in  the  light  neutrino  mixing Measure  CP  violation  phase  in  neutrino   mixing  via  neutrino  oscillations  wanted!!!
  • 12.
    𝜈 oscillation  measurement 2/17/17KEK-­‐PH2017 12 It’s  about  probability  measurement,  basic  needs: ü Source  of  well-­‐understood  neutrino  flavor  composition ü Detector  at  optimal  baseline,  enable  to  distinguish  flavors ü Neutrino  energy  is  necessary  to  known Defined  baseline 𝜈 source 𝜈 detector Theoretical,   simple
  • 13.
    𝜈 oscillation  measurement  (cont’d) 2/17/17 KEK-­‐PH2017 13 It’s  about  probability  measurement,  basic  needs: ü Source  of  well-­‐understood  neutrino  flavor  composition q Neutrino  weak  interactionà powerful  source q Flux  uncertainty   ü Detector  at  optimal  baseline,  enable  to  distinguish  flavors q Uncertainty  in  neutrino-­‐nuclei  interactionà interaction  uncertainty q Response  is  not  perfect,  misidentify  flavor  à detector  uncertainty ü Neutrino  energy  is  necessary  to  known q Typically  not  mono-­‐energy  neutrino  source q Can  bias  in  reconstructing  neutrino  energy   Defined  baseline 𝜈 source 𝜈 detector Experimental,   NOT  simple
  • 14.
  • 15.
    T2K  experiment 2/17/17 15KEK-­‐PH2017 ²Long-­‐baseline  neutrino  experiment,  located  in  Japan ² Large  collaboration:  ~470  physicists  from  63  institutes/  11  nations ² Rich  programs:  standard  neutrino  oscillations,  non-­‐standard  physics   search,  neutrino  interactions
  • 16.
    J-­‐PARC  neutrino  beam  line 2/17/17 ² High  intensity,  almost  pure  muon (anti)  neutrino  beam  from  J-­‐PARC 16KEK-­‐PH2017 ² 30  GeV p  extracted  from  J-­‐PARC  main  ring,  impinge  on  90-­‐cm,                                      graphite  target     ² Induced   𝜋+ (𝜋-­‐)  focused  by  three  horns,  pass  through  a  96-­‐m  decay  pipe ² Beam  dump  to  stop  all  particles  except  neutrinos  and  high-­‐energy  muons ² Muon monitor,  downstream  of  beam  dump,  to  monitor  beam  intensity  and  direction  by   measuring  induced  muon profile. 1.9 ⇥ int
  • 17.
    Beam  power  and  data  accumulation 2/17/17 KEK-­‐PH2017 17 Maximumbeampowerachievedsofar459.6kW 23 January 2010 - 19 January 2017 POT total: 18.29×"#$# % mode POT: 10.68×"#$# (58%) %& mode POT: 7.62×"#$# (42%) ² Beam  power  steadily  increased  to  470  kW  recently! ² 1.8x1021 Protons-­‐on-­‐target  (POT)  delivered  until  Jan  19th.   Data  sample  for  results  presented  today: ² Neutrino-­‐mode:  7.48x1020 POT ² Antineutrino-­‐mode:   7.47x1020  POT   Today  result
  • 18.
    Neutrino  flux  inference 2/17/17 ²High  intensity,  almost  pure  muon (anti)  neutrino  beam  from  J-­‐PARC 18KEK-­‐PH2017 ² To  infer  neutrino  flux,  knowledge   of  hadron  production  at  target   needed ² Constrained  by  external  data  from   NA61/SHINE Flux  uncertainty  ~  10% (absolute  error) 𝜈̅ mode < 1%(⌫e/⌫e) < 1%(⌫e/⌫e) T2K  Far  Detector   T2K  Far  Detector   T2K  Far  Detector   T2K  Far  Detector   (Beam  modes  changed  by  switching  horn  polarity) ~3.7%  effect  to  analysis  w/ Near  Detector  constraint 𝝂-­‐mode 𝝂-­‐mode 𝜈̅ mode
  • 19.
    Far  Detector,  Super-­‐Kamiokande 2/17/17KEK-­‐PH2017 19 (GeV)νE 0 1 2 3 (A.U.)295km µνΦ 0 0.5 1 °OA 0.0 °OA 2.0 °OA 2.5 0 1 2 3 )eν→µνP( 0.05 0.1 = 0CP δNH, = 0CP δIH, /2π=CP δNH, /2π=CP δIH, 0 1 2 3 )µν→µνP( 0.5 1 = 1.023θ22 sin = 0.113θ22 sin 2 eV-3 10×= 2.432 2 m∆ Partice ID parameter -10 -8 -6 -4 -2 0 2 4 6 8 10 0 50 100 150 200 250 300 350 Super Kamiokande IV 2166.5 days : Monitoring e-like muon-like Numberofevents ² Muon and  electron  are  well-­‐separated à identify  𝜈 𝜇/𝜈& with  high  purity ² Super-­‐K  is  2.50 off  the  beam’s  axis  to  achieve  narrow  band  beam  peaked   at  oscillation  maximum  (0.6  GeV) (atmospheric   𝜈 data) Super-­‐Kamiokande (41.4  m  tall  x  39.3m  diameter) 22.5  ktons fiducial volume   1000m  underground ⌫µ + n ! µ + p ⌫e + n ! e + p 2.5
  • 20.
    Far  Detector,  Super-­‐Kamiokande 2/17/17KEK-­‐PH2017 20 ² Super-­‐K  is  2.50 off  the  beam’s  axis  to  achieve  narrow  band  beam  peaked   at  oscillation  maximum  (0.6  GeV) ⌫µ + n ! µ + p ⌫e + n ! e + p 2.5 Short  version Disappearance  channel Appearance  channel
  • 21.
    T2K  primary  physics  goals 2/17/17 KEK-­‐PH2017 21 ⌫µ + n ! µ + p ⌫e + n ! e + p Disappearance  channel (GeV)νE 0.5 1 1.5 2 2.5 3 Osc.Prob 0 0.5 1 flux µ νOff-axis°2.5 =0.523θ2 , sin2 eV -3 =2.5x1032 2 m∆ µν→µν=µν→µν q Sensitive  to   𝜃23 and   𝛥m2 31  (atmospheric  sector)       à Precision  measurement  ( 𝜃23 is  maximal?) q CPT  symmetry  test  by  comparing  disappearance   in  muon neutrinos  and  muon anti-­‐neutrinos  
  • 22.
    T2K  primary  physics  goals 2/17/17 KEK-­‐PH2017 22 ⌫µ + n ! µ + p ⌫e + n ! e + p Appearance  channel (GeV)νE 0.5 1 1.5 2 2.5 3 Osc.Prob 0 0.02 0.04 0.06 0.08 0.1 flux µ νOff-axis°2.5 ν, NH,°=0cpδ ν, NH,°=270cpδ ν, NH,°=0cpδ ν, NH,°=270cpδ eν→µν,eν→µν q Sensitive  to   𝜃13 and   𝛿CP o Degeneracy   𝜃13 -­‐ 𝛿CP is  difficult  to  disentangle  with   long  baseline  experiment  à Need  constraint  from   reactor  measurement  on   𝜃13  (or  high  statistics) q 20-­‐30%  effect  of   𝛿CP and  10%  effect  of  mass  hierarchy   (not  too  long  baseline  295km) Large  CP  effect Small  matter  effect   (in  vacuum) (in  matter)
  • 23.
    Far  Detector:  Event  selections 2/17/17 KEK-­‐PH2017 23 ⌫e + n ! e + p Energy  info.  needed  à Enrich  charged  current  quasi  elastic  events FCFV 1-ring -likeµ µ p Decay-e Numberofevents 0 200 400 RUN1-7 data )POT 20 10×(7.482 CC QEµν CC QEµν CC non-QEµν+µν CCeν+eν NC FCFV 1-ring e-like Evis Decay-e rec ν E fiTQun Numberofevents 0 200 400 RUN1-7 data )POT 20 10×(7.482 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC Charged particle should be µ± Pµ > 200 Mev/c: remove ⇡ and e Decay e < 2: reject invisible ⇡ • FCFV:  Fully  contained  in  fiducial volume • 1-­‐ring:  One  charged-­‐particle  for  CCQE Charged particle should be e± No decay e : # invisible µ/⇡ Evis > 100 MeV: # low E bkg. Erec ⌫ < 1.25 GeV: # intrinsic beam ⌫e. “fiTQun”: # NC ⇡0 CCQE-­‐enhanced   CCQE-­‐enhanced   ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎
  • 24.
    Far  Detector:  Event  selections 2/17/17 KEK-­‐PH2017 24 ⌫e + n ! e + p Energy  info.  needed  à Enrich  charged  current  quasi  elastic  events FCFV 1-ring -likeµ µ p Decay-e Numberofevents 0 200 400 RUN1-7 data )POT 20 10×(7.482 CC QEµν CC QEµν CC non-QEµν+µν CCeν+eν NC FCFV 1-ring e-like Evis Decay-e rec ν E fiTQun Numberofevents 0 200 400 RUN1-7 data )POT 20 10×(7.482 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC CCQE-­‐enhanced   CCQE-­‐enhanced  
  • 25.
    Theoretically,  neutrino  beam  from  J-­‐PARC   and  Super-­‐Kamiokande are  enough.   However,  experimentally,  we  need  more.. 2/17/17 KEK-­‐PH2017
  • 26.
    Near  Detectors 2/17/17 KEK-­‐PH201726 ² Near  Detector  complex  is  280m  downstream  of  target It’s  about  probability  measurement,  basic  needs: ü Source  of  well-­‐understood  neutrino  flavor  composition q Neutrino  weak  interactionà powerful  source q Flux  uncertainty   ü Detector  at  optimal  baseline,  enable  to  distinguish  flavors q Uncertainty  in  neutrino-­‐nuclei  interactionà interaction  uncertainty q Response  is  not  perfect,  misidentify  flavor  à detector  uncertainty ü Neutrino  energy  is  necessary  to  known q Typically  not  mono-­‐energy  neutrino  source q Can  bias  in  reconstructing  neutrino  energy   Built  for  these particular  purposes
  • 27.
    Near  Detectors  (cont’d) 2/17/17KEK-­‐PH2017 27 ² Near  Detector  complex  is  280m  downstream  of  target On-­‐axis  (called  INGRID) Measure  𝜈 beam  intensity  &  profile:   16  scintillator-­‐steel  interleaved   modules  (7.1  tons/each) Off-­‐axis  (called  ND280) Understand  unoscillated 𝜈 beam:   further  constrain  flux  and  cross-­‐ section  parameters  
  • 28.
    Near  Detectors  measurements 28 Day [events/1e14POT] 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Eventrate Horn250kA Horn205kA Horn-250kA [mrad] 1− 0.5− 0 0.5 Horizontal beam direction INGRID MUMON Day [mrad] 1− 0.5− 0 0.5 1 Vertical beam direction INGRID MUMON T2K Run1 Jan.2010-Jun.2010 T2K Run2 Nov.2010-Mar.2011 T2K Run3 Mar.2012-Jun.2012 T2K Run4 Oct.2012-May.2013 T2K Run5 May.2014 -Jun.2014 T2K Run6 Oct.2014-June.2015 T2K Run7 Feb.2016-May.2016 2/17/17 KEK-­‐PH2017 Measured  data Off-­‐axis  neutrino   energy  strongly   depend  on  beam  direction   (1mrad ~ 2% shift of peak energy) T2K controlled off-axis better than 1mrad Position from Designed beam center[cm] 400− 200− 0 200 400 Numberofevents 0 10 20 30 40 50 60 70 80 3 10× / ndf2χ 10.8 / 4 Constant 161.1±7.168e+04 Mean 1.099±2.428− Sigma 1.795±437.6 / ndf2χ 10.8 / 4 Constant 161.1±7.168e+04 Mean 1.099±2.428− Sigma 1.795±437.6 Position from Designed beam center[cm] 400− 200− 0 200 400Numberofevents 0 10 20 30 40 50 60 70 80 3 10× / ndf2χ 39.29 / 4 Constant 163.3±7.392e+04 Mean 1.158±4.593 Sigma 1.979±456 / ndf2χ 39.29 / 4 Constant 163.3±7.392e+04 Mean 1.158±4.593 Sigma 1.979±456 Data for each module Fitted Gaussian Horizontal Vertical
  • 29.
    Near  Detectors  measurements  (cont’d) 2/17/17 KEK-­‐PH2017 29 Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 500 1000 1500 2000 2500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 300 350 400 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 10 20 30 40 50 60 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CCNtrk
  • 30.
    Near  Detectors  measurements  (cont’d) 302/17/17 KEK-­‐PH2017 Cross-­‐section  parameters Constrain 𝜈-­‐int.  model (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,µνND280 flux Flux parameters ? Need  to  know  how   neutrinos  see  nuclei (parameterization) Observable Nuclear  target
  • 31.
    Near  Detectors  measurements  (cont’d) 312/17/17 KEK-­‐PH2017 Reconstructed Neutrino Energy (GeV) 0 0.2 0.4 0.6 0.8 1 1.2 Eventsperbin 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 error (w/o ND280)σ1± errorσ1± Reconstructed Neutrino Energy (GeV) 0 0.2 0.4 0.6 0.8 1 1.2 Eventsperbin 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 error (w/o ND280)σ1± errorσ1± Reconstructed Neutrino Energy (GeV) 0 0.5 1 1.5 2 2.5 Eventsperbin 0 2 4 6 8 10 error (w/o ND280)σ1± errorσ1± Reconstructed Neutrino Energy (GeV) 0 0.5 1 1.5 2 2.5 Eventsperbin 0 0.5 1 1.5 2 2.5 3 3.5 4 error (w/o ND280)σ1± errorσ1± Total   𝛥NSK /NSK Beam   mode Sample w/o   ND280 w/ ND280 𝝂 12.0% 5.0% 𝝂 11.9% 5.4% 𝜈̅ 12.5% 5.2% 𝜈̅ 13.7% 6.2%
  • 32.
    Quest  for  THEORISTS  (1) 322/17/17 KEK-­‐PH2017 To  THEORISTS  (1):  We  need  you  here! For  better  understand  neutrino-­‐nuclei   interactions. ? Need  to  know  how   neutrinos  see  nuclei (parameterization) Observable Nuclear  target
  • 33.
  • 34.
    2/17/17 KEK-­‐PH2017 ² Oscillation  dip  is  clearly  observed ² Four  physics  parameters  are  fitted:                                                          and   Results:   𝜈* disappearance 0 1 2 3 4 5 6 7 8 Events/100MeV 0 10 20 30 40 50 60 70 80 90 Prediction Unoscillated Best-Fit Data Reconstructed Energy [GeV] 0 1 2 3 4 5 6 7 8 Ratio 0 0.5 1 1.5 2 2.5 T2K Run1−7c preliminary 0 1 2 3 4 5 6 7 8 Events/100MeV 0 5 10 15 20 25 Prediction Unoscillated Best-Fit Data Reconstructed Energy [GeV] 0 1 2 3 4 5 6 7 8 Ratio 0 0.5 1 1.5 2 2.5 T2K Run1−7c preliminary Neutrino Anti-­‐neutrino Beam  mode Unoscillated pred. Data Neutrino 521.8 135 Anti-­‐neutrino 184.8 66 sin2 ✓23, | m2 32| sin2 ✓23, | m2 32| sin2 2✓23 / | m2 32| sin2 ✓23 / | m2 32|
  • 35.
    2/17/17 KEK-­‐PH2017 Neutrino  vs.  Anti-­‐neutrino (T2K  only) Compare  to  other   experiments  in  the  world ² No  difference  between  muon neutrino  disappearance   and  muon anti-­‐neutrino  disappearance ² Good  agreement  w/  antineutrino  data  from  other   experiments Results:   𝜈* disappearance
  • 36.
  • 37.
    2/17/17 KEK-­‐PH2017 Results:  𝜈&+ appearance energy (MeV)νReconstructed 0 500 1000 Numberofevents 0 5 10 15 RUN1-7 data )POT 20 10×(7.482 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC Sample Prediction at  true  δCP Data -­‐𝝅/2 0 +𝝅/2 28.7 24.1 19.6 32 6.0 6.9 7.7 4 energy (MeV)νReconstructed 0 500 1000 Numberofevents 0 1 2 3 4 RUN5-7 data )POT 20 10×(7.471 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC
  • 38.
    2/17/17 KEK-­‐PH2017 Results:  𝜈&+ appearance energy (MeV)νReconstructed 0 500 1000 Numberofevents 0 1 2 3 4 RUN5-7 data )POT 20 10×(7.471 CCeνOsc. CCeνOsc. CCµν/µν CCeν/eνBeam NC ² Test  for   𝜈* → 𝜈&+ hypothesis  w/single  para.   𝞫 ² 𝞫 =  0:  No   𝜈* → 𝜈&+ ² 𝞫 =  1:   𝜈* → 𝜈&+ appearance  consistent  w/   PMNS ² Use  all  four  T2K  samples  to  fully  constrain   oscillation  prob. Rate  only No  evidence  for   𝜈* → 𝜈&+ More  data  is  needed.
  • 39.
    T2K  Results 2/17/17 KEK-­‐PH2017 Appearance  channel Disappearance  channel Joint  Analysis
  • 40.
    Oscillation  parameters  extracted  from  T2K  data 2/17/17 KEK-­‐PH2017 40 0 1 2 3 4 5 6 7 8 Events 0 10 20 30 40 50 60 70 80 90 Prediction Unoscillated Best-Fit Data Reconstructed Energy [GeV] 0 1 2 3 4 5 6 7 8 Ratio 0 1 2 3 4 T2K Run1−7c preliminary 0 200 400 600 800 1000 1200 1400 Events 0 0.5 1 1.5 2 2.5 3 3.5 Prediction Unoscillated Best-Fit Data Reconstructed Momentum [MeV/c] 0 200 400 600 800 1000 1200 1400 Ratio 0 2 4 6 8 T2K Run1−7c preliminary 0 1 2 3 4 5 6 7 8 Events 0 5 10 15 20 25 Prediction Unoscillated Best-Fit Data Reconstructed Energy [GeV] 0 1 2 3 4 5 6 7 8 Ratio 0 1 2 3 4 T2K Run1−7c preliminary 0 200 400 600 800 1000 1200 1400 Events 0 2 4 6 8 10 12 14 Prediction Unoscillated Best-Fit Data Reconstructed Momentum [MeV/c] 0 200 400 600 800 1000 1200 1400 Ratio 0 5 10 15 T2K Run1−7c preliminary Appearance  channel Disappearance  channel sensitive  to  𝜃23 &  ∆ 𝑚12 2 sensitive  to  𝜃13 &   𝛿CP CPT  is  assumed  to  be  true
  • 41.
    Observed  data  vs.  prediction 2/17/17 KEK-­‐PH2017 41 Other oscillation parameter sin2 ✓13 = 0.0217, sin2 ✓23 = 0.528, m2 32( m2 13) = 2.509 ⇥ 10 3 eV 2 /c4 , sin2 ✓12 = 0.846, m2 21 = 7.53 ⇥ 10 5 eV 2 /c4
  • 42.
    Results:   𝜃23&  ∆ 𝑚12 2 2/17/17 KEK-­‐PH2017 ² 𝜈 𝜇 disappearance  behaves  consistently  w/   𝜈* disappearance ² Result  consistent  with  maximal  mixing ² The  world’s  highest  precision   𝜃23   measurement 42 Normal MH Inverted MH sin2 𝜃23 0.53289.9:; <9.9=: 0.53489.9:: <9.9=1 ∆𝑚12 2 /1081 (eV2) 2.54589.9;= <9.9;A 2.51089.9;1 <9.9;A 𝜈:  7.48x1020 POT  +   𝜈̅:  7.47x1020  POT T2K  Run1-­‐7b  preliminary     T2K  Run1-­‐7b  preliminary    
  • 43.
    Results:   𝜃13&   𝛿CP  – T2K  data  only 2/17/17 KEK-­‐PH2017 43 ² Measured   𝜃13 w/  T2K  data  only  agrees   w/  reactor  measurement ² Disfavor  region  of    δCP at  ≅ 𝝅/2 ² Favor  δCP at  ≅ -­‐𝝅/2  for  both  hierarchies 13θ2 sin 0 0.02 0.04 0.06 0.08 0.1 CPδ -3 -2 -1 0 1 2 3 NH Asimov Sensitivity IH Asimov Sensitivity T2K Run1−7c preliminary 13θ2 sin 0 0.02 0.04 0.06 0.08 0.1 CPδ -3 -2 -1 0 1 2 3 NH - Run1-7 IH - Run1-7 T2K Run1−7c preliminary Mass  hierarchy  is  fixed,  either  normal  or  inverted  and  compute  independently T2K-­‐only  Sensitivity T2K-­‐only  data  fit Reactor (PDG  2015) Sample Prediction at  true  δCP Data -­‐𝝅/2 0 +𝝅/2 28.7 24.1 19.6 32 6.0 6.9 7.7 4
  • 44.
    Results:   𝜃13&   𝛿CP  – T2K  data  +  Reactors 2/17/17 KEK-­‐PH2017 44 13θ2 sin 0.0160.018 0.02 0.0220.0240.0260.028 0.03 0.0320.0340.036 CPδ -3 -2 -1 0 1 2 3 NH Asimov Sensitivity IH Asimov Sensitivity T2K Run1−7c preliminary 13θ2 sin 0.0160.018 0.02 0.0220.0240.0260.028 0.03 0.0320.0340.036 CPδ -3 -2 -1 0 1 2 3 NH - Run1-7 IH - Run1-7 T2K Run1−7c preliminary T2K  +  reactor  Sensitivity T2K  +  reactor  data  fit Reactor (PDG  2015) Reactor (PDG  2015) Mass  hierarchy  is  fixed,  either  normal  or  inverted  and  compute  independently Sample Prediction at  true  δCP Data -­‐𝝅/2 0 +𝝅/2 28.7 24.1 19.6 32 6.0 6.9 7.7 4 ² Disfavor  region  of    δCP at  ≅ 𝝅/2 ² Favor  δCP at  ≅ -­‐𝝅/2  for  both  hierarchies
  • 45.
    Results:   𝛿CP   2/17/17 KEK-­‐PH2017 45 cpδ 3− 2− 1− 0 1 2 3 LikelihoodDensity 0 0.5 1 1.5 2 2.5 3 3.5 3− 10× 68.3% 90% 95% T2K Run1−7c preliminary Frequentist approach Bayesian  approach ² δCP =0  is  excluded  at  2 𝜎 CL. ² Mild  preference  of  normal  MH ² (Frequentist)  allowed  90%  Cl.  region Normal  Hierarchy:  [-­‐3.13,0.39] Inverted  Hierarchy:  [-­‐2.09,-­‐0.74] NH IH Sum sin2θ23≤0.5 29% 10% 39% sin2θ23>0.5 46% 14% 61% Sum 75% 25% 100% Bayesian  posterior  prob. Confidence  intervals  is  computed  w/  Feldman-­‐Cousins  method,  Credible  interval  use  flat  prior  for  δCP
  • 46.
    Perception  from  data 2/17/17KEK-­‐PH2017 46 NSK/NSK
  • 47.
    Prospect  for  the  future 2/17/17 KEK-­‐PH2017
  • 48.
    Medium  term:  T2K-­‐II  proposal     2/17/17 KEK-­‐PH2017 ² Approved  T2K  statistics,  7.8  x1021 POT,   can  be  accumulated  by  JFY2020 ² Hyper-­‐K  and  DUNE  are  expected  to  start   around  2026 ² T2K-­‐II,  if  extended  to  JFY2026,  collects  ~   20x1021 POTà Stage  I  approval ² Neutrino  beamline upgrade  &  analysis   improvements  (SK  fiducial volume,  add   new  event  sample)                                             à Effectively  add 50%  statistics ² Reduction  of  systematic  uncertainties  to   enhance  CPV  sensitivity 48 Number  of  events  expected  at  T2K  far  detector   with  full  proposed   T2K  Phase  2  exposure J-­‐PARC  Main  Ring  expected  beam  power &  T2K  Phase  2  accumulation  scenario  
  • 49.
    Medium  term:  T2K-­‐II  proposal   2/17/17 )21 Protons-on-Target (x10 0 5 10 15 20 =0CPδtoexcludesin2 χ∆ 0 5 10 15 =0.4323 θ2 True sin =0.5023 θ2 True sin =0.6023 θ2 True sin 90% C.L. 99% C.L. C.L.σ3 w/ eff. stat. improvements (no sys. errors) w/ eff. stat. & sys. improvements Work in Progress )°(CP δTrue 200− 100− 0 100 200 =0CPδtoexcludesin2 χ∆ 0 5 10 15 20 =0.4323θ2 True sin =0.5023θ2 True sin =0.6023θ2 True sin 90% C.L. 99% C.L. C.L.σ3 POT w/ eff. stat. & sys. improvements21 20x10 POT w/ 2016 sys. errs.21 7.8x10 Work in Progress CP = ⇡ 2 ² >  3 𝜎 significance  sensitivity  to  CP   violation  if   𝛿CP=  -­‐ 𝜋/2 ² 99%  C.L.  significance  for  more  than  45%   of  the  possible  true  values  of   𝛿CP ² 1%  precision  of   𝛥m2 23,  0.5o  -­‐ 1.7o   precision  of   𝜃23  depending  on  its  true   value,  ~3𝜎 significance  for  resolving   𝜃23     octant  if  sin2 𝜃23  >0.6  or  sin2 𝜃23  <0.43 23 θ2 sin 0.4 0.5 0.6 32 2 m∆ 2.2 2.4 2.6 2.8 3 3− 10× Current POT , 90% C.L POT, 90% C.L21 7.8x10 POT w/improvement, 90% C.L21 20x10 Stat. only Systematics Work in Progress True sin2 ✓23 = 0.6 KEK-­‐PH2017 49
  • 50.
    Medium  term:  ND280  update 2/17/17 KEK-­‐PH2017 50 Goal:  Understand  better  𝝂 interaction Minimum   requirements: +  Water  target +  Large  angular  acceptance +  Better  efficiency  for  detecting             low  momentum  of  p  and  𝜋 Detector  design  in  progress Target  option
  • 51.
    Medium  term:  Intermediate  WC  detector   2/17/17 KEK-­‐PH2017 51 52.5  m  tall  WC  detector,  spanning  1o-­‐4o off   the  beam  center,  1km  from  target ² Water  target   ² 4𝜋 angular  acceptance   ² Signal  and  background ² Flux  prediction  largely  independent  to   neutrino  interaction  model Physics  goals: ² Oscillation  analysis  w/  modest  need  of   neutrino  interaction  model ² Sterile  neutrino  search Same  as  Super-­‐K Separate  collaboration  from  T2K Receive  stage-­‐1  status  as  E-­‐62  exp. (from  July  2016) Design  concept
  • 52.
    Longer  term:  Hyper-­‐Kamiokande 2/17/17KEK-­‐PH2017 52 Gigantic  WC  detector,  520  kton (ref.  50  kton of  Super-­‐K  ),  aim  to  start  operation  in  2026 ² Neutrino  CP  violation  up  to  >  5 𝜎 ² Neutrino  mass  hierarchy ² Also  for  proton  decay,  supernova… Selected  as  one  of  important  large  scale  projects  by  SCJ T2KK:  Move  2nd Hyper-­‐K  tank  to  Korea? +  CP  violation  at  2nd osc.  peak +  Enhance  matter  effect
  • 53.
    Longer  term:  Hyper-­‐Kamiokande 2/17/17KEK-­‐PH2017 53 Brief  story  of  K Prof.  M.  Koshiba Prof.  T.  Kajita 2002 2015
  • 54.
    Quest  for  THEORISTS  (2) 2/17/17 KEK-­‐PH2017 54 NSK/NSK To  THEORISTS  (2):  How  can  we  sure  what   we  measure  is  CP  violation  phase? The  CP  violation  sensitivity  is  based  on  standard   framework.  Experimentalists  measure  merely   probabilities  and  can  be  fooled  by   ² Sterile  neutrinos ² Non-­‐standard  interactions ² ….
  • 55.
    Quest  for  THEORISTS  (3) 2/17/17 KEK-­‐PH2017 55 NSK/NSK arXiv:1410.8056 Assume  CP  is  observed,  the   next  targets  are  probably   precision  of  CP  phase  and   PMNS  unitary  testing To  THEORISTS  (3):  Can  we  have  more   “predictable”  model?  say,  on  CP  phase,   unitary  of  matrix  for  example  
  • 56.
    Summary 2/17/17 KEK-­‐PH2017 ² Results  with  T2K  data  shown o No  CPT  indication  from   o Consistent  with   𝜃23 maximal  mixing   o Slightly  prefer  normal  mass  hierarchy o Slightly  favor   𝛿CP =  -­‐ 𝜋/2   𝛿CP =  [-­‐3.13,  -­‐0.39]  (NH),  [-­‐2.09,  -­‐0.74]  (IH)  at  90%  C.L. à More  statistics  are  needed   ² J-­‐PARC  beam  power  has  steadily  increased  up  to  420  kW  (operating   at  470  kW  recently)à key  roles  for  neutrino  measurements ² Neutrino  physics  roadmap  in  Japan  is  clear  and  exciting Stay  tuned  for  upcoming  results  from  T2K 56 *Number  of  anime  taken  http://higgstan.com
  • 57.
  • 58.
  • 59.
    Backup:  CP  &  MH  effect 2/17/17 KEK-­‐PH2017 59 NSK/NSK )eν→µνP( 0 0.02 0.04 0.06 0.08 )eν→µνP( 0 0.02 0.04 0.06 0.08 -3 10×|=2.4232 2 m∆| -5 10×|=7.5421 2 m∆| =0.9523θ22 sin =0.8812 θ22 sin =0.0913θ22 sin L=295 km =0.6 GeVνE >032 2 m∆ <032 2 m∆ =0CP δ /2π=CPδ π=CP δ /2π=3CPδ High  octant Low  octant ² Negative  CP  enhances  electron  neutrino  appearance  and  suppresses   electron  antineutrino  appearance ² MH  enhances  electron  neutrino  appearance  and  suppresses  electron   antineutrino  appearance
  • 60.
    Backup:  Accelerator  update  schedule 2/17/17 KEK-­‐PH2017 60 NSK/NSK PAC  Jan  2017
  • 61.
    Backup:  Systematic  error  table 2/17/17 KEK-­‐PH2017 61 NSK/NSK
  • 62.
    Backup:  Data  fit  vs  sensitivity 2/17/17 KEK-­‐PH2017 62 10k  toys 10k  toys ² Toy  experiments  at  true  values  of   𝛿CP  &  MH   generated  to    understand  data  fit  outcomes ² Probability  to  exclude   𝛿CP  =  (0,   𝜋)  is  evaluated ² Data  agree  w/   𝛿CP =  -­‐1.76  (~-­‐𝜋/2),  normal  MH   at  2 𝜎 level  and  probability  to  exclude   𝛿CP  =0  is   non-­‐negligible  (>8%) True:   𝛿CP =  -­‐1.76,  normal  MHTrue:   𝛿CP =  0,  normal  MH Prop.  (%) to  exclude   True  para. 𝛿CP =  -­‐1.76,  NH True  para. 𝛿CP =  0,  NH 90%  CL 2𝝈 90%  CL 2𝝈 𝛿CP =0,  NH 19.1 8.5 10.8 4.8 𝛿CP =𝜋,  NH 15.7 6.5 14.9 6.7
  • 63.
  • 64.
    BANFF:  flux  RHC 2/17/17KEK-­‐PH2017 ² 15%  increase 64 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,eνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,eνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,µνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,µνND280
  • 65.
    T2K  off-­‐axis  detector:  ND280 2/17/17 KEK-­‐PH2017 Aim  to  understand  unoscillated 𝜈 beam:  constrains  flux   and  cross-­‐section  parameters   ² Tracker,  composed  of  Fine-­‐Grained  Detector  (FGD)   and  Time  Projection  Chamber  (TPC),  is  central  part o Two  FGDs:    active  target  w/  scintillator  only   (FGD1)  or    scintillator-­‐water  interleaved  (FGD2) o Three  TPCs:  mainly  Argon  (95%)  filled,  for   momentum   measurement  and  particle  ID   ² 𝜋0  detector  (POD)  for  water-­‐scintillator  target  and  𝜋0 tagging   ² Electromagnetic  calorimeters  (ECal)  to  detect  gamma   rays  and  reconstruct  𝜋0 ² Side  muon range  detectors  (SMRD)  to  tag  entering   cosmic  muons or  side-­‐exiting  muons Key  features  for  cross-­‐section:   o Narrow  flux  spectrum  ,  mean  ~  0.85  GeV o Multiple  targets:  scintillator,  water,  argon,  lead o High  final  state  ID  resolution,   charge  separation   65 ~B 0.2  T
  • 66.
  • 67.
    About  energy  reconstruction 672/17/17KEK-­‐PH2017 ? Issue  raised  recently No  observation  yet!
  • 68.
    Pre-­‐fit:  muon momentum 2/17/17KEK-­‐PH2017 68 Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 500 1000 1500 2000 2500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 300 350 400 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 10 20 30 40 50 60 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CCNtrk
  • 69.
    Post-­‐fit:  muon momentum 2/17/17KEK-­‐PH2017 69 Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 500 1000 1500 2000 2500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 300 350 400 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 10 20 30 40 50 60 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CCNtrk
  • 70.
    Pre-­‐fit:  muon angle 2/17/17KEK-­‐PH2017 ² 2x3  sample  for   neutrinos  (FGD1,2) ² 2x4  sample  for  anti-­‐ neutrinos  (FGD1,2) 70 θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 200 400 600 800 1000 1200 1400 1600 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 160 Data CCQEν non-CCQEν CCQEν non-CCQEν θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk FGD1, nu,  CCNtrk
  • 71.
    Post-­‐fit:  muon angle 2/17/17KEK-­‐PH2017 71 θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 200 400 600 800 1000 1200 1400 1600 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 160 Data CCQEν non-CCQEν CCQEν non-CCQEν θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk FGD1, nu,  CCNtrk ² 2x3  sample  for   neutrinos  (FGD1,2) ² 2x4  sample  for  anti-­‐ neutrinos  (FGD1,2)