Successfully reported this slideshow.

Recent neutrino oscillation results from T2K

2

Share

Upcoming SlideShare
KEK PH 2017
KEK PH 2017
Loading in …3
×
1 of 35
1 of 35

More Related Content

Related Books

Free with a 14 day trial from Scribd

See all

Related Audiobooks

Free with a 14 day trial from Scribd

See all

Recent neutrino oscillation results from T2K

  1. 1. Son  V.  Cao  -­‐ Kyoto  University (On  behalf  of  the  T2K  collaboration  )   Recent  neutrino  oscillation  results   from  T2K 7/14/16 PASCOS  2016,  Quy  Nhon,  VN ² Introduction  to   𝜈 oscillations   ² Introduction  to  T2K  experiment ² T2K  latest  results ² Summary
  2. 2. Brief  neutrino  history 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 2 Credit  to  APS ² 1930:  On-­‐paper  appearance  as  “desperate”  remedy  by  W.  Pauli ² 1956:            first  experimentally  discovered  by  Reines  and  Cowan ² 1962:            existence  confirmed  by  Lederman  et  al.   ² 1998:  Atmospheric  neutrino   oscillations  discovered  by  Super-­‐K ² 2000:            first  evidence  reported  by  DONUT  experiment ² 2001:  Solar  neutrino   oscillations  detected  by  SNO  (KamLAND  2002) ² 2011:                                      transitions  observed  by  OPERA ² 2011-­‐13:                                  by  T2K,                                  deficit  observed  by  Daya Bay(2012)   ² 2015:  Nobel  prizes  for  𝜈 oscillations,  Breakthrough  prize  (2016) ¯⌫e ⌫µ ⌫⌧ ⌫µ ! ⌫⌧ ⌫µ ! ⌫e ¯⌫e ! ¯⌫e 2015 T2K  observe   𝜈 𝜇 à𝜈e appearance Nobel & Breakthrough for  𝜈 oscillations
  3. 3. Standard  Model  &  neutrino  oscillations 37/14/16 PASCOS  2016,  Quy  Nhon,  VN Source:  AAAS 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 APontecorvo (1957) Maki, Nakagawa Sakata (1962) Majorana (1937) Standard  Model: ² Neutrinos  interact  through  the  weak   interaction ² Lepton  flavor  is  strictly  conserved ² Neutrinos  have  zero  mass Neutrino  oscillations: ² Indicate  massive  neutrinos ² Mix  flavor  and  mass  eigenstates ² Beyond  Standard  Model Flavor  eigenstates Mass  eigenstates
  4. 4. Standard  Model  &  neutrino  oscillations Standard  Model: ² Neutrinos  interact  through  the  weak   interaction ² Lepton  flavor  is  strictly  conserved ² Neutrinos  have  zero  mass Neutrino  oscillations: ² Indicate  massive  neutrinos ² Mix  flavor  and  mass  eigenstates ² Beyond  Standard  Model 47/14/16 PASCOS  2016,  Quy  Nhon,  VN Reactors  /  acceleratorSolar /  reactors 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 A Source:  AAAS cij = cos ✓ij, sij = sin ✓ij Atmospherics  /  Accelerators
  5. 5. Present  neutrino  oscillation  landscape 7/14/16 PASCOS  2016,  Quy Nhon,  VN 5 Gonzalez-­‐Garcia et  al.,  arXiv:1512.06856   ⌫e ⌫µ ⌫⌧ Normal  hierarchy Inverted  hierarchy m2 lightest m2 lightest 0 @ ⌫e ⌫µ ⌫⌧ 1 A = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ ⌫1 ⌫2 ⌫3 1 A sign( m2 32) = ? ✓23 is maximal ? CP = ? mlightest = ? m2 32 m2 31 m2 21 m2 21 ⌫1 ⌫2 ⌫3 ⌫1 ⌫2 ⌫3 m2 21 = 7.50+0.19 0.17 ⇥ 10 5 eV2 m2 31 = 2.457+0.047 0.047 ⇥ 10 3 eV2 ✓13 = 8.50+0.20 0.21( ) ✓12 = 33.48+0.78 0.75( ) ✓23 = 42.3+3.0 1.6( ) m2 ij = m2 ⌫i m2 ⌫j Global  fit  – Normal  hierarchy
  6. 6. T2K  experiment 7/14/16 6PASCOS  2016,  Quy Nhon,  VN ² Long-­‐baseline  neutrino  experiment,  located  in  Japan ² Large  collaboration:  ~400  physicists  from  61  institutes/  11  nations ² Rich  programs:  standard  neutrino  oscillations  (this  talk),  non-­‐standard   physics  search  (Phillip’s  talk),  neutrino  interactions  (David’s  talk)
  7. 7. J-­‐PARC  neutrino  beam  line 7/14/16 ² High  intensity,  almost  pure  muon (anti)  neutrino  beam  from  J-­‐PARC 7PASCOS  2016,  Quy Nhon,  VN ² 30  GeV p  extracted  from  J-­‐PARC  main  ring,  impinge  on  90-­‐cm,                                      graphite  target     ² Induced   𝜋+ (𝜋-­‐)  focused  by  three  horns,  pass  through  a  96-­‐m  decay  pile ² Beam  dump  to  stop  all  particles  except  neutrinos  and  high-­‐energy  muons ² Muon monitor,  downstream  of  beam  dump,  to  monitor  beam  intensity  and  direction  by   measuring  induced  muon profile. 1.9 ⇥ int
  8. 8. Beam  power  and  data  accumulation 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 8 !-mode POT: 7.57×1020 (50.14%) !-mode POT: 7.53×1020 (49.86%) 27 May 2016 POT total: 1.510×1021 2011 2012 2013 2014 2015 2016 ² Beam  power  steadily  increased  to  420  kW ² 1.5x1021 Protons-­‐on-­‐target  (POT)  accumulated.  Data  sample  for   results  presented  today: ² Neutrino-­‐mode:  6.91x1020 POT ² Antineutrino-­‐mode:   7.53x1020  POT  (approx.  2  x  1st T2K  antineutrino   results)
  9. 9. Neutrino  flux  inference 7/14/16 ² High  intensity,  almost  pure  muon (anti)  neutrino  beam  from  J-­‐PARC 9PASCOS  2016,  Quy Nhon,  VN ² To  infer  neutrino  flux,  knowledge   of  hadron  production  at  target   needed ² Constrained  by  external  data  from   NA61/SHINE Flux  uncertainty  ~  10% Neutrino  mode Antineutrino   mode < 1%(⌫e/⌫e) < 1%(⌫e/⌫e) T2K  Far  Detector   T2K  Far  Detector   T2K  Far  Detector   T2K  Far  Detector   (Beam  modes  changed  by  switching  horn  polarity)
  10. 10. Near  Detectors 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 10 ² Near  Detector  complex  is  280m  downstream  of  target On-­‐axis  (called  INGRID) Measure  𝜈 beam  intensity  &  profile:   16  scintillator-­‐steel  interleaved   modules  (7.1  tons/each) Off-­‐axis  (called  ND280) Understand  unoscillated 𝜈 beam:   further  constrain  flux  and  cross-­‐ section  parameters  
  11. 11. Near  Detectors  measurements 11 Day [events/1e14POT] 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Event rate Horn250kA Horn205kA Horn-250kA [mrad] 1− 0.5− 0 0.5 Horizontal beam direction INGRID MUMON Day [mrad] 1− 0.5− 0 0.5 1 Vertical beam direction INGRID MUMON T2K Run1 Jan.2010-Jun.2010 T2K Run2 Nov.2010-Mar.2011 T2K Run3 Mar.2012-Jun.2012 T2K Run4 Oct.2012-May.2013 T2K Run5 May.2014 -Jun.2014 T2K Run6 Oct.2014-June.2015 T2K Run7 Feb.2016-May.2016 7/14/16 PASCOS  2016,  Quy Nhon,  VN Operating  stably Beam  intensity/profile Constrain  flux &   𝜈-­‐int.  model Prefit =  No  ND280  data Postfit =  ND280  data  included Cross-­‐section  parameters Off-­‐axis  neutrino   energy  strongly  depend  on  beam direction  (1mrad ~ 2% shift of peak energy) Data  used  as  much  as  possible to  constrain  𝜈-­‐int.  model
  12. 12. Far  Detector,  Super-­‐Kamiokande 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 12 (GeV)νE 0 1 2 3 (A.U.)295km µνΦ 0 0.5 1 °OA 0.0 °OA 2.0 °OA 2.5 0 1 2 3 )eν→µνP( 0.05 0.1 = 0CP δNH, = 0CP δIH, /2π=CP δNH, /2π=CP δIH, 0 1 2 3 )µν→µνP( 0.5 1 = 1.023θ22 sin = 0.113θ22 sin 2 eV-3 10×= 2.432 2 m∆ Partice ID parameter -10 -8 -6 -4 -2 0 2 4 6 8 10 0 50 100 150 200 250 300 350 Super Kamiokande IV 2166.5 days : Monitoring e-like muon-like Numberofevents ² Muon and  electron  are  well-­‐separated à identify  𝜈 𝜇/𝜈$ with  high  purity ² Super-­‐K  is  2.50 off  the  beam’s  axis  to  achieve  narrow  band  beam  peaked   at  oscillation  maximum  (0.6  GeV) (atmospheric   𝜈 data) Super-­‐Kamiokande (41.4  m  tall  x  39.3m  diameter) 22.5  ktons fiducial volume   1000m  underground ⌫µ + n ! µ + p ⌫e + n ! e + p
  13. 13. Oscillation  parameters  extracted  from  T2K  data 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 13 NH:  Normal   𝜈 mass  hierarchy IH:  Inverted   𝜈 mass  hierarchy *Reactor  constraint  used  as  prior  if  is  applied sin2 2✓13 = 0.085 ± 0.005 Disappearance  channel,   sensitive  to  𝜃23 &  ∆ 𝑚() ) Appearance  channel,   sensitive  to  𝜃13 &   𝛿CP ⌫µ candiate ⌫µ candiate ⌫e candiate ⌫e candiate
  14. 14. 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 14 *Reactor  constraint  used  as  prior  if  is  applied sin2 2✓13 = 0.085 ± 0.005 Disappearance  channel,   sensitive  to  𝜃23 &  ∆ 𝑚() ) Appearance  channel,   sensitive  to  𝜃13 &   𝛿CP ⌫µ candiate ⌫µ candiate ⌫e candiate ⌫e candiate ² Today  result:  All   𝜈/𝜈̅ samples  are  combined  to   extract  oscillation  parameters.  The   𝜈 and   𝜈̅ are   treated  identically. ² Different  approaches  for  statistical  treatment: o Frequentist and  Bayesian o Fit  on  reconstructed  E 𝜈 or  momentum/angle   of  induced  leptons ² They  agree  with  each  other   Oscillation  parameters  extracted  from  T2K  data
  15. 15. Results:   𝜃23 &  ∆ 𝑚() ) 7/14/16 PASCOS  2016,  Quy  Nhon,  VN ² Since  2014,  mainly  taking  data  in   𝜈̅ mode   (run  5-­‐7) ² 𝜈 𝜇 disappearance  behaves  consistently  w/   𝜈, disappearance ² Result  consistent  with  maximal  mixing,  the   world’s  highest  precision   𝜃23  measurement ² Slightly  favor  normal  mass  hierarchy 15 Normal MH (𝛥𝝌2 best-­‐fit=0.0) Inverted MH             (𝛥𝝌2 best-­‐fit=2.66) sin2 𝜃23 0.53245.565 75.588 0.53445.5:; 75.58< ∆𝑚() ) /104( (eV2) 2.54545.5?) 75.5?8 2.51045.5?( 75.5?) 𝜈:  6.91x1020 POT  +   𝜈̅:  7.53x1020  POT T2K  Run1-­‐7b  preliminary     T2K  Run1-­‐7b  preliminary    
  16. 16. Results:   𝜃13 &   𝛿CP 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 16 T2K  data  only T2K  data  +  reactor ² Shows  for  two  cases:  (i)  T2K  data  only  &       (ii)  T2K  data  w/  reactor  constraint ² Mass  hierarchy  is  fixed,  either  normal   or  inverted  and  compute  independently ² Measured   𝜃13 w/  T2K  data  only  (top  plot)   agrees  with  reactor  measurement   ² With  reactor  constraint,  data  exclude   positive  value  of   𝛿CP  at  ~90%  C.L.
  17. 17. Results:   𝛿CP 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 17 T2K  +  reactorObservation Sensitivity ² Slightly  favor   𝛿CP =  -­‐ 𝜋/2 ² Measured   𝛥 𝝌2   is  marginally  different  than   the  expected  one ² It  is  due  to  difference  btw/  observed  data   and  expectation,  specifically ² 𝜈$ appearance  is  larger  than  expected ² 𝜈$B “appearance”  is  smaller  than  expected
  18. 18. Summary 7/14/16 PASCOS  2016,  Quy  Nhon,  VN ² Results  with   𝜈/𝜈̅ combined  data  shown o Consistent  with   𝜃23 maximal  mixing   o Slightly  prefer  normal  mass  hierarchy o Slightly  favor   𝛿CP =  -­‐ 𝜋/2   𝛿CP =  [-­‐3.02,  -­‐0.49]  (NH),  [-­‐1.87,  -­‐0.98]  (IH)  at  90%  C.L. à More  statistics  are  needed   ² J-­‐PARC  beam  power  has  steadily  increased  up  to  420  kW ² Accumulated  exposure  of  1.5x1021  POT  (~20%  of  T2K  total  approved   running) Stay  tuned  for  upcoming  results  from  T2K 18
  19. 19. 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 19 Thank  you! (Cảm ơn)
  20. 20. T2K  Phase  2  proposal     7/14/16 PASCOS  2016,  Quy  Nhon,  VN ² Approved  T2K  statistics,  7.8  x1021 POT,  can  be  accumulated  by  JFY2020 ² Hyper-­‐K  and  DUNE  are  expected  to   start  around  2026 ² T2K  Phase  2,  if  extended  to  JFY2026,   collects  ~  20x1021 POT ² Neutrino  beamlineupgrade  &   analysis  improvements  (SK  fiducial volume,  add  new  event  sample)                                             à Effectively  add 50%  statistics ² Reduction  of  systematic  uncertainties   to  enhance  CPV  sensitivity 20 Number  of  events  expected  at  T2K  far  detector   with  full  proposed   T2K  Phase  2  exposure J-­‐PARC  Main  Ring  expected  beam  power &  T2K  Phase  2  accumulation  scenario  
  21. 21. T2K  Phase  2  sensitivity  to  CPV 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 21 )21 Protons-on-Target (x10 0 5 10 15 20 =0CPδtoexcludesin2 χ∆ 0 5 10 15 =0.4323 θ2 True sin =0.5023 θ2 True sin =0.6023 θ2 True sin 90% C.L. 99% C.L. C.L.σ3 w/ eff. stat. improvements (no sys. errors) w/ eff. stat. & sys. improvements Work in Progress )°(CP δTrue 200− 100− 0 100 200 =0CPδtoexcludesin2 χ∆ 0 5 10 15 20 =0.4323θ2 True sin =0.5023θ2 True sin =0.6023θ2 True sin 90% C.L. 99% C.L. C.L.σ3 POT w/ eff. stat. & sys. improvements21 20x10 POT w/ 2016 sys. errs.21 7.8x10 Work in Progress CP = ⇡ 2 ² >  3 𝜎 significance  sensitivity  to  CP   violation  if   𝛿CP=  -­‐ 𝜋/2 ² 99%  C.L.  significance  for  more  than  45%   of  the  possible  true  values  of   𝛿CP ² 1%  precision  of   𝛥m2 23,  0.5o  -­‐ 1.7o   precision  of   𝜃23  depending  on  its  true   value,  ~3𝜎 significance  for  resolving   𝜃23     octant  if  sin2 𝜃23  >0.6  or  sin2 𝜃23  <0.43 23 θ2 sin 0.4 0.5 0.6 32 2 m∆ 2.2 2.4 2.6 2.8 3 3− 10× Current POT , 90% C.L POT, 90% C.L21 7.8x10 POT w/improvement, 90% C.L21 20x10 Stat. only Systematics Work in Progress True sin2 ✓23 = 0.6
  22. 22. Bayesian  posterior  probability 7/14/16 22 NSK/NSK NH IH Sum sin2θ23≤0.5 21.8% 7.2% 29.0% sin2θ23>0.5 53.9% 18.1% 71.0% Sum 74.7% 25.3% 100% Bayesian  w/  MCMC (Erec) (Plep/𝜃lep)   ² Prefer  normal  mass  hierarchy  and  higher   octant Bayesian  w/  likelihood  fit (Erec) PASCOS  2016,  Quy Nhon,  VN Frequentist (Erec for   𝜈 𝜇/𝜈, ) (Erec/ 𝜃lep for   𝜈$ /𝜈$B )
  23. 23. Backup:  Data  fit  vs  sensitivity 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 23 10k  toys 10k  toys ² Toy  experiments  at  true  values  of   𝛿CP  &  MH   generated  to    understand  data  fit  outcomes ² Probability  to  exclude   𝛿CP  =  (0,   𝜋)  is  evaluated ² Data  agree  w/   𝛿CP =  -­‐1.76  (~-­‐𝜋/2),  normal  MH   at  2 𝜎 level  and  probability  to  exclude   𝛿CP  =0  is   non-­‐negligible  (>8%) True:   𝛿CP =  -­‐1.76,  normal  MHTrue:   𝛿CP =  0,  normal  MH Prop.  (%) to  exclude   True  para. 𝛿CP =  -­‐1.76,  NH True  para. 𝛿CP =  0,  NH 90%  CL 2𝝈 90%  CL 2𝝈 𝛿CP =0,  NH 18.7 8.9 10.2 4.7 𝛿CP =𝜋,  NH 16.3 6.8 13.4 6.5
  24. 24. Systematic  error  table 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 24 𝜈-­‐mode  (%) 𝝂B-­‐mode  (%) 𝜇-­‐like e-­‐like 𝜇-­‐like e-­‐like Flux 3.59 3.67 3.68 3.78 𝜈 int. 4.10 5.20 5.43 3.78 SK  det. 4.15 3.50 3.94 3.97 Osc.  par. 0.03 4.16 0.03 4.00 Pre  fit 11.9 12.6 12.7 14.3 Post  fit 5.13 6.80 5.12 7.41 NSK/NSK
  25. 25. 90%  range  of   𝛿CP 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 25 NSK/NSK Fit  with  DataSensitivity
  26. 26. Data  fit  vs  sensitivity 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 26
  27. 27. Results:   𝜃13 &   𝛿CP 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 27 T2K  +  reactor Sensitivity T2K  data  only Observation ²Agree  w/  reactor ²Marginally  differ   from  expectation   (next  slides) CP = 1.601, sin2 ✓13 = 0.0217, sin2 ✓23 = 0.528, m2 32 = 2.509 ⇥ 10 3 eV 2 /c4 Assume  (PDG  2015):
  28. 28. BANFF:  flux  RHC 7/14/16 PASCOS  2016,  Quy  Nhon,  VN ² 15%  increase 28 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,eνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,eνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,µνND280 (GeV)νE -1 10 1 10 FluxParameterValue 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 Prior to ND280 Constraint After ND280 Constraint beam modeν,µνND280
  29. 29. Neutrino  oscillations ² Now  well-­‐understood  phenomenon ² Quantum  mechanical  mixing  between  mass    and  flavor  eigenstates   |⌫↵(0)i = U↵i|⌫i(0)i ↵ = e, µ, ⌧ i = 1, 2, 3 |⌫ (t)i = U j|⌫j(t)i = e, µ, ⌧ j = 1, 2, 3 |⌫↵(0)i |⌫ (t)i U⇤ ↵i U j e mit Credit  to  Boris  K. 297/14/16 PASCOS  2016,  Quy  Nhon,  VN
  30. 30. Neutrino  oscillations Probability  (in  vacuum):   *  Abbreviated  after  Pontecorvo,  Maki,  Nakagawa,  Sakata   UPMNS = 0 @ 1 0 0 0 c23 s23 0 s23 c23 1 A 0 @ c13 0 s13e i CP 0 1 0 s13ei CP 0 c13 1 A 0 @ c12 s12 0 s12 c12 0 0 0 1 1 A Atmospherics  /  Accelerators Reactors  /  accelerator Solar neutrino  /  reactors 307/14/16 PASCOS  2016,  Quy  Nhon,  VN P⌫↵!⌫ (t) =|h⌫ |⌫↵(t)i|2 = ↵ 4 X i>j <(U⇤ ↵iU iU↵jU⇤ j) sin2 ( m2 ijL 4E ) + 2 X i>j =(U⇤ ↵iU iU↵jU⇤ j) sin( m2 ijL 4E ), Non-­‐zero
  31. 31. T2K  off-­‐axis  detector:  ND280 7/14/16 PASCOS  2016,  Quy  Nhon,  VN Aim  to  understand  unoscillated 𝜈 beam:  constrains  flux   and  cross-­‐section  parameters   ² Tracker,  composed  of  Fine-­‐Grained  Detector  (FGD)   and  Time  Projection  Chamber  (TPC),  is  central  part o Two  FGDs:    active  target  w/  scintillator  only   (FGD1)  or    scintillator-­‐water  interleaved  (FGD2) o Three  TPCs:  mainly  Argon  (95%)  filled,  for   momentum   measurement  and  particle  ID   ² 𝜋0  detector  (POD)  for  water-­‐scintillator  target  and  𝜋0 tagging   ² Electromagnetic  calorimeters  (ECal)  to  detect  gamma   rays  and  reconstruct  𝜋0 ² Side  muon range  detectors  (SMRD)  to  tag  entering   cosmic  muons or  side-­‐exiting  muons Key  features  for  cross-­‐section:   o Narrow  flux  spectrum  ,  mean  ~  0.85  GeV o Multiple  targets:  scintillator,  water,  argon,  lead o High  final  state  ID  resolution,   charge  separation   31 ~B 0.2  T
  32. 32. Pre-­‐fit:  muon momentum 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 32 Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 500 1000 1500 2000 2500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 300 350 400 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 10 20 30 40 50 60 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CCNtrk
  33. 33. Post-­‐fit:  muon momentum 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 33 Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 500 1000 1500 2000 2500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 300 350 400 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi Muon momentum (MeV/c) 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 10 20 30 40 50 60 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk Muon momentum (MeV/c) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Events/(100MeV/c) 0 5 10 15 20 25 30 35 40 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CCNtrk
  34. 34. Pre-­‐fit:  muon angle 7/14/16 PASCOS  2016,  Quy  Nhon,  VN ² 2x3  sample  for   neutrinos  (FGD1,2) ² 2x4  sample  for  anti-­‐ neutrinos  (FGD1,2) 34 θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 200 400 600 800 1000 1200 1400 1600 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 160 Data CCQEν non-CCQEν CCQEν non-CCQEν θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk FGD1, nu,  CCNtrk
  35. 35. Post-­‐fit:  muon angle 7/14/16 PASCOS  2016,  Quy  Nhon,  VN 35 θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CC1trk θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 50 100 150 200 250 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, Antinu,  CCNtrk θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 200 400 600 800 1000 1200 1400 1600 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC0pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CC1pi θMuon cos 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Events/(0.01) 0 100 200 300 400 500 Data CCQEν CC 2p-2hν πCC Res 1ν πCC Coh 1ν CC Otherν NC modesν modesν FGD1, nu,  CCres θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 160 Data CCQEν non-CCQEν CCQEν non-CCQEν θMuon cos 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Events/(0.01) 0 20 40 60 80 100 120 140 Data CCQEν non-CCQEν CCQEν non-CCQEν FGD1, nu,  CC1trk FGD1, nu,  CCNtrk ² 2x3  sample  for   neutrinos  (FGD1,2) ² 2x4  sample  for  anti-­‐ neutrinos  (FGD1,2)

×